1
|
Srivastav AK, Mishra MK, Lillard JW, Singh R. Transforming Pharmacogenomics and CRISPR Gene Editing with the Power of Artificial Intelligence for Precision Medicine. Pharmaceutics 2025; 17:555. [PMID: 40430848 PMCID: PMC12114816 DOI: 10.3390/pharmaceutics17050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Advancements in pharmacogenomics, artificial intelligence (AI), and CRISPR gene-editing technology are revolutionizing precision medicine by enabling highly individualized therapeutic strategies. Artificial intelligence-driven computational techniques improve biomarker discovery and drug optimization while pharmacogenomics helps to identify genetic polymorphisms affecting medicine metabolism, efficacy, and toxicity. Genetically editing based on CRISPR presents a precise method for changing gene expression and repairing damaging mutations. This review explores the convergence of these three fields to enhance improved precision medicine. Method: A methodical study of the current literature was performed on the effects of pharmacogenomics on drug response variability, artificial intelligence, and CRISPR in predictive modeling and gene-editing applications. Results: Driven by artificial intelligence, pharmacogenomics allows clinicians to classify patients and select the appropriate medications depending on their DNA profiles. This reduces the side effect risk and increases the therapeutic efficacy. Precision genetic modifications made feasible by CRISPR technology improve therapy outcomes in oncology, metabolic illnesses, neurological diseases, and other fields. The integration of artificial intelligence streamlines genome-editing applications, lowers off-target effects, and increases CRISPR specificity. Notwithstanding these advances, issues including computational biases, moral dilemmas, and legal constraints still arise. Conclusions: The synergy of artificial intelligence, pharmacogenomics, and CRISPR alters precision medicine by letting customized therapeutic interventions. Clinically translating, however, hinges on resolving data privacy concerns, assuring equitable access, and strengthening legal systems. Future research should focus on refining CRISPR gene-editing technologies, enhancing AI-driven pharmacogenomics, and developing moral guidelines for applying these tools in individualized medicine going forward.
Collapse
Affiliation(s)
- Amit Kumar Srivastav
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA; (A.K.S.); (J.W.L.J.)
| | - Manoj Kumar Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - James W. Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA; (A.K.S.); (J.W.L.J.)
- Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA; (A.K.S.); (J.W.L.J.)
- Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| |
Collapse
|
2
|
Mai CW, Sridhar SB, Karattuthodi MS, Ganesan PM, Shareef J, Lee EL, Armani K. Scoping review of enablers and challenges of implementing pharmacogenomics testing in the primary care settings. BMJ Open 2024; 14:e087064. [PMID: 39500605 PMCID: PMC11552560 DOI: 10.1136/bmjopen-2024-087064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024] Open
Abstract
INTRODUCTION Pharmacogenomic testing (PGx) plays a crucial role in improving patient medication safety, yet ethical concerns and limitations impede its clinical implementation in the primary care settings. AIMS To systematically review the current state of PGx in the primary care settings and determine the enablers and challenges of its implementation. DESIGN A scoping review was carried out by adhering to Arksey and O'Malley's 6-stage methodological framework and the 2020 Joanna Briggs Institute and Levac et al. DATA SOURCES: Cochrane Library, EMBASE, Global Health, MEDLINE and PubMed were searched up to 17 July 2023. ELIGIBILITY CRITERIA All peer-reviewed studies in English, reporting the enablers and the challenges of implementing PGx in the primary care settings were included. DATE EXTRACTION AND SYNTHESIS Two independent reviewers extracted the data. Information was synthesised based on the reported enablers and the challenges of implementing PGx testing in the primary care settings. Information was then presented to stakeholders for their inputs. RESULTS 78 studies discussing the implementation of PGx testing are included, of which 57% were published between 2019 and 2023. 68% of the studies discussed PGx testing in the primary care setting as a disease-specific themes. Healthcare professionals were the major stakeholders, with primary care physicians (55%) being the most represented. Enablers encompassed various advantages such as diagnostic and therapeutic benefits, cost reduction and the empowerment of healthcare professionals. Challenges included the absence of sufficient scientific evidence, insufficient training for healthcare professionals, ethical and legal aspects of PGx data, low patient awareness and acceptance and the high costs linked to PGx testing. CONCLUSION PGx testing integration in primary care requires increased consumer awareness, comprehensive healthcare provider training on legal and ethical aspects and global feasibility studies to better understand its implementation challenges. Managing high costs entails streamlining processes, advocating for reimbursement policies and investing in research on innovation and affordability research to improve life expectancy.
Collapse
Affiliation(s)
- Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Cheras, Malaysia
| | | | - Mohammed Salim Karattuthodi
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | | | - Javedh Shareef
- RAK Medical & Health Sciences University, Ras Al Khaimah, UAE
| | - E Lyn Lee
- IMU University, Kuala Lumpur, Malaysia
| | - Keivan Armani
- Department of Primary Care and Public Health, School of Public Health, Imperial College London Faculty of Medicine, London, UK
- UCSI University Faculty of Pharmaceutical Sciences, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Ausi Y, Barliana MI, Postma MJ, Suwantika AA. One Step Ahead in Realizing Pharmacogenetics in Low- and Middle-Income Countries: What Should We Do? J Multidiscip Healthc 2024; 17:4863-4874. [PMID: 39464786 PMCID: PMC11512769 DOI: 10.2147/jmdh.s458564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/29/2024] [Indexed: 10/29/2024] Open
Abstract
Pharmacogenetics is a promising approach in future personalized medicine. This field holds excellent prospects for healthcare quality acceleration. It promotes the transition to the precision medicine era, whereby a health treatment is driven by a deeper understanding of individual characteristics by interpreting the underlying genomic variation. Pharmacogenetics has been developing rapidly since the human genome project. Many pharmacogenetics studies have shown the association between genetic variants and therapy outcomes. Several pharmacogenetics working groups have recommended guidelines for the clinical application of pharmacogenetics. However, the development of pharmacogenetics in low- and middle-income countries (LMICs) is still retarded behind. The problems mainly include clinical evidence, technology, policy and regulation, and human resources. Currently, available genome and drug effect data in LMICs are scarce. Pharmacogenetics development should be escalated with evidence proof through research collaboration across countries. The challenges of pharmacogenetics implementation are discussed comprehensively in this article, along with the prospect of pharmacogenetics-guided personalized medicine in developed countries. Stepwise is expected to help the researchers and stakeholders define the problem that hindered the pharmacogenetics application.
Collapse
Affiliation(s)
- Yudisia Ausi
- Doctor Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Maarten J Postma
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Auliya A Suwantika
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
4
|
Paetznick C, Okoro O. The Intersection between Pharmacogenomics and Health Equity: A Case Example. PHARMACY 2023; 11:186. [PMID: 38133461 PMCID: PMC10747429 DOI: 10.3390/pharmacy11060186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Pharmacogenomics (PGx) and the study of precision medicine has substantial power to either uplift health equity efforts or further widen the gap of our already existing health disparities. In either occurrence, the medication experience plays an integral role within this intersection on an individual and population level. Examples of this intertwined web are highlighted through a case discussion. With these perspectives in mind, several recommendations for the research and clinical communities are highlighted to promote equitable healthcare with PGx integrated.
Collapse
Affiliation(s)
| | - Olihe Okoro
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|
5
|
Nogueiras-Álvarez R. Pharmacogenomics in clinical trials: an overview. Front Pharmacol 2023; 14:1247088. [PMID: 37927590 PMCID: PMC10625420 DOI: 10.3389/fphar.2023.1247088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
With the trend towards promoting personalised medicine (PM), the application of pharmacogenetics and pharmacogenomics (PGx) is of growing importance. For the purposes of clinical trials, the inclusion of PGx is an additional tool that should be considered for improving our knowledge about the effectiveness and safety of new drugs. A search of available clinical trials containing pharmacogenetic and PGx information was conducted on ClinicalTrials.gov. The results show there has been an increase in the number of trials containing PGx information since the 2000 s, with particular relevance in the areas of Oncology (28.43%) and Mental Health (10.66%). Most of the clinical trials focus on treatment as their primary purpose. In those clinical trials entries where the specific genes considered for study are detailed, the most frequently explored genes are CYP2D6 (especially in Mental Health and Pain), CYP2C9 (in Hematology), CYP2C19 (in Cardiology and Mental Health) and ABCB1 and CYP3A5 (particularly prominent in Transplantation and Cardiology), among others. Researchers and clinicans should be trained in pharmacogenetics and PGx in order to be able to make a proper interpretation of this data, contributing to better prescribing decisions and an improvement in patients' care, which would lead to the performance of PM.
Collapse
|
6
|
Haga SB. Revisiting Secondary Information Related to Pharmacogenetic Testing. Front Genet 2021; 12:741395. [PMID: 34659361 PMCID: PMC8517135 DOI: 10.3389/fgene.2021.741395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Incidental or secondary findings have been a major part of the discussion of genomic medicine research and clinical applications. For pharmacogenetic (PGx) testing, secondary findings arise due to the pleiotropic effects of pharmacogenes, often related to their endogenous functions. Unlike the guidelines that have been developed for whole exome or genome sequencing applications for management of secondary findings (though slightly different from PGx testing in that these refer to detection of variants in multiple genes, some with clinical significance and actionability), no corresponding guidelines have been developed for PGx clinical laboratories. Nonetheless, patient and provider education will remain key components of any PGx testing program to minimize adverse responses related to secondary findings.
Collapse
|
7
|
Mathuba B, Koromina M, Mitropoulou C, Patrinos GP. Catalyzing clinical implementation of pharmacogenomics and personalized medicine interventions in Africa. Pharmacogenomics 2020; 22:115-122. [PMID: 33353428 DOI: 10.2217/pgs-2020-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenomics is considered to be the low-hanging fruit in the tree of genomic medicine with numerous examples of its successful implementation in the clinic. In this perspective, we provide details about the potential clinical application of pharmacogenomics in African populations by using relevant drug cases and high-throughput genomics approaches; involving numerous countries and stakeholders; and most importantly exploiting the existing knowledge of respective large-scale initiatives. We emphasize on the necessity of constructing appropriate frameworks for government policies in African countries. We also provide input about different initiatives in the field of genomics medicine implementation in Africa, not only for their potential for synergy and collaboration among them, but also as models for replication in other regions worldwide, aiming for healthcare improvement.
Collapse
Affiliation(s)
- Bathusi Mathuba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
| | - Maria Koromina
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, 26503, Greece
| | | | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, 26503, Greece.,Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
8
|
Meli BA, Fenech AG, Cordina M, Agius E. Ethical aspects pertaining to the use of pharmacogenetic tests. Res Social Adm Pharm 2020; 17:799-804. [PMID: 33722354 DOI: 10.1016/j.sapharm.2020.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
Administering medication safely and with confidence is important for both the patient and the prescriber. The individualised adjustment of a medicine dose, based solely on clinical outcomes or the change of a prescribed drug, possibly delays positive patient outcomes. This could lead to suboptimal patient management. Additionally, it could also have a negative pharmacoeconomic impact. The application of pharmacogenetics addresses this matter by refining and improving the safety and efficacy of medicines through a genotype-based prediction of responses. It also stratifies clinical trial populations in drug development in order to identify which patient genotypes benefit most from the drug under study. Although this emerging science presents a lot of prospects, it also raises a significant number of ethical questions. The problem with stratifying patient populations is addressed by promoting responsible and accountable scientific and intellectual liberty. This will avoid discrimination towards vulnerable populations. Therefore, there is a need to encourage informed consent and confidentiality, as well as to promote autonomy, justice, and equity by developing worldwide equivalent ethical, legal, and regulatory frameworks.
Collapse
Affiliation(s)
- Bernice Azzopardi Meli
- Department of Moral Theology, Faculty of Theology, University of Malta, Malta; Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Malta.
| | - Anthony G Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Maria Cordina
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Emmanuel Agius
- Department of Moral Theology, Faculty of Theology, University of Malta, Malta
| |
Collapse
|
9
|
El-Alti L, Sandman L, Munthe C. Person Centered Care and Personalized Medicine: Irreconcilable Opposites or Potential Companions? HEALTH CARE ANALYSIS 2019; 27:45-59. [PMID: 28936750 DOI: 10.1007/s10728-017-0347-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In contrast to standardized guidelines, personalized medicine and person centered care are two notions that have recently developed and are aspiring for more individualized health care for each single patient. While having a similar drive toward individualized care, their sources are markedly different. While personalized medicine stems from a biomedical framework, person centered care originates from a caring perspective, and a wish for a more holistic view of patients. It is unclear to what extent these two concepts can be combined or if they conflict at fundamental or pragmatic levels. This paper reviews existing literature in both medicine and related philosophy to analyze closer the meaning of the two notions, and to explore the extent to which they overlap or oppose each other, in theory or in practice, in particular regarding ethical assumptions and their respective practical implications.
Collapse
Affiliation(s)
- Leila El-Alti
- Department of Philosophy, Linguistics, and Theory of Science, University of Gothenburg, Olof Wijksgatan 6, Box 200, 40530, Gothenburg, Sweden.
| | - Lars Sandman
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Christian Munthe
- Department of Philosophy, Linguistics, and Theory of Science, University of Gothenburg, Olof Wijksgatan 6, Box 200, 40530, Gothenburg, Sweden
| |
Collapse
|
10
|
Sivadas A, Scaria V. Population-scale genomics-Enabling precision public health. ADVANCES IN GENETICS 2018; 103:119-161. [PMID: 30904093 DOI: 10.1016/bs.adgen.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current excitement for affordable genomics technologies and national precision medicine initiatives marks a turning point in worldwide healthcare practices. The last decade of global population sequencing efforts has defined the enormous extent of genetic variation in the human population resulting in insights into differential disease burden and response to therapy within and between populations. Population-scale pharmacogenomics helps to provide insights into the choice of optimal therapies and an opportunity to estimate, predict and minimize adverse events. Such an approach can potentially empower countries to formulate national selection and dosing policies for therapeutic agents thereby promoting public health with precision. We review the breadth and depth of worldwide population-scale sequencing efforts and its implications for the implementation of clinical pharmacogenetics toward making precision medicine a reality.
Collapse
Affiliation(s)
- Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
11
|
Barbarino JM, Whirl‐Carrillo M, Altman RB, Klein TE. PharmGKB: A worldwide resource for pharmacogenomic information. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1417. [PMID: 29474005 PMCID: PMC6002921 DOI: 10.1002/wsbm.1417] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023]
Abstract
As precision medicine becomes increasingly relevant in healthcare, the field of pharmacogenomics (PGx) also continues to gain prominence in the clinical setting. Leading institutions have begun to implement PGx testing and the amount of published PGx literature increases yearly. The Pharmacogenomics Knowledgebase (PharmGKB; www.pharmgkb.org) is one of the foremost worldwide resources for PGx knowledge, and the organization has been adapting and refocusing its mission along with the current revolution in genomic medicine. The PharmGKB website provides a diverse array of PGx information, from annotations of the primary literature to guidelines for adjusting drug treatment based on genetic information. It is freely available and accessible to everyone from researchers to clinicians to everyday citizens. PharmGKB was found over 17 years ago, but continues to be a vital resource for the entire PGx community and the general public. This article is categorized under: Translational, Genomic, and Systems Medicine > Translational Medicine.
Collapse
Affiliation(s)
- Julia M. Barbarino
- Department of Biomedical Data SciencesStanford UniversityStanfordCalifornia
| | | | - Russ B. Altman
- Department of Biomedical EngineeringStanford UniversityStanfordCalifornia
- Department of GeneticsStanford UniversityStanfordCalifornia
| | - Teri E. Klein
- Department of Biomedical Data SciencesStanford UniversityStanfordCalifornia
- Department of MedicineStanford UniversityStanfordCalifornia
| |
Collapse
|