1
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
J-P NA, Eitoku M, Yamasaki K, Mitsuda N, Fujieda M, Maeda N, Suganuma N. Association between chest-to-head circumference ratio at birth and childhood neurodevelopment: the Japan Environment and Children's Study. J Dev Orig Health Dis 2024; 15:e34. [PMID: 39726347 DOI: 10.1017/s2040174424000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Children born growth-restricted are well recognized to be at an increased risk of poor neurodevelopmental outcomes. This prospective study examined the influence of chest-to-head circumference ratio at birth on neurodevelopment in the first three years among children enrolled in the Japan Environment and Children's Study. We analyzed information of 84,311 children (43,217 boys, 41,094 girls). Children were divided into low, normal, and high chest-to-head circumference ratio groups. Neurodevelopment was assessed every six months (from 6 months to 3 years) using the Ages and Stages Questionnaire (Japanese translation), with delays defined as scores below 2 standard deviations from the mean. Additionally, we evaluated the contributions of chest and head circumference to the observed association. Linear mixed-effect regression revealed increased risk of delays in communication, gross motor, fine motor, problem-solving, and personal-social skills in the low-ratio group compared to the normal-ratio group. Adjusted risk ratios were in the range of 1.14 - 1.39 in boys and 1.16 - 1.37 in girls, with no such increase observed in the high-ratio group. The heightened risk in the low-ratio group was likely associated with a relatively narrow chest rather than a large head. The area under the ROC curves in predicting any developmental delay at three years for newborn measurements ranged from 0.513 to 0.526 in boys and 0.509 to 0.531 in girls. These findings suggest that a low chest-to-head circumference ratio may indicate children who are at risk for neurodevelopmental deficits. However, the ability to predict poor neurodevelopmental outcomes at three years of age is limited.
Collapse
Affiliation(s)
- Naw Awn J-P
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Keiko Yamasaki
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Naomi Mitsuda
- Department of Pediatrics, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Nagamasa Maeda
- Department of Obstetrics and Gynecology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
3
|
LaMantia AS. Polygenicity in a box: Copy number variants, neural circuit development, and neurodevelopmental disorders. Curr Opin Neurobiol 2024; 89:102917. [PMID: 39305678 PMCID: PMC11611645 DOI: 10.1016/j.conb.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Clinically defined neurodevelopmental disorders (cd-NDDs), including Autistic Spectrum Disorder (ASD) and Schizophrenia (Scz), are primarily polygenic: Multiple risk genes distributed across the genome, in potentially infinite combinations, account for variable pathology. Polygenicity raises a fundamental question: Can "core" cd-NDD pathogenic mechanisms be identified given this genomic complexity? With the right models and analytic targets, a distinct class of polygenic mutations-Copy Number Variants (CNVs): contiguous gene deletions or duplications associated with cd-NDD risk-provide a singular opportunity to define cd-NDD pathology. CNVs orthologous to those that confer cd-NDD risk have been engineered in animals as well as human stem cells. Using these tools, one can determine how altered function of multiple genes cause serial stumbles over cell biological steps typically taken to build optimal "polygenic" neural circuits. Thus, cd-NDD pathology may be a consequence of polygenic deviations-stumbles-that exceed limits of adaptive variation for key developmental steps.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- The Fralin Biomedical Research Institute at Virginia Tech-Carilion School of Medicine, Roanoke, VA 24016, United States; Department of Biological Sciences, Virginia Tech, Blacksburg VA, 24061, United States.
| |
Collapse
|
4
|
Khan YT, Tsompanidis A, Radecki MA, Dorfschmidt L, Austin T, Suckling J, Allison C, Lai MC, Bethlehem RAI, Baron-Cohen S. Sex Differences in Human Brain Structure at Birth. Biol Sex Differ 2024; 15:81. [PMID: 39420417 PMCID: PMC11488075 DOI: 10.1186/s13293-024-00657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Sex differences in human brain anatomy have been well-documented, though remain significantly underexplored during early development. The neonatal period is a critical stage for brain development and can provide key insights into the role that prenatal and early postnatal factors play in shaping sex differences in the brain. METHODS Here, we assessed on-average sex differences in global and regional brain volumes in 514 newborns aged 0-28 days (236 birth-assigned females and 278 birth-assigned males) using data from the developing Human Connectome Project. We also assessed sex-by-age interactions to investigate sex differences in early postnatal brain development. RESULTS On average, males had significantly larger intracranial and total brain volumes, even after controlling for birth weight. After controlling for total brain volume, females showed significantly greater total cortical gray matter volumes, whilst males showed greater total white matter volumes. After controlling for total brain volume in regional comparisons, females had significantly increased white matter volumes in the corpus callosum and increased gray matter volumes in the bilateral parahippocampal gyri (posterior parts), left anterior cingulate gyrus, bilateral parietal lobes, and left caudate nucleus. Males had significantly increased gray matter volumes in the right medial and inferior temporal gyrus (posterior part) and right subthalamic nucleus. Effect sizes ranged from small for regional comparisons to large for global comparisons. Significant sex-by-age interactions were noted in the left anterior cingulate gyrus and left superior temporal gyrus (posterior parts). CONCLUSIONS Our findings demonstrate that sex differences in brain structure are already present at birth and remain comparatively stable during early postnatal development, highlighting an important role of prenatal factors in shaping sex differences in the brain.
Collapse
Affiliation(s)
- Yumnah T Khan
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Marcin A Radecki
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Social and Affective Neuroscience Group, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, 19139, USA
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Peterborough Foundation NHS Trust, Cambridge, CB2 8SZ, UK
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
5
|
Doan SN, Aringer AS, Vicman JM, Fuller-Rowell T. Chronic Physiological Dysregulation and Changes in Depressive Symptoms: Testing Sex and Race as Vulnerability Factors. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02189-5. [PMID: 39388078 DOI: 10.1007/s40615-024-02189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024]
Abstract
Depression is a growing public health concern that affects approximately 5% of adults in their lifetime (WHO in Depression, 2021). Understanding the biological correlates of depression is imperative for advancing treatment. Of particular interest is allostatic load, a multisystem indicator of chronic physiological dysregulation (McEwen and Seeman in, Ann N Y Acad Sci, 1999). The current longitudinal study examined the association between allostatic load, depressive symptoms, and the moderating roles of sex and race. Participants consisted of 150 young adults (Mage = 18.81) who reported their demographics and depressive symptoms at T1 and T2, a year and a half later. Allostatic load was computed using indicators of metabolic, cardiovascular, and neuroendocrine functioning. Allostatic load was found to predict changes in depressive symptoms. Moreover, interaction effects models revealed that the associations between allostatic load and depressive symptoms at follow-up were further influenced by sex, such that the relationship was significant for males, with pronounced effects for Black males in particular. Black males may be particularly vulnerable to the mental health consequences of biological dysregulation.
Collapse
Affiliation(s)
- Stacey N Doan
- Department of Psychological Science, Claremont McKenna College, 850 Columbia Avenue, Claremont, CA, 91711, USA.
| | - Alexandra S Aringer
- Department of Psychological Science, Claremont McKenna College, 850 Columbia Avenue, Claremont, CA, 91711, USA
| | - Jessica M Vicman
- Department of Psychological Science, Claremont McKenna College, 850 Columbia Avenue, Claremont, CA, 91711, USA
| | - Thomas Fuller-Rowell
- Department of Human Development and Family Studies, Auburn University, Auburn, USA
| |
Collapse
|
6
|
Castro M, Fernández V, Martínez A, Alcántara M, Campillo A, López-Soler C. Relationship Between Neurodevelopmental Areas and Difficulties in Emotional-Behavioural Variables in Children With Typical Development Under 2 Years of Age: Sex Differences. Psychol Belg 2024; 64:129-144. [PMID: 39247396 PMCID: PMC11378711 DOI: 10.5334/pb.1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
The aim of this study was to examine the relationship between neurodevelopmental areas and possible difficulties in emotional-behavioural variables, and to determine if sex moderated this relationship. A community sample of 231 boys and girls with typical development and with a mean age of 19.84 months was evaluated, using the Bayley-III and CBCL 1.5-5 scales. The main results confirmed: (1) better linguistic abilities in girls in both language areas (receptive communication and expressive communication), finding more evidence according to the Bayesian analysis in expressive communication; (2) in the emotional-behavioural area girls had higher scores in withdrawal; (3) significant negative correlations of low magnitude were found between the Bayley and CBCL scales, particularly in the areas of language and cognitive and internalising and externalising problems; (4) children with low cognitive abilities and those with poor receptive communication showed more inter and externalising difficulties; (5) no significant predictive value or moderating effect of sex was found, (6) the number of participants who simultaneously manifested significant deficits in both domains (neurodevelopmental and emotional-behavioural) was very reduced. Future research should corroborate these results and the characteristics of the relationship found at these early ages. Detecting the population at risk in the first two years of life would enable the implementation of interventions aimed at improving neurodevelopmental deficits and emotional-behavioural problems. Thus, identification of deficits in one domain should lead to evaluation of the other.
Collapse
Affiliation(s)
| | | | - Antonia Martínez
- Faculty of Psychology, University of Mrucia, 30100 Murcia, Spain
| | - Mavi Alcántara
- Faculty of Psychology, University of Mrucia, 30100 Murcia, Spain
| | | | | |
Collapse
|
7
|
Luo G, Li M, Qiu Y, Yao C, Zhang X, Li J. Gender differences and clinical correlates in the age of the first hospitalization in patients with drug-naïve schizophrenia in China: a cross-sectional study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1417-1426. [PMID: 37833429 DOI: 10.1007/s00406-023-01697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Gender differences in the onset age of schizophrenia have been reported in many studies, but differences in the age of the first hospitalization and associated factors have not been explored. The present study investigated gender differences and clinical correlates in the age of the first hospitalization in drug-naïve schizophrenia (DNS). A total of 144 DNS patients and 67 health controls were included. Demographic information, duration of untreated psychosis (DUP), Positive and Negative Symptom Scale (PANSS) scores, the Brief Psychiatric Rating Scale (BPRS) scores, Global Assessment of Functioning (GAF) scores, and MATRICS Consensus Cognitive Battery (MCCB) scores were collected and analyzed. The age of the first hospitalization was significantly earlier in males than in females (P < 0.01). In addition, there were significant differences in the age of the first hospitalization in terms of marital status, occupation, family ranking, suicide attempt, and place of residence (all P < 0.05). After Bonferroni correction, only DUP had a positive correlation with the age of the first hospitalization (PBonferroni < 0.05/6 = 0.0083). Multivariate linear regression analysis showed that gender (β = 0.141, t = 2.434, P = 0.016), marital status (β = 0.219, t = 3.463, P = 0.001), family ranking (β = 0.300, t = 4.918, P < 0.001), suicide attempt (β = 0.348, t = 5.549, P < 0.001), and DUP (β = 0.190, t = 2.969, P < 0.004) positively predicted the age of the first hospitalization. The age of the first hospitalization in male DNS was earlier than in females. In addition, gender, marital status, suicide attempt, DUP, and family rank were independent risk factors for the age of the first hospitalization.
Collapse
Affiliation(s)
- Guoshuai Luo
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Tianjin, 300222, China
| | - Meijuan Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Tianjin, 300222, China
| | - Yuying Qiu
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Tianjin, 300222, China
| | - Cong Yao
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Tianjin, 300222, China
| | - Xiangyang Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China.
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Tianjin, 300222, China.
| |
Collapse
|
8
|
Haque R, Kurien SP, Setty H, Salzberg Y, Stelzer G, Litvak E, Gingold H, Rechavi O, Oren-Suissa M. Sex-specific developmental gene expression atlas unveils dimorphic gene networks in C. elegans. Nat Commun 2024; 15:4273. [PMID: 38769103 PMCID: PMC11106331 DOI: 10.1038/s41467-024-48369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Sonu Peedikayil Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Litvak
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Long M, Kar P, Forkert ND, Landman BA, Gibbard WB, Tortorelli C, McMorris CA, Huo Y, Lebel CA. Sex and age effects on gray matter volume trajectories in young children with prenatal alcohol exposure. Front Hum Neurosci 2024; 18:1379959. [PMID: 38660010 PMCID: PMC11039858 DOI: 10.3389/fnhum.2024.1379959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Prenatal alcohol exposure (PAE) occurs in ~11% of North American pregnancies and is the most common known cause of neurodevelopmental disabilities such as fetal alcohol spectrum disorder (FASD; ~2-5% prevalence). PAE has been consistently associated with smaller gray matter volumes in children, adolescents, and adults. A small number of longitudinal studies show altered gray matter development trajectories in late childhood/early adolescence, but patterns in early childhood and potential sex differences have not been characterized in young children. Using longitudinal T1-weighted MRI, the present study characterized gray matter volume development in young children with PAE (N = 42, 84 scans, ages 3-8 years) compared to unexposed children (N = 127, 450 scans, ages 2-8.5 years). Overall, we observed altered global and regional gray matter development trajectories in the PAE group, wherein they had attenuated age-related increases and more volume decreases relative to unexposed children. Moreover, we found more pronounced sex differences in children with PAE; females with PAE having the smallest gray matter volumes and the least age-related changes of all groups. This pattern of altered development may indicate reduced brain plasticity and/or accelerated maturation and may underlie the cognitive/behavioral difficulties often experienced by children with PAE. In conjunction with previous research on older children, adolescents, and adults with PAE, our results suggest that gray matter volume differences associated with PAE vary by age and may become more apparent in older children.
Collapse
Affiliation(s)
- Madison Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Preeti Kar
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bennett A. Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - W. Ben Gibbard
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, AB, Canada
| | - Carly A. McMorris
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
- Werklund School of Education, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Catherine A. Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Yu Z, Dong Y, Chen Y, Aleya L, Zhao Y, Yao L, Gu W. It is time to explore the impact of length of gestation and fetal health on the human lifespan. Aging Cell 2024; 23:e14157. [PMID: 38558485 PMCID: PMC11019132 DOI: 10.1111/acel.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
A recently proposed principal law of lifespan (PLOSP) proposes to extend the whole human lifespan by elongating different life stages. As the preborn stage of a human being, gestation is the foundation for the healthy development of the human body. The antagonistic pleiotropy (AP) theory of aging states that there is a trade-off between early life fitness and late-life mortality. The question is whether slower development during the gestation period would be associated with a longer lifespan. Among all living creatures, the length of the gestation period is highly positively correlated to the length of the lifespan, although such a correlation is thought to be influenced by the body sizes of different species. While examining the relationship between lifespan length and body size within the same species, dogs exhibit a negative correlation between lifespans and body sizes, while there is no such correlation among domestic cats. For humans, most adverse gestational environments shorten the period of gestation, and their impacts are long-term. While many issues remain unsolved, various developmental features have been linked to the conditions during the gestation period. Given that the length of human pregnancies can vary randomly by as long as 5 weeks, it is worth investigating whether a slow steady healthy gestation over a longer period will be related to a longer and healthier lifespan. This article discusses the potential benefits, negative impacts, and challenges of the relative elongation of the gestation period.
Collapse
Affiliation(s)
- Zhuo Yu
- Heilongjiang Academy of Traditional Chinese MedicineHarbinChina
| | - Yushan Dong
- Graduate School of Heilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Lotfi Aleya
- Chrono‐Environnement Laboratory, UMR CNRS 6249Bourgogne Franche‐Comté UniversityBesançon CedexFrance
| | - Yinhuan Zhao
- Department of Rheumatism, Shanghai Traditional Chinese Medicine Integrated HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lan Yao
- College of Health Management, Harbin Medical UniversityHarbinHeilongjiangChina
- Department of Orthopedic Surgery and BME‐Campbell ClinicUniversity of Tennessee Health Science CentreMemphisTennesseeUSA
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME‐Campbell ClinicUniversity of Tennessee Health Science CentreMemphisTennesseeUSA
- Research Lt. Col. Luke WeathersJr. VA Medical CenterMemphisTennesseeUSA
- Department of Pharmaceutical SciencesUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
11
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
McLeod RM, Rosenkrantz TS, Fitch RH. Antenatal Magnesium Sulfate Benefits Female Preterm Infants but Results in Poor Male Outcomes. Pharmaceuticals (Basel) 2024; 17:218. [PMID: 38399433 PMCID: PMC10892166 DOI: 10.3390/ph17020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium sulfate (MagSul) is used clinically to prevent eclamptic seizures during pregnancy and as a tocolytic for preterm labor. More recently, it has been implicated as offering neural protection in utero for at-risk infants. However, evidence is mixed. Some studies found that MagSul reduced the incidence of cerebral palsy (CP) but did not improve other measures of neurologic function. Others did not find any improvement in outcomes. Inconsistencies in the literature may reflect the fact that sex effects are largely ignored, despite evidence that MagSul shows sex effects in animal models of neonatal brain injury. The current study used retrospective infant data to assess differences in developmental outcomes as a function of sex and MagSul treatment. We found that on 18-month neurodevelopmental cognitive and language measures, preterm males treated with MagSul (n = 209) had significantly worse scores than their untreated counterparts (n = 135; p < 0.05). Female preterm infants treated with MagSul (n = 220), on the other hand, showed a cognitive benefit relative to untreated females (n = 123; p < 0.05). No significant effects of MagSul were seen among females on language (p > 0.05). These results have tremendous implications for risk-benefit considerations in the ongoing use of MagSul and may explain why benefits have been hard to identify in clinical trials when sex is not considered.
Collapse
Affiliation(s)
- Ruth M. McLeod
- Department of Psychology, College of the Holy Cross, Worcester, MA 01610, USA
| | - Ted S. Rosenkrantz
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA;
| | - R. Holly Fitch
- Department of Psychological Sciences, Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
13
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Nordahl CW. Why do we need sex-balanced studies of autism? Autism Res 2023; 16:1662-1669. [PMID: 37382167 PMCID: PMC10527473 DOI: 10.1002/aur.2971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023]
Abstract
Males are diagnosed with autism much more frequently than females, and most research study samples reflect this male predominance. The result is that autistic females are understudied. There is a critical need to increase our understanding of autistic females, both biologically and clinically. The only way to do this is to recruit sex-balanced cohorts in studies so that similarities and differences between males and females can be evaluated in all autism research studies. The purpose of this commentary is to (1) provide historical context about how females came to be under-represented in all research, not just in the field of autism and (2) learn from other areas of health and medicine about the potentially dire consequences of not studying both sexes, and (3) draw attention to the need to recruit sex-balanced cohorts in autism research, particularly in neuroimaging studies.
Collapse
Affiliation(s)
- Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, MIND Institute, UC Davis, Sacramento, California, USA
| |
Collapse
|
15
|
Wapeesittipan P, Joshi A. Integrated analysis of robust sex-biased gene signatures in human brain. Biol Sex Differ 2023; 14:36. [PMID: 37221602 DOI: 10.1186/s13293-023-00515-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Sexual dimorphism is highly prominent in mammals with many physiological and behavioral differences between male and female form of the species. Accordingly, the fundamental social and cultural stratification factors for humans is sex. The sex differences are thought to emerge from a combination of genetic and environmental factors. It distinguishes individuals most prominently on the reproductive traits, but also affects many of the other related traits and manifest in different disease susceptibilities and treatment responses across sexes. Sex differences in brain have raised a lot of controversy due to small and sometimes contradictory sex-specific effects. Many studies have been published to identify sex-biased genes in one or several brain regions, but the assessment of the robustness of these studies is missing. We therefore collected huge amount of publicly available transcriptomic data to first estimate whether consistent sex differences exist and further explore their likely origin and functional significance. RESULTS AND CONCLUSION In order to systematically characterise sex-specific differences across human brain regions, we collected transcription profiles for more than 16,000 samples from 46 datasets across 11 brain regions. By systematic integration of the data from multiple studies, we identified robust transcription level differences in human brain across to identify male-biased and female-biased genes in each brain region. Firstly, both male and female-biased genes were highly conserved across primates and showed a high overlap with sex-biased genes in other species. Female-biased genes were enriched for neuron-associated processes while male-biased genes were enriched for membranes and nuclear structures. Male-biased genes were enriched on the Y chromosome while female-biased genes were enriched on the X chromosome, which included X chromosome inactivation escapees explaining the origins of some sex differences. Male-biased genes were enriched for mitotic processes while female-biased genes were enriched for synaptic membrane and lumen. Finally, sex-biased genes were enriched for drug-targets and more female-biased genes were affected by adverse drug reactions than male-biased genes. In summary, by building a comprehensive resource of sex differences across human brain regions at gene expression level, we explored their likely origin and functional significance. We have also developed a web resource to make the entire analysis available for the scientific community for further exploration, available at https://joshiapps.cbu.uib.no/SRB_app/.
Collapse
Affiliation(s)
- Pattama Wapeesittipan
- Department of Clinical Sciences, Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Anagha Joshi
- Department of Clinical Sciences, Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Jaber M. Genetic and environmental mouse models of autism reproduce the spectrum of the disease. J Neural Transm (Vienna) 2023; 130:425-432. [PMID: 36318343 DOI: 10.1007/s00702-022-02555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 03/23/2023]
Abstract
Genetic and environmental factors increase autism spectrum disorder (ASD) incidence, and this has led to the generation of corresponding animal models, with some showing strong construct and face validity. This short review focuses on results we have recently obtained with environmental and genetic mouse models of ASD and that are the valproic acid, the poly I:C and the Shank 3 models. This has allowed us to provide a comparative description of these widely used animal models providing an interesting perspective as to the pros and cons of each one of them, in our experimental settings. In these papers, we focused on motor and gait disorders which are currently not included in the diagnosis criteria, but which may provide new insights to ASD pathophysiology potentially leading to innovative therapies for a disease that currently has none. In all these models, we reported behavioral, cellular and molecular alterations related to the cerebellum. Motor and gait deficits were observed to various degrees in animal models and, when strongly present, they were correlated to the severity of social deficits as well as to the number of cerebellar Purkinje cells. Additionally, we also reported that, like in humans, males are more severely affected than females in these ASD models. These findings, along with an increasing body of literature, open new hopes in the ASD field pointing to brain regions, such the cerebellum, that are at the crossroads between cognitive, social and motor deficits. Targeting these brain regions and their underlying pathways and synaptic connections may prove of significant benefits.
Collapse
Affiliation(s)
- Mohamed Jaber
- Université de Poitiers, Inserm, Laboratoire de Neurosciences Expérimentales et Cliniques, Bâtiment B36, 1 Rue Georges Bonnet, BP 633, TSA 51106, 86073, Poitiers cedex9, France.
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France.
| |
Collapse
|
17
|
Sener EF, Dana H, Tahtasakal R, Hamurcu Z, Guler A, Tufan E, Doganyigit Z, Rassoulzadegan M. Partial changes in apoptotic pathways in hippocampus and hypothalamus of Cc2d1a heterozygous. Metab Brain Dis 2023; 38:531-541. [PMID: 36454503 DOI: 10.1007/s11011-022-01125-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
Alterations in the apoptosis pathway have been linked to changes in serotonin levels seen in autistic patients. Cc2d1a is a repressor of the HTR1A gene involved in the serotonin pathway. The hippocampus and hypothalamus of Cc2d1a ± mice were analyzed for the expression of apoptosis markers (caspase 3, 8 and 9). Gender differences were observed in the expression levels of the three caspases consistent with some altered activity in the open-field assay. The number of apoptotic cells was significantly increased. We concluded that apoptotic pathways are only partially affected in the pathogenesis of the Cc2d1a heterozygous mouse model. A) Apoptosis is suppressed because the cell does not receive a death signal, or the receptor cannot activate the caspase 8 pathway despite the death signal. B) Since Caspase 8 and Caspase 3 expression is downregulated in our mouse model, the mechanism of apoptosis is not activated.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey.
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.
| | - Halime Dana
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Reyhan Tahtasakal
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ahsen Guler
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Esra Tufan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Bozok University Medical Faculty, 66100, Yozgat, Turkey
| | - Minoo Rassoulzadegan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
- INSERM-CNRS, IRCAN, Universite Cote d'Azur (UCA), 06107, Nice, France
| |
Collapse
|
18
|
Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity. Mol Psychiatry 2023; 28:269-283. [PMID: 35705633 DOI: 10.1038/s41380-022-01658-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Lifelong indices of maladaptive behavior or illness often stem from early physiological aberrations during periods of dynamic development. This is especially true when dysfunction is attributable to early life adversity (ELA), when the environment itself is unsuitable to support development of healthy behavior. Exposure to ELA is strongly associated with atypical sensitivity and responsivity to potential threats-a characteristic that could be adaptive in situations where early adversity prepares individuals for lifelong danger, but which often manifests in difficulties with emotion regulation and social relationships. By synthesizing findings from animal research, this review will consider threat sensitivity through the lenses of associated corticolimbic brain circuitry and immune mechanisms, both of which are immature early in life to maximize adaptation for protection against environmental challenges to an individual's well-being. The forces that drive differential development of corticolimbic circuits include caretaking stimuli, physiological and psychological stressors, and sex, which influences developmental trajectories. These same forces direct developmental processes of the immune system, which bidirectionally communicates with sensory systems and emotion regulation circuits within the brain. Inflammatory signals offer a further force influencing the timing and nature of corticolimbic plasticity, while also regulating sensitivity to future threats from the environment (i.e., injury or pathogens). The early development of these systems programs threat sensitivity through juvenility and adolescence, carving paths for probable function throughout adulthood. To strategize prevention or management of maladaptive threat sensitivity in ELA-exposed populations, it is necessary to fully understand these early points of divergence.
Collapse
|
19
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
20
|
Granillo L, Iosif AM, Goodrich A, Snyder NW, Schmidt RJ. Maternal androgens and autism spectrum disorder in the MARBLES prospective cohort study. RESEARCH IN AUTISM SPECTRUM DISORDERS 2022; 99:102054. [PMID: 36938498 PMCID: PMC10022653 DOI: 10.1016/j.rasd.2022.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Maternal hormonal risk factors for autism spectrum disorder (ASD) in offspring could intersect genetic and environmental risk factors. Objectives This analysis explored ASD risk in association with maternal testosterone, androstenedione, and dehydroepiandrosterone (DHEA) measured in first, second, and third trimesters of pregnancy. Methods MARBLES is a prospective pregnancy cohort study based at the MIND Institute in Northern California that enrolls mothers who have at least one child previously diagnosed with ASD and are expecting, or planning to have another child. At 36 months the younger sibling is clinically classified as having ASD, or as non-typically developing (Non-TD), or typically developing (TD). Maternal androgens during pregnancy were measured in serum samples from 196 mothers. Multivariable logistic regression models estimated risk of ASD and Non-TD in offspring compared to TD, in relation to the log-transformed maternal androgen concentrations, at each trimester. Results Non-significant associations were observed, and borderline significant associations were only observed in some stratified unadjusted models. Second trimester maternal testosterone was non-significantly associated with ASD in female offspring, although not after adjustment, aRR 1.54 (95% CI 0.71, 3.33), and second trimester maternal DHEA was non-significantly associated with non-TD in male offspring, again not after adjustment, aRR 0.50 (95% CI 0.21, 1.21). Secondary analysis suggested that third trimester androgen concentrations in mothers with male offspring had significant or near significant associations with their child's Social Responsiveness Scale score. Conclusion No significant associations were found between maternal androgen concentrations and risk of ASD or Non-TD in the child.
Collapse
Affiliation(s)
- Lauren Granillo
- Graduate Group in Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Ana-Maria Iosif
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Amanda Goodrich
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Nathaniel W. Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
21
|
MacKay H, Gunasekara CJ, Yam KY, Srisai D, Yalamanchili HK, Li Y, Chen R, Coarfa C, Waterland RA. Sex-specific epigenetic development in the mouse hypothalamic arcuate nucleus pinpoints human genomic regions associated with body mass index. SCIENCE ADVANCES 2022; 8:eabo3991. [PMID: 36170368 PMCID: PMC9519050 DOI: 10.1126/sciadv.abo3991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Recent genome-wide association studies corroborate classical research on developmental programming indicating that obesity is primarily a neurodevelopmental disease strongly influenced by nutrition during critical ontogenic windows. Epigenetic mechanisms regulate neurodevelopment; however, little is known about their role in establishing and maintaining the brain's energy balance circuitry. We generated neuron and glia methylomes and transcriptomes from male and female mouse hypothalamic arcuate nucleus, a key site for energy balance regulation, at time points spanning the closure of an established critical window for developmental programming of obesity risk. We find that postnatal epigenetic maturation is markedly cell type and sex specific and occurs in genomic regions enriched for heritability of body mass index in humans. Our results offer a potential explanation for both the limited ontogenic windows for and sex differences in sensitivity to developmental programming of obesity and provide a rich resource for epigenetic analyses of developmental programming of energy balance.
Collapse
Affiliation(s)
- Harry MacKay
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chathura J. Gunasekara
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kit-Yi Yam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dollada Srisai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Hari Krishna Yalamanchili
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Yumei Li
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Waterland
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Carter CS, Kingsbury MA. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life’. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210054. [PMID: 35856299 PMCID: PMC9272143 DOI: 10.1098/rstb.2021.0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and the OT receptor occupy essential roles in our current understanding of mammalian evolution, survival, sociality and reproduction. This narrative review examines the hypothesis that many functions attributed to OT can be traced back to conditions on early Earth, including challenges associated with managing life in the presence of oxygen and other basic elements, including sulfur. OT regulates oxidative stress and inflammation especially through effects on the mitochondria. A related nonapeptide, vasopressin, as well as molecules in the hypothalamic–pituitary–adrenal axis, including the corticotropin-releasing hormone family of molecules, have a broad set of functions that interact with OT. Interactions among these molecules have roles in the causes and consequence of social behaviour and the management of threat, fear and stress. Here, we discuss emerging evidence suggesting that unique properties of the OT system allowed vertebrates, and especially mammals, to manage over-reactivity to the ‘side effects’ of oxygen, including inflammation, oxidation and free radicals, while also supporting high levels of sociality and a perception of safety. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcy A. Kingsbury
- Lurie Center for Autism, Mass General Hospital for Children, Harvard University Medical School, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
23
|
Cantio E, Bilenberg N, Nørgaard SM, Beck IH, Möller S, Cantio C, Jensen TK, Mortensen NB, Rasmussen A, Christesen HBT. Vitamin D status in pregnancy and childhood associates with intelligence quotient at age 7 years: An Odense child cohort study. Aust N Z J Psychiatry 2022:48674221116027. [PMID: 35971641 DOI: 10.1177/00048674221116027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Animal studies indicate a key role for vitamin D in brain development and function, but observational studies in humans only suggests a borderline positive association between prenatal vitamin D exposure and cognitive development in the offspring. Knowledge gaps include insights in exposure time window and differences by sex for the association. We aimed to investigate the association between blood concentrations of serum 25-hydroxyvitamin D measured at four different time points and intelligence quotient score at the age of 7 years, including analyses spilt by child sex. METHODS In Odense child cohort, we included 1404 mother-child pairs with serum 25-hydroxyvitamin D data from early pregnancy to age 7 years. Full-scale intelligence quotient was assessed with Wechsler Intelligence Scale for Children - fifth edition. Associations were adjusted for maternal education, pre-pregnancy body mass index, gestational age, sex and head circumference. Subanalyses stratified by sex were performed. RESULTS The median (interquartile range) serum 25-hydroxyvitamin D in cord was 45.88 (31.15-61.08) nmol/L; early pregnancy, 66.45 (51.29-78.74); late pregnancy, 79.13 (59.69-97.31); 7 years, 66.29 (53.45-80.23) nmol/L. The mean (standard deviation) full-scale intelligence quotient was 99.44 (11.98). In adjusted analyses, cord serum 25-hydroxyvitamin D < 50 nmol/L was associated with 2.2 points lower full-scale intelligence quotient compared to the reference (50-75 nmol/L) in boys, β = -2.2; 95% confidence interval = [-4.3, -0.1], p = 0.039. The same association with full-scale intelligence quotient was found for early pregnancy serum 25-hydroxyvitamin D, β = -2.5 [-4.6, -0.3], p = 0.025, primarily driven by an association in boys, β = -4.0 [-7.2, -0.8], p = 0.015; and for serum 25-hydroxyvitamin D at 7 years in girls, β = -3.0 [-6.0, -0.1], p = 0.042. CONCLUSION In this cohort, serum 25-hydroxyvitamin D < 50 nmol/L in both early gestation and cord blood in boys and current serum 25-hydroxyvitamin D < 50 nmol/L in girls were independent risk factors for two to four points lower full-scale intelligence quotient at the age of 7 years. Vulnerability to hypovitaminosis D, especially in pregnancy, may relate to child sex.
Collapse
Affiliation(s)
- Emily Cantio
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Niels Bilenberg
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Department of Child and Adolescent Psychiatry Odense, Mental Health Hospital and University Clinic, Region of Southern Denmark, Denmark
| | - Signe Monrad Nørgaard
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Iben Have Beck
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Faculty of Health Sciences, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Sören Möller
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Open Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Cathriona Cantio
- Department of Psychology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Tina Kold Jensen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Faculty of Health Sciences, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Nicoline Bebe Mortensen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Asta Rasmussen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Henrik Boye Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|
24
|
Transwoman Elite Athletes: Their Extra Percentage Relative to Female Physiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159103. [PMID: 35897465 PMCID: PMC9331831 DOI: 10.3390/ijerph19159103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
There is increasing debate as to whether transwoman athletes should be included in the elite female competition. Most elite sports are divided into male and female divisions because of the greater athletic performance displayed by males. Without the sex division, females would have little chance of winning because males are faster, stronger, and have greater endurance capacity. Male physiology underpins their better athletic performance including increased muscle mass and strength, stronger bones, different skeletal structure, better adapted cardiorespiratory systems, and early developmental effects on brain networks that wires males to be inherently more competitive and aggressive. Testosterone secreted before birth, postnatally, and then after puberty is the major factor that drives these physiological sex differences, and as adults, testosterone levels are ten to fifteen times higher in males than females. The non-overlapping ranges of testosterone between the sexes has led sports regulators, such as the International Olympic Committee, to use 10 nmol/L testosterone as a sole physiological parameter to divide the male and female sporting divisions. Using testosterone levels as a basis for separating female and male elite athletes is arguably flawed. Male physiology cannot be reformatted by estrogen therapy in transwoman athletes because testosterone has driven permanent effects through early life exposure. This descriptive critical review discusses the inherent male physiological advantages that lead to superior athletic performance and then addresses how estrogen therapy fails to create a female-like physiology in the male. Ultimately, the former male physiology of transwoman athletes provides them with a physiological advantage over the cis-female athlete.
Collapse
|
25
|
Jett S, Schelbaum E, Jang G, Boneu Yepez C, Dyke JP, Pahlajani S, Diaz Brinton R, Mosconi L. Ovarian steroid hormones: A long overlooked but critical contributor to brain aging and Alzheimer's disease. Front Aging Neurosci 2022; 14:948219. [PMID: 35928995 PMCID: PMC9344010 DOI: 10.3389/fnagi.2022.948219] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian hormones, particularly 17β-estradiol, are involved in numerous neurophysiological and neurochemical processes, including those subserving cognitive function. Estradiol plays a key role in the neurobiology of aging, in part due to extensive interconnectivity of the neural and endocrine system. This aspect of aging is fundamental for women's brains as all women experience a drop in circulating estradiol levels in midlife, after menopause. Given the importance of estradiol for brain function, it is not surprising that up to 80% of peri-menopausal and post-menopausal women report neurological symptoms including changes in thermoregulation (vasomotor symptoms), mood, sleep, and cognitive performance. Preclinical evidence for neuroprotective effects of 17β-estradiol also indicate associations between menopause, cognitive aging, and Alzheimer's disease (AD), the most common cause of dementia affecting nearly twice more women than men. Brain imaging studies demonstrated that middle-aged women exhibit increased indicators of AD endophenotype as compared to men of the same age, with onset in perimenopause. Herein, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining cognition in women, with evidence implicating menopause-related declines in 17β-estradiol in cognitive aging and AD risk. We will review research focused on the role of endogenous and exogenous estrogen exposure as a key underlying mechanism to neuropathological aging in women, with a focus on whether brain structure, function and neurochemistry respond to hormone treatment. While still in development, this research area offers a new sex-based perspective on brain aging and risk of AD, while also highlighting an urgent need for better integration between neurology, psychiatry, and women's health practices.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
26
|
Chiang VSC, DeRosa H, Park JH, Hunter RG. The Role of Transposable Elements in Sexual Development. Front Behav Neurosci 2022; 16:923732. [PMID: 35874645 PMCID: PMC9301316 DOI: 10.3389/fnbeh.2022.923732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Up to 50% of most mammalian genomes are made up of transposable elements (TEs) that have the potential to mobilize around the genome. Despite this prevalence, research on TEs is only beginning to gain traction within the field of neuroscience. While TEs have long been regarded as "junk" or parasitic DNA, it has become evident that they are adaptive DNA and RNA regulatory elements. In addition to their vital role in normal development, TEs can also interact with steroid receptors, which are key elements to sexual development. In this review, we provide an overview of the involvement of TEs in processes related to sexual development- from TE activity in the germline to TE accumulation in sex chromosomes. Moreover, we highlight sex differences in TE activity and their regulation of genes related to sexual development. Finally, we speculate on the epigenetic mechanisms that may govern TEs' role in sexual development. In this context, we emphasize the need to further the understanding of sexual development through the lens of TEs including in a variety of organs at different developmental stages, their molecular networks, and evolution.
Collapse
Affiliation(s)
| | | | | | - Richard G. Hunter
- College of Liberal Arts, Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
27
|
Novel role of peroxisome proliferator activated receptor-α in valproic acid rat model of autism: Mechanistic study of risperidone and metformin monotherapy versus combination. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110522. [PMID: 35131336 DOI: 10.1016/j.pnpbp.2022.110522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of heterogenous etiology exhibiting a challenge in understanding its exact neuro-pathophysiology. Recently, peroxisome proliferator activated receptor (PPAR)-α activation was found to play a fundamental role in neuroprotection and improving autistic-like-behaviors in experimental animal models of ASD through alleviating neuroinflammation, oxidative-stress, astrocyte reactivity, tauopathy in addition to its favorable role in metabolic regulation, thus attracting attention as a possible target in treatment of ASD. This study aimed to investigate the role of PPAR-α, astrocytic dysfunction and tauopathy in ASD and detect the possible neuroprotective effects of metformin (MET), through PPAR-α activation, and risperidone (RIS) either monotherapy or in combination in alleviating autistic-like-changes at behavioral and neurobiological levels in male Wistar rats. Pregnant female Wistar rats received valproic-acid (VPA) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic intra-peritoneal MET (100 mg/kg/day) and RIS (1 mg/kg/day) either monotherapy or in combination started from postnatal day (PND) 24 till PND61 (38 days). Prenatal VPA exposure simulated the autistic core behaviors associated with neurochemical and histopathological neurodevelopmental degenerative changes. Both MET and RIS either monotherapy or in combination were able to reverse these changes. The effect of MET was comparable to RIS. Moreover, MET was able to alleviate the RIS induced weight gain and improve cognitive functions highlighting its promising adjunctive role in alleviating ASD pathophysiology. Our study highlighted the favorable effects of MET and RIS both in monotherapy and in combination in alleviating the autistic-like-changes and proposed PPAR-α activation along with restoring astrocytes homeostasis as promising targets in novel therapeutic strategies in ASD.
Collapse
|
28
|
Yu X, Rahman MM, Wang Z, Carter SA, Schwartz J, Chen Z, Eckel SP, Hackman D, Chen JC, Xiang AH, McConnell R. Evidence of susceptibility to autism risks associated with early life ambient air pollution: A systematic review. ENVIRONMENTAL RESEARCH 2022; 208:112590. [PMID: 34929192 PMCID: PMC11409923 DOI: 10.1016/j.envres.2021.112590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Many studies have found associations between early life air pollution exposure and subsequent onset of autism spectrum disorder (ASD). However, characteristics that affect susceptibility remain unclear. OBJECTIVE This systematic review examined epidemiologic studies on the modifying roles of social, child, genetic and maternal characteristics in associations between prenatal and early postnatal air pollution exposure and ASD. METHODS A systematic literature search in PubMed and Embase was conducted. Studies that examined modifiers of the association between air pollution and ASD were included. RESULTS A total of 19 publications examined modifiers of the associations between early life air pollution exposures and ASD. In general, estimates of effects on risk of ASD in boys were larger than in girls (based on 11 studies). Results from studies of effects of family education (2 studies) and neighborhood deprivation (2 studies) on air pollution-ASD associations were inconsistent. Limited data (1 study) suggest pregnant women with insufficient folic acid intake might be more susceptible to ambient particulate matter less than 2.5 μm (PM2.5) and 10 μm (PM10) in aerodynamic diameter, and to nitrogen dioxide (NO2). Children of mothers with gestational diabetes had increased risk of ozone-associated ASD (1 study). Two genetic studies reported that copy number variations may amplify the effect of ozone, and MET rs1858830 CC genotype may augment effects of PM and near-roadway pollutants on ASD. CONCLUSIONS Child's sex, maternal nutrition or diabetes, socioeconomic factors, and child risk genotypes were reported to modify the effect of early-life air pollutants on ASD risk in the epidemiologic literature. However, the sparsity of studies on comparable modifying hypotheses precludes conclusive findings. Further research is needed to identify susceptible populations and potential targets for preventive intervention.
Collapse
Affiliation(s)
- Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhongying Wang
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
DeLeon C, Pemberton K, Green M, Kalajdzic V, Rosato M, Xu F, Arnatt C. Novel GPER Agonist, CITFA, Increases Neurite Growth in Rat Embryonic (E18) Hippocampal Neurons. ACS Chem Neurosci 2022; 13:1119-1128. [PMID: 35353510 DOI: 10.1021/acschemneuro.1c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Numerous studies have reported neuroprotective and procognitive effects of estrogens. The estrogen 17β-estradiol (E2) activates both the classical nuclear estrogen receptors ERα and ERβ as well as the G protein-coupled estrogen receptor (GPER). The differential effects of targeting the classical estrogen receptors over GPER are not well-understood. A limited number of selective GPER compounds have been described. In this study, 10 novel compounds were synthesized and exhibited half-maximal effective concentration values greater than the known GPER agonist G-1 in calcium mobilization assays performed in nonadherent HL-60 cells. Of these compounds, 2-cyclohexyl-4-isopropyl-N-((5-(tetrahydro-2H-pyran-2-yl)furan-2-yl)methyl)aniline, referred to as CITFA, significantly increased axonal and dendritic growth in neurons extracted from embryonic day 18 (E18) fetal rat hippocampal neurons. Confirmation of the results was performed by treating E18 hippocampal neurons with known GPER-selective antagonist G-36 and challenging with either E2, G-1, or CITFA. Results from these studies revealed an indistinguishable difference in neurite outgrowth between the treatment and control groups, exhibiting that neurite outgrowth in response to G-1 and CITFA originates from GPER activation and can be abolished with pretreatment of an antagonist. Subsequent docking studies using a homology model of GPER showed unique docking poses between G-1 and CIFTA. While docking poses differed between the ligands, CIFTA exhibited more favorable distance, bond angle, and strain for hydrogen-bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Chelsea DeLeon
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Kyle Pemberton
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Michael Green
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Vanja Kalajdzic
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Martina Rosato
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Fenglian Xu
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
- The Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Christopher Arnatt
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
- The Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
30
|
Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, Bauman MD, Brodkin ES, Harony‐Nicolas H, Wöhr M, Halladay A. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12803. [PMID: 35285132 PMCID: PMC9189007 DOI: 10.1111/gbb.12803] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence-based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.
Collapse
Affiliation(s)
- Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Sarah B. Ethridge
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Makayla M. Soller
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Stela P. Petkova
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Ted Abel
- Department of Neuroscience and PharmacologyIowa Neuroscience Institute, University of IowaIowa CityIowaUSA
| | - Melissa D. Bauman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Edward S. Brodkin
- Department of PsychiatryPerelman School of Medicine at the University of Pennsylvania, Translational Research LaboratoryPhiladelphiaPennsylvaniaUSA
| | - Hala Harony‐Nicolas
- Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological PsychologySocial and Affective Neuroscience Research Group, KU LeuvenLeuvenBelgium,Leuven Brain InstituteKU LeuvenLeuvenBelgium,Faculty of Psychology, Experimental and Biological Psychology, Behavioral NeurosciencePhilipps‐University of MarburgMarburgGermany,Center for Mind, Brain, and BehaviorPhilipps‐University of MarburgMarburgGermany
| | - Alycia Halladay
- Autism Science FoundationUSA,Department of Pharmacology and ToxicologyRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
31
|
Rahman MM, Shu YH, Chow T, Lurmann FW, Yu X, Martinez MP, Carter SA, Eckel SP, Chen JC, Chen Z, Levitt P, Schwartz J, McConnell R, Xiang AH. Prenatal Exposure to Air Pollution and Autism Spectrum Disorder: Sensitive Windows of Exposure and Sex Differences. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17008. [PMID: 35040691 PMCID: PMC8765363 DOI: 10.1289/ehp9509] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Studies have shown that air pollution exposures during pregnancy are associated with an increased risk of autism spectrum disorder (ASD) in children, and the risk appears to be greater for boys. However, studies assessing gestational windows of susceptibility have been mostly limited by trimesters. OBJECTIVE We identified sensitive windows of exposure to regional air pollution and risk of ASD and examined sex differences in a large birth cohort. METHODS This population-based retrospective cohort study included 294,937 mother-child pairs with singleton deliveries in Kaiser Permanente Southern California (KPSC) hospitals from 2001 to 2014. Children were followed using electronic medical records until clinical ASD diagnosis, non-KPSC membership, death, or 31 December 2019, whichever came first. Weekly mean fine particulate matter [PM with an aerodynamic diameter of ≤2.5μm (PM2.5)], nitrogen dioxide (NO2), and ozone (O3) pregnancy exposures were estimated using spatiotemporal prediction models. Cox proportional hazard models with distributed lags were used to estimate weekly pollutant exposure associations with ASD risk for the entire cohort, and separately for boys and for girls. Models were adjusted for child sex (for full cohort), maternal race/ethnicity, maternal age at delivery, parity, maternal education, maternal comorbidities, medical center, census tract median household income, birth year, and season. RESULTS There were 5,694 ASD diagnoses (4,636 boys, 1,058 girls). Sensitive PM2.5 exposure windows associated with ASD were found early in pregnancy, statistically significant throughout the first two trimesters [1-27 wk of gestation, cumulative hazard ratio (HR)=1.14 [95% confidence interval (CI): 1.06, 1.23] per interquartile range (IQR) (7.4-μg/m3) increase]. O3 exposure during 34-37 wk of gestation was associated with increased risk [HR=1.06 (95% CI: 1.01, 1.11) per IQR (17.4 ppb) increase] but with reduced risk during 20-28 wk of gestation [HR=0.93 (95% CI: 0.89, 0.98)]. No associations were observed with NO2. Sex-stratified early gestational PM2.5 associations were stronger among boys [boys HR=1.16 (95% CI: 1.08, 1.26); girls HR=1.06 (95% CI: 0.89, 1.26)]. O3 associations in later gestation were observed only in boys [boys HR=1.10 (95% CI: 1.04, 1.16); girls HR=0.94 (95% CI: 0.84, 1.05)]. CONCLUSIONS Exposures to PM2.5 in the first two gestational trimesters were associated with increased ASD risk in children, with stronger associations observed for boys. The role of O3 exposure on ASD risk merits further investigation. https://doi.org/10.1289/EHP9509.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Yu-Hsiang Shu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | | | - Xin Yu
- Spatial Science Institute, USC, Los Angeles, California, USA
| | - Mayra P. Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Sarah A. Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Sandrah P. Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, Saban Research Institute, Children’s Hospital Los Angeles, USC, Los Angeles, California, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| |
Collapse
|
32
|
Keil Stietz KP, Sethi S, Klocke CR, de Ruyter TE, Wilson MD, Pessah IN, Lein PJ. Sex and Genotype Modulate the Dendritic Effects of Developmental Exposure to a Human-Relevant Polychlorinated Biphenyls Mixture in the Juvenile Mouse. Front Neurosci 2021; 15:766802. [PMID: 34924936 PMCID: PMC8678536 DOI: 10.3389/fnins.2021.766802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
While many neurodevelopmental disorders (NDDs) are thought to result from interactions between environmental and genetic risk factors, the identification of specific gene-environment interactions that influence NDD risk remains a critical data gap. We tested the hypothesis that polychlorinated biphenyls (PCBs) interact with human mutations that alter the fidelity of neuronal Ca2+ signaling to confer NDD risk. To test this, we used three transgenic mouse lines that expressed human mutations known to alter Ca2+ signals in neurons: (1) gain-of-function mutation in ryanodine receptor-1 (T4826I-RYR1); (2) CGG-repeat expansion in the 5′ non-coding portion of the fragile X mental retardation gene 1 (FMR1); and (3) a double mutant (DM) that expressed both mutations. Transgenic and wildtype (WT) mice were exposed throughout gestation and lactation to the MARBLES PCB mix at 0.1, 1, or 6 mg/kg in the maternal diet. The MARBLES mix simulates the relative proportions of the twelve most abundant PCB congeners found in serum from pregnant women at increased risk for having a child with an NDD. Using Golgi staining, the effect of developmental PCB exposure on dendritic arborization of pyramidal neurons in the CA1 hippocampus and somatosensory cortex of male and female WT mice was compared to pyramidal neurons from transgenic mice. A multilevel linear mixed-effects model identified a main effect of dose driven by increased dendritic arborization of cortical neurons in the 1 mg/kg PCB dose group. Subsequent analyses with genotypes indicated that the MARBLES PCB mixture had no effect on the dendritic arborization of hippocampal neurons in WT mice of either sex, but significantly increased dendritic arborization of cortical neurons of WT males in the 6 mg/kg PCB dose group. Transgene expression increased sensitivity to the impact of developmental PCB exposure on dendritic arborization in a sex-, and brain region-dependent manner. In conclusion, developmental exposure to PCBs present in the gestational environment of at-risk humans interfered with normal dendritic morphogenesis in the developing mouse brain in a sex-, genotype- and brain region-dependent manner. Overall, these observations provide proof-of-principle evidence that PCBs interact with heritable mutations to modulate a neurodevelopmental outcome of relevance to NDDs.
Collapse
Affiliation(s)
- Kimberly P Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Tryssa E de Ruyter
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Machelle D Wilson
- Clinical and Translational Science Center, Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction 2021; 162:F111-F130. [PMID: 33929341 PMCID: PMC8484365 DOI: 10.1530/rep-20-0596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
34
|
Meng HR, Suenaga T, Edamura M, Fukuda A, Ishida Y, Nakahara D, Murakami G. Functional MHCI deficiency induces ADHD-like symptoms with increased dopamine D1 receptor expression. Brain Behav Immun 2021; 97:22-31. [PMID: 34022373 DOI: 10.1016/j.bbi.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Inappropriate synaptic development has been proposed as a potential mechanism of neurodevelopmental disorders, including attention-deficit hyperactivity disorder (ADHD). Major histocompatibility complex class I (MHCI), an immunity-associated molecule expressed by neurons in the brain, regulates synaptic development; however, the involvement of MHCI in these disorders remains elusive. We evaluated whether functional MHCI deficiency induced by β2m-/-Tap1-/- double-knockout in mice leads to abnormalities akin to those seen in neurodevelopmental disorders. We found that functional MHCI deficiency induced locomotor hyperactivity, motor impulsivity, and attention deficits, three major symptoms of ADHD. In contrast, these mice showed normal spatial learning, behavioral flexibility, social behavior, and sensorimotor integration. In the analysis of the dopamine system, upregulation of dopamine D1 receptor (D1R) expression in the nucleus accumbens and a greater locomotor response to D1R agonist SKF 81297 were found in the functional MHCI-deficient mice. Low-dose methylphenidate, used for the treatment of ADHD patients, alleviated the three behavioral symptoms and suppressed c-Fos expression in the D1R-expressing medium spiny neurons of the mice. These findings reveal an unexpected role of MHCI in three major symptoms of ADHD and may provide a novel landmark in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Hong-Rui Meng
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshiko Suenaga
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; School of Psychology, Tokyo University of Social Welfare, Tokyo 114-0004, Japan
| | - Mitsuhiro Edamura
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yasushi Ishida
- Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan
| | - Daiichiro Nakahara
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan.
| | - Gen Murakami
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
35
|
Vacher CM, Lacaille H, O'Reilly JJ, Salzbank J, Bakalar D, Sebaoui S, Liere P, Clarkson-Paredes C, Sasaki T, Sathyanesan A, Kratimenos P, Ellegood J, Lerch JP, Imamura Y, Popratiloff A, Hashimoto-Torii K, Gallo V, Schumacher M, Penn AA. Placental endocrine function shapes cerebellar development and social behavior. Nat Neurosci 2021; 24:1392-1401. [PMID: 34400844 PMCID: PMC8481124 DOI: 10.1038/s41593-021-00896-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Compromised placental function or premature loss has been linked to diverse neurodevelopmental disorders. Here we show that placenta allopregnanolone (ALLO), a progesterone-derived GABA-A receptor (GABAAR) modulator, reduction alters neurodevelopment in a sex-linked manner. A new conditional mouse model, in which the gene encoding ALLO's synthetic enzyme (akr1c14) is specifically deleted in trophoblasts, directly demonstrated that placental ALLO insufficiency led to cerebellar white matter abnormalities that correlated with autistic-like behavior only in male offspring. A single injection of ALLO or muscimol, a GABAAR agonist, during late gestation abolished these alterations. Comparison of male and female human preterm infant cerebellum also showed sex-linked myelination marker alteration, suggesting similarities between mouse placental ALLO insufficiency and human preterm brain development. This study reveals a new role for a placental hormone in shaping brain regions and behaviors in a sex-linked manner. Placental hormone replacement might offer novel therapeutic opportunities to prevent later neurobehavioral disorders.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA.
| | - Helene Lacaille
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jiaqi J O'Reilly
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jacquelyn Salzbank
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Dana Bakalar
- National Institutes of Health, Bethesda, MD, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Philippe Liere
- U1195 INSERM, Paris-Saclay University, Le Kremlin-Bicêtre Cedex, France
| | | | - Toru Sasaki
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Aaron Sathyanesan
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Yuka Imamura
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Pittsburgh, PA, USA
| | - Anastas Popratiloff
- The George Washington University, Nanofabrication and Imaging Center, Washington, DC, USA
- The George Washington University, SMHS, Anatomy & Cell Biology, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | | | - Anna A Penn
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA.
| |
Collapse
|
36
|
Arnold ML, Saijo K. Estrogen Receptor β as a Candidate Regulator of Sex Differences in the Maternal Immune Activation Model of ASD. Front Mol Neurosci 2021; 14:717411. [PMID: 34531723 PMCID: PMC8438209 DOI: 10.3389/fnmol.2021.717411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022] Open
Abstract
Interestingly, more males are diagnosed with autism spectrum disorder (ASD) than females, yet the mechanism behind this difference is unclear. Genes on the sex chromosomes and differential regulation by sex steroid hormones and their receptors are both candidate mechanisms to explain this sex-dependent phenotype. Nuclear receptors (NRs) are a large family of transcription factors, including sex hormone receptors, that mediate ligand-dependent transcription and may play key roles in sex-specific regulation of immunity and brain development. Infection during pregnancy is known to increase the probability of developing ASD in humans, and a mouse model of maternal immune activation (MIA), which is induced by injecting innate immune stimulants into pregnant wild-type mice, is commonly used to study ASD. Since this model successfully recaptures the behavioral phenotypes and male bias observed in ASD, we will discuss the potential role of sex steroid hormones and their receptors, especially focusing on estrogen receptor (ER)β, in MIA and how this signaling may modulate transcription and subsequent inflammation in myeloid-lineage cells to contribute to the etiology of this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Madeline L Arnold
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
37
|
Strawn M, Moraes JGN, Safranski TJ, Behura SK. Sexually Dimorphic Transcriptomic Changes of Developing Fetal Brain Reveal Signaling Pathways and Marker Genes of Brain Cells in Domestic Pigs. Cells 2021; 10:2439. [PMID: 34572090 PMCID: PMC8466205 DOI: 10.3390/cells10092439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, transcriptomic changes of the developing brain of pig fetuses of both sexes were investigated on gestation days (GD) 45, 60 and 90. Pig fetal brain grows rapidly around GD60. Consequently, gene expression of the fetal brain was distinctly different on GD90 compared to that of GD45 and GD60. In addition, varying numbers of differentially expressed genes (DEGs) were identified in the male brain compared to the female brain during development. The sex of adjacent fetuses also influenced gene expression of the fetal brain. Extensive changes in gene expression at the exon-level were observed during brain development. Pathway enrichment analysis showed that the ionotropic glutamate receptor pathway and p53 pathway were enriched in the female brain, whereas specific receptor-mediated signaling pathways were enriched in the male brain. Marker genes of neurons and astrocytes were significantly differentially expressed between male and female brains during development. Furthermore, comparative analysis of gene expression patterns between fetal brain and placenta suggested that genes related to ion transportation may play a key role in the regulation of the brain-placental axis in pig. Collectively, the study suggests potential application of pig models to better understand influence of fetal sex on brain development.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Joao G. N. Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Timothy J. Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
38
|
Roshan-Milani S, Seyyedabadi B, Saboory E, Parsamanesh N, Mehranfard N. Prenatal stress and increased susceptibility to anxiety-like behaviors: role of neuroinflammation and balance between GABAergic and glutamatergic transmission. Stress 2021; 24:481-495. [PMID: 34180763 DOI: 10.1080/10253890.2021.1942828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neuroplasticity during the prenatal period allows neurons to regenerate anatomically and functionally for re-programming the brain development. During this critical period of fetal programming, the fetus phenotype can change in accordance with environmental stimuli such as stress exposure. Prenatal stress (PS) can exert important effects on brain development and result in permanent alterations with long-lasting consequences on the physiology and behavior of the offspring later in life. Neuroinflammation, as well as GABAergic and glutamatergic dysfunctions, has been implicated as potential mediators of behavioral consequences of PS. Hyperexcitation, due to enhanced excitatory transmission or reduced inhibitory transmission, can promote anxiety. Alterations of the GABAergic and/or glutamatergic signaling during fetal development lead to a severe excitatory/inhibitory imbalance in neuronal circuits, a condition that may account for PS-precipitated anxiety-like behaviors. This review summarizes experimental evidence linking PS to an elevated risk to anxiety-like behaviors and interprets the role of the neuroinflammation and alterations of the brain GABAergic and glutamatergic transmission in this phenomenon. We hypothesize this is an imbalance in GABAergic and glutamatergic circuits (as a direct or indirect consequence of neuroinflammation), which at least partially contributes to PS-precipitated anxiety-like behaviors and primes the brain to be vulnerable to anxiety disorders. Therefore, pharmacological interventions with anti-inflammatory activities and with regulatory effects on the excitatory/inhibitory balance can be attributed to the novel therapeutic target for anxiety disorders.
Collapse
Affiliation(s)
- Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
39
|
Lenert ME, Avona A, Garner KM, Barron LR, Burton MD. Sensory Neurons, Neuroimmunity, and Pain Modulation by Sex Hormones. Endocrinology 2021; 162:bqab109. [PMID: 34049389 PMCID: PMC8237991 DOI: 10.1210/endocr/bqab109] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The inclusion of women in preclinical pain studies has become more commonplace in the last decade as the National Institutes of Health (NIH) released its "Sex as a Biological Variable" mandate. Presumably, basic researchers have not had a comprehensive understanding about neuroimmune interactions in half of the population and how hormones play a role in this. To date, we have learned that sex hormones contribute to sexual differentiation of the nervous system and sex differences in behavior throughout the lifespan; however, the cycling of sex hormones does not always explain these differences. Here, we highlight recent advances in our understanding of sex differences and how hormones and immune interactions influence sensory neuron activity to contribute to physiology and pain. Neuroimmune mechanisms may be mediated by different cell types in each sex, as the actions of immune cells are sexually dimorphic. Unfortunately, the majority of studies assessing neuronal contributions to immune function have been limited to males, so it is unclear if the mechanisms are similar in females. Finally, pathways that control cellular metabolism, like nuclear receptors, have been shown to play a regulatory role both in pain and inflammation. Overall, communication between the neuroimmune and endocrine systems modulate pain signaling in a sex-dependent manner, but more research is needed to reveal nuances of these mechanisms.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Amanda Avona
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Katherine M Garner
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Luz R Barron
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
40
|
Russell JMS, Hagelstein M, Lee BH, Sall JW. Anesthesia-induced Recognition Deficit Is Improved in Postnatally Gonadectomized Male Rats. J Neurosurg Anesthesiol 2021; 33:273-280. [PMID: 31503065 PMCID: PMC7061064 DOI: 10.1097/ana.0000000000000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Preclinical investigations of the effects of general anesthesia on the young brain show differences in vulnerability of males and females to anesthetic exposure at different times during development. However, the mechanism underlying this sex difference is poorly understood. Perinatal testosterone is the primary determinant of sexual differentiation and likely plays an important role in defining the period of susceptibility to anesthetic injury. We investigated whether the removal of testosterone through gonadectomy shortly after birth would improve cognitive outcomes in male rodents after early anesthesia exposure. METHODS Male Sprague Dawley rats underwent gonadectomy at postnatal day 2 (P2), followed by exposure to 6 hours of isoflurane at P7. A control cohort of gonad-intact male littermates was simultaneously exposed. All rats were subjected to a series of object recognition and association tasks beginning at P42. Cell death in the thalamus and hippocampus was assessed in a separate cohort. RESULTS All groups performed similarly on the Novel Object Recognition task; however, the gonad-intact isoflurane group exhibited decreased performance in the more difficult tasks. This deficit was ameliorated in the gonadectomized group. Cell death was similar between both isoflurane-exposed groups, regardless of gonadectomy. CONCLUSIONS The absence of testosterone does not block cell death after anesthesia in specific brain regions of interest; however, does provide some neuroprotection as evidenced by the improved cognitive test performance during adulthood. These findings suggest that testosterone may be mechanistically involved in the sex-specific effects of anesthetic injury on the developing brain by extending the vulnerable period in male rats.
Collapse
Affiliation(s)
- Jennifer M. Sasaki Russell
- University of California, San Francisco; San Francisco, CA, Department of Anesthesia and Perioperative Care
| | - Marlous Hagelstein
- Leiden University Medical Center; Leiden, Netherlands, Department of Internal Medicine
| | - Bradley H. Lee
- Hospital for Special Surgery; New York, NY, Department of Anesthesiology
- Weill Cornell Medicine; New York, NY, Department of Anesthesiology
| | - Jeffrey W. Sall
- University of California, San Francisco; San Francisco, CA, Department of Anesthesia and Perioperative Care
| |
Collapse
|
41
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
42
|
Elnahas EM, Abuelezz SA, Mohamad MI, Nabil MM, Abdelraouf SM, Bahaa N, Hassan GA, Ibrahim EA, Ahmed AI, Aboul-Fotouh S. Validation of prenatal versus postnatal valproic acid rat models of autism: A behavioral and neurobiological study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110185. [PMID: 33238165 DOI: 10.1016/j.pnpbp.2020.110185] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/08/2020] [Accepted: 11/18/2020] [Indexed: 01/23/2023]
Abstract
Despite the increasing prevalence of autism spectrum disorder (ASD), there is still a deficiency in understanding its exact pathophysiology and treatment, therefore validation of translational ASD animal model is warranted. Although strong evidences support the valproic acid (VPA) model of autism, yet a controversy exists regarding the best timing of exposure whether prenatal or postnatal. Accordingly, this study was designed to compare the time dependent effects of VPA exposure as regard its ability to induce autistic like changes in male Wistar rats. In this study, two different protocols of VPA exposure (prenatal and postnatal) were compared at different levels (behavioral, neurochemical and histopathological). Results of this study revealed that both prenatal and postnatal VPA exposures induced autistic-like behaviors manifested by reduced social interaction, increased repetitive stereotyped behavior and anxiety, cognitive dysfunction, lowered sensitivity to pain, and neurodevelopmental delay. Furthermore, inflammatory cytokines and oxidative/nitrosative stress markers were elevated in prefrontal cortex and hippocampal homogenates. Likewise, histopathological and immunohistochemical assessment confirmed the neurodegenerative and the apoptotic changes in prefrontal cortex, hippocampus and cerebellum exhibited by decreased viable cells number and Nissl's granules optical density, and increased caspase-3 immunoreactivity respectively. Interestingly, ASD core symptoms and histopathological changes were significantly (P < 0.05) altered in prenatal VPA model compared to postnatal VPA model. Additionally, postnatal mortality in prenatal model (4.3%) was much lower compared to the postnatal model (22.7%). In conclusion, our study overweighs the ability of prenatal VPA model over postnatal VPA model to induce behavioral and neuropathological alterations that simulate those observed in autistic individuals with a lower postnatal animal mortality, highlighting the privilege of prenatal over postnatal VPA exposure as a translational model for understanding pathophysiology and developing novel targets for management of ASD.
Collapse
Affiliation(s)
- Esraa M Elnahas
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Magda I Mohamad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai M Nabil
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar M Abdelraouf
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nevine Bahaa
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ghada Am Hassan
- Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A Ibrahim
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Asmaa I Ahmed
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Shinn AK, Carol EE. The Importance of Context in Identifying the Recovery Needs of Women With Psychosis. J Clin Psychiatry 2021; 82:21com13936. [PMID: 34010523 PMCID: PMC8759245 DOI: 10.4088/jcp.21com13936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Immediate and longitudinal effects of maltreatment on systemic inflammation in young children. Dev Psychopathol 2021; 32:1725-1731. [PMID: 33427162 DOI: 10.1017/s0954579420001686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposure to child maltreatment increases the risk for psychiatric and physical diseases. Inflammation has been proposed as a mechanism through which early adverse experiences become biologically embedded. However, most studies providing evidence for the link between early adverse exposures and inflammation have been retrospective or cross-sectional in design, or did not assess inflammation immediately after maltreatment in young children. In the present study we investigated the association between childhood maltreatment and salivary C-reactive protein (CRP) concentrations in a population of N = 173 children, 3-5 years of age, who were recruited in the immediate aftermath of maltreatment and followed-up longitudinally every 6 months over a period of 2 years. We found that the association between maltreatment and CRP concentrations was significantly moderated by child sex, such that in girls, CRP concentrations were higher in the maltreated compared to the control group, and this difference was stable across the 2-year follow-up-period, while in boys, there was no association between maltreatment and CRP. Our findings suggest that the effect of maltreatment on inflammation may already emerge right after exposure at a very young age in girls and manifest over time. Our study provides important evidence for the development of personalized, early interventions strategies targeting the early-life period.
Collapse
|
45
|
Sarovic D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front Psychiatry 2021; 12:767075. [PMID: 34867553 PMCID: PMC8637925 DOI: 10.3389/fpsyt.2021.767075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
This paper presents a unifying theory for autism by applying the framework of a pathogenetic triad to the scientific literature. It proposes a deconstruction of autism into three contributing features (an autistic personality dimension, cognitive compensation, and neuropathological risk factors), and delineates how they interact to cause a maladaptive behavioral phenotype that may require a clinical diagnosis. The autistic personality represents a common core condition, which induces a set of behavioral issues when pronounced. These issues are compensated for by cognitive mechanisms, allowing the individual to remain adaptive and functional. Risk factors, both exogenous and endogenous ones, show pathophysiological convergence through their negative effects on neurodevelopment. This secondarily affects cognitive compensation, which disinhibits a maladaptive behavioral phenotype. The triad is operationalized and methods for quantification are presented. With respect to the breadth of findings in the literature that it can incorporate, it is the most comprehensive model yet for autism. Its main implications are that (1) it presents the broader autism phenotype as a non-pathological core personality domain, which is shared across the population and uncoupled from associated features such as low cognitive ability and immune dysfunction, (2) it proposes that common genetic variants underly the personality domain, and that rare variants act as risk factors through negative effects on neurodevelopment, (3) it outlines a common pathophysiological mechanism, through inhibition of neurodevelopment and cognitive dysfunction, by which a wide range of endogenous and exogenous risk factors lead to autism, and (4) it suggests that contributing risk factors, and findings of immune and autonomic dysfunction are clinically ascertained rather than part of the core autism construct.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| |
Collapse
|
46
|
Shafi R, Crawley AP, Tartaglia MC, Tator CH, Green RE, Mikulis DJ, Colantonio A. Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome. Sci Rep 2020; 10:21982. [PMID: 33319807 PMCID: PMC7738671 DOI: 10.1038/s41598-020-77137-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Concussions are associated with a range of cognitive, neuropsychological and behavioral sequelae that, at times, persist beyond typical recovery times and are referred to as postconcussion syndrome (PCS). There is growing support that concussion can disrupt network-based connectivity post-injury. To date, a significant knowledge gap remains regarding the sex-specific impact of concussion on resting state functional connectivity (rs-FC). The aims of this study were to (1) investigate the injury-based rs-FC differences across three large-scale neural networks and (2) explore the sex-specific impact of injury on network-based connectivity. MRI data was collected from a sample of 80 concussed participants who fulfilled the criteria for postconcussion syndrome and 31 control participants who did not have any history of concussion. Connectivity maps between network nodes and brain regions were used to assess connectivity using the Functional Connectivity (CONN) toolbox. Network based statistics showed that concussed participants were significantly different from healthy controls across both salience and fronto-parietal network nodes. More specifically, distinct subnetwork components were identified in the concussed sample, with hyperconnected frontal nodes and hypoconnected posterior nodes across both the salience and fronto-parietal networks, when compared to the healthy controls. Node-to-region analyses showed sex-specific differences across association cortices, however, driven by distinct networks. Sex-specific network-based alterations in rs-FC post concussion need to be examined to better understand the underlying mechanisms and associations to clinical outcomes.
Collapse
Affiliation(s)
- Reema Shafi
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada. .,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Adrian P Crawley
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles H Tator
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin E Green
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David J Mikulis
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Occupational Science and Occupational Therapy, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Sex and strain differences in dynamic and static properties of the mesolimbic dopamine system. Neuropsychopharmacology 2020; 45:2079-2086. [PMID: 32663840 PMCID: PMC7547712 DOI: 10.1038/s41386-020-0765-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/02/2023]
Abstract
Sex is a biological variable that contributes to the incidence, clinical course, and treatment outcome of brain disorders. Chief among these are disorders associated with the dopamine system. These include Parkinson's disease, ADHD, schizophrenia, and mood disorders, which show stark differences in prevalence and outcome between men and women. In order to reveal the influence of biological sex as a risk factor in these disorders, there is a critical need to collect fundamental information about basic properties of the dopamine system in males and females. In Long Evans rats, we measured dynamic and static properties related to the mesolimbic dopamine system. Static measures included assessing ventral tegmental area (VTA) dopamine cell number and volume and expression of tyrosine hydroxylase and dopamine transporter. Dynamic measures in behaving animals included assessing (1) VTA neuronal encoding during learning of a cue-action-reward instrumental task and (2) dopamine release in the nucleus accumbens in response to electrical stimulation of the VTA, vesicular depletion of dopamine, and amphetamine. We found little or no sex difference in these measures, suggesting sexual congruency in fundamental static and dynamic properties of dopamine neurons. Thus, dopamine related sex-differences are likely mediated by secondary mechanisms that flexibly influence the function of the dopamine cells and circuits. Finally, we noted that most behavioral sex differences had been reported in Sprague-Dawley rats and repeated some of the above measures in that strain. We found some sex differences in those animals highlighting the importance of considering strain differences in experimental design and result interpretation.
Collapse
|
48
|
Morrison KE. Animal models built for women's brain health: Progress and potential. Front Neuroendocrinol 2020; 59:100872. [PMID: 32961121 PMCID: PMC7669558 DOI: 10.1016/j.yfrne.2020.100872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Women and men have different levels of risk for a variety of brain disorders. Despite this well-known epidemiological finding, preclinical work utilizing animal models has historically only included male animals. The policies of funders to require consideration of sex as a biological variable has shifted the momentum to include female animals in preclinical neuroscience and to report findings by sex. However, there are many biological questions related to brain health that go beyond sex differences and are indeed specific to women. Here, the focus is on why animal models should be utilized in the pursuit of understanding women's brain health, a brief overview of what they have provided thus far, and why they still hold tremendous promise. This review concludes with a set of suggestions for how to begin to pursue translational animal models in a way that facilitates rapid success and harnesses the most powerful aspects of animal models.
Collapse
|
49
|
Hamdy N, Eide S, Sun HS, Feng ZP. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 2020; 334:113457. [PMID: 32889009 DOI: 10.1016/j.expneurol.2020.113457] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia and resulting encephalopathies are of significant concern. Intrapartum asphyxia is a leading cause of neonatal death globally. Among surviving infants, there remains a high incidence of hypoxic-ischemic encephalopathy due to neonatal hypoxic-ischemic brain injury, manifesting as mild conditions including attention deficit hyperactivity disorder, and debilitating disorders such as cerebral palsy. Various animal models of neonatal hypoxic brain injury have been implemented to explore cellular and molecular mechanisms, assess the potential of novel therapeutic strategies, and characterize the functional and behavioural correlates of injury. Each of the animal models has individual advantages and limitations. The present review looks at several widely-used and alternative rodent models of neonatal hypoxia and hypoxia-ischemia; it highlights their strengths and limitations, and their potential for continued and improved use.
Collapse
Affiliation(s)
- Nancy Hamdy
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
50
|
Exclusive Breastfeeding Predicts Higher Hearing-Language Development in Girls of Preschool Age. Nutrients 2020; 12:nu12082320. [PMID: 32748851 PMCID: PMC7468998 DOI: 10.3390/nu12082320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cognitive disorders are increasing in prevalence. Nutritional or metabolic stressors during early life, and female sex, are predisposing conditions towards the development of cognitive diseases, including Alzheimer’s disease. Though there is evidence that breastfeeding may play a beneficial role in children’s neurocognitive development, the literature remains controversial. In this study we aimed at assessing the association between exclusive breastfeeding and children’s cognitive development from six months to five years of age, addressing sex differences. In 80 mother-child pairs from the Pisa birth cohort (PISAC), we measured cognitive development in groups of children of 6, 12, 18, 24, 36, and 60 months by Griffiths Mental Development Scales, parents’ intelligence quotient (IQ) by Raven’s progressive matrices, and maternal and infants’ anthropometric parameters. We found that exclusive breastfeeding was associated with higher hearing-language development in five years old girls, independent of maternal IQ, age and BMI (body mass index). Exclusive breastfeeding in the first three months of life seemed sufficient to establish this positive relationship. In conclusion, our data indicate that exclusive breastfeeding is a positive predictor of cognitive development in preschool-age girls, paving the way for the implementation of sex-specific cognitive disease risk detection and prevention strategies from early life. Further studies are warranted to explore causality and longer term effects.
Collapse
|