1
|
Mihret W, Sletbakk Brusletto B, Øvstebø R, Siebke Troseid AM, Norheim G, Merid Y, Kassu A, Abebe W, Ayele S, Silamsaw Asres M, Yamuah L, Aseffa A, Petros B, Caugant DA, Brandtzaeg P. Molecular studies of meningococcal and pneumococcal meningitis patients in Ethiopia. Innate Immun 2019; 25:158-167. [PMID: 30894090 PMCID: PMC6830936 DOI: 10.1177/1753425918806363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 02/05/2023] Open
Abstract
Neisseria meningitidis infections in sub-Saharan Africa usually present with distinct symptoms of meningitis but very rarely as fulminant septicemia when reaching hospitals. In Europe, development of persistent meningococcal shock and multiple organ failure occurs in up to 30% of patients and is associated with a bacterial load of >106/ml plasma or serum. We have prospectively studied 27 Ethiopian patients with meningococcal infection as diagnosed and quantified with real-time PCR in the cerebrospinal fluid (CSF) and serum. All presented with symptoms of meningitis and none with fulminant septicemia. The median N. meningitidis copy number (NmDNA) in serum was < 3.5 × 103/ml, never exceeded 1.8 × 105/ml, and was always 10-1000 times higher in CSF than in serum. The levels of LPS in CSF as determined by the limulus amebocyte lysate assay were positively correlated to NmDNA copy number ( r = 0.45, P = 0.030), levels of IL-1 receptor antagonist, ( r = 0.46, P = 0.017), and matrix metallopeptidase-9 (MMP-9; r = 0.009). We also compared the inflammatory profiles of 19 mediators in CSF of the 26 meningococcal patients (2 died and 2 had immediate severe sequelae) with 16 patients with Streptococcus pneumoniae meningitis (3 died and 3 with immediate severe sequelae). Of 19 inflammatory mediators tested, 9 were significantly higher in patients with pneumococcal meningitis and possibly linked to worse outcome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- Cytokines/genetics
- Cytokines/metabolism
- DNA, Bacterial/blood
- DNA, Bacterial/cerebrospinal fluid
- Epidemics
- Ethiopia/epidemiology
- Female
- Humans
- Infant
- Inflammation Mediators/metabolism
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/mortality
- Meningitis, Pneumococcal/epidemiology
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/mortality
- Middle Aged
- Neisseria meningitidis/physiology
- Pathology, Molecular
- Prospective Studies
- Sepsis
- Streptococcus pneumoniae/physiology
- Survival Analysis
- Young Adult
Collapse
Affiliation(s)
- Wude Mihret
- Department of Microbial and Cellular Molecular Biology, Addis
Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Reidun Øvstebø
- Department of Clinical Chemistry, Oslo University Hospital,
Norway
| | | | | | | | | | | | - Samuel Ayele
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Dominique A. Caugant
- Institute of Public Health, Oslo, Norway
- Institute of Public Health and Society, University of Oslo,
Norway
| | - Petter Brandtzaeg
- Department of Clinical Chemistry, Oslo University Hospital,
Norway
- Department of Pediatrics, Oslo University Hospital, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University
of Oslo, Norway
| |
Collapse
|
2
|
Palmgren H. Meningococcal disease and climate. Glob Health Action 2009; 2. [PMID: 20052424 PMCID: PMC2799239 DOI: 10.3402/gha.v2i0.2061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022] Open
Affiliation(s)
- Helena Palmgren
- Department of Infectious Diseases, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Abstract
Neisseria meningitidis usually lives as a commensal bacterium in the upper airways of humans. However, occasionally some strains can also cause life-threatening diseases such as sepsis and bacterial meningitis. Comparative genomics demonstrates that only very subtle genetic differences between carriage and disease strains might be responsible for the observed virulence differences and that N. meningitidis is, evolutionarily, a very recent species. Comparative genome sequencing also revealed a panoply of genetic mechanisms underlying its enormous genomic flexibility which also might affect the virulence of particular strains. From these studies, N. meningitidis emerges as a paradigm for organisms that use genome variability as an adaptation to changing and thus challenging environments.
Collapse
|
4
|
Ilina EN, Borovskaya AD, Malakhova MM, Vereshchagin VA, Kubanova AA, Kruglov AN, Svistunova TS, Gazarian AO, Maier T, Kostrzewa M, Govorun VM. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J Mol Diagn 2008; 11:75-86. [PMID: 19095774 DOI: 10.2353/jmoldx.2009.080079] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study investigates the suitability of direct bacterial profiling as a tool for the identification and subtyping of pathogenic Neisseria. The genus Neisseria includes two human pathogens, Neisseria meningitidis and Neisseria gonorrhoeae, as well as several nonpathogenic Neisseria species. Here, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling protocol was optimized using a laboratory strain of E. coli DH5alpha to guarantee high quality and reproducible results. Subsequently, mass spectra for both laboratory and clinical strains of N. gonorrhoeae, N. meningitidis, and several nonpathogenic Neisseria species were collected. Significant interspecies differences but little intraspecies diversity were revealed by means of a visual inspection and bioinformatics examination using the MALDI BioTyper software. Cluster analysis successfully separated mass spectra collected from three groups that corresponded to N. gonorrhoeae, N. meningitidis, and nonpathogenic Neisseria isolates. Requiring only one bacterial colony for testing and using a fast and easy measuring protocol, this approach represents a powerful tool for the rapid identification of pathogenic Neisseria and can be adopted for other microorganisms.
Collapse
Affiliation(s)
- Elena N Ilina
- Research Institute of Physical and Chemical Medicine, Russian Federation Health Ministry, Moscow, Russia.
| | - Alexandra D Borovskaya
- Research Institute of Physical and Chemical Medicine, Russian Federation Health Ministry, Moscow, Russia
| | - Maja M Malakhova
- Research Institute of Physical and Chemical Medicine, Russian Federation Health Ministry, Moscow, Russia
| | - Vladimir A Vereshchagin
- Research Institute of Physical and Chemical Medicine, Russian Federation Health Ministry, Moscow, Russia
| | - Anna A Kubanova
- Central Research Institute of Dermatology and Venereology, Moscow, Russia
| | | | | | | | | | | | - Vadim M Govorun
- Research Institute of Physical and Chemical Medicine, Russian Federation Health Ministry, Moscow, Russia
| |
Collapse
|
5
|
Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci U S A 2008; 105:15082-7. [PMID: 18815379 DOI: 10.1073/pnas.0712019105] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neisseria meningitis is a human commensal bacterium that occasionally causes life-threatening disease. As with a number of other bacterial pathogens, meningococcal populations comprise distinct lineages, which persist over many decades and during global spread in the face of high rates of recombination. In addition, the propensity to cause invasive disease is associated with particular "hyperinvasive" lineages that coexist with less invasive lineages despite the fact that disease does not contribute to host-to-host transmission. Here, by combining a modeling approach with molecular epidemiological data from 1,108 meningococci isolated in the Czech Republic over 27 years, we show that interstrain competition, mediated by immune selection, can explain both the persistence of multiple discrete meningococcal lineages and the association of a subset of these with invasive disease. The model indicates that the combinations of allelic variants of housekeeping genes that define these lineages are associated with very small differences in transmission efficiency among hosts. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations.
Collapse
|
6
|
Sloan AM, Henderson AM, Tsang RSW. Characterization of serogroup A Neisseria meningitidis from invasive meningococcal disease cases in Canada between 1979 and 2006: Epidemiological links to returning travellers. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2008; 19:227-32. [PMID: 19412379 PMCID: PMC2605869 DOI: 10.1155/2008/523021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/17/2007] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Serogroup A Neisseria meningitidis has repeatedly caused epidemics of invasive meningococcal disease (IMD) in developing nations since the 1960s. The present study is the first detailed study of serogroup A bacteria isolated in Canada. METHODS Thirty-four serogroup A meningococcal isolates collected from individuals with IMD in Canada between 1979 and 2006 were characterized by serology and multilocus sequence typing of seven housekeeping enzyme genes and genes encoding three outer membrane protein antigens. RESULTS Isolates were assigned to either the sequence type (ST)-1 or the ST-5 clonal complex. Clones within the ST-1 complex were recovered between 1979 and 1992, while clones of the ST-5 complex were isolated between 1987 and 2006; respectively, they accounted for 70.6% and 29.4% of all isolates studied. Isolates of the ST-1 complex were characterized by serosubtype antigen P1.3 or P1.3,6 with PorB allele 60 (serotype 4) and FetA sequence F5-1, while isolates of the ST-5 complex were characterized by serosubtype antigen P1.9 with PorB allele 47 (also serotype 4) and FetA sequence F3-1. CONCLUSIONS The Canadian serogroup A IMD isolates likely originated in travellers returning from hyperendemic or epidemic areas of the globe where serogroup A bacteria circulate. Although the Canadian cases of serogroup A IMD were caused by clones known to have caused epidemics in developing countries, disease incidence remained low in Canada.
Collapse
Affiliation(s)
- Angela M Sloan
- International Centre for Infectious Diseases, Winnipeg, Manitoba
| | - Averil M Henderson
- Vaccine Preventable Bacterial Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Raymond SW Tsang
- International Centre for Infectious Diseases, Winnipeg, Manitoba
- Vaccine Preventable Bacterial Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| |
Collapse
|
7
|
Abstract
Serogroup C meningococcal conjugate vaccines, first launched in the UK in 1999, have been used successfully in Australia, Canada and several other European countries. Combination conjugate vaccines, containing more than one meningococcal polysaccharide, have been developed to broaden protection against the disease. A tetravalent meningococcal A, C, Y and W-135 conjugate vaccine was licensed for use in 11-55 year old adolescents and adults in the US in January 2005, and subsequently also in 2-11 year old children in Canada in May 2006. This article discusses the different glycoconjugate meningococcal vaccines which have been developed and the potential for their use to control disease caused by serogroups A, C, Y and W-135 of Neisseria meningitidis.
Collapse
Affiliation(s)
- David Pace
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, Churchill Hospital, Headington, Oxford, UK.
| | | |
Collapse
|
8
|
Norheim G, Rosenqvist E, Aseffa A, Yassin MA, Mengistu G, Kassu A, Fikremariam D, Tamire W, Høiby EA, Alebel T, Berhanu D, Merid Y, Harboe M, Caugant DA. Characterization of Neisseria meningitidis isolates from recent outbreaks in Ethiopia and comparison with those recovered during the epidemic of 1988 to 1989. J Clin Microbiol 2006; 44:861-71. [PMID: 16517868 PMCID: PMC1393097 DOI: 10.1128/jcm.44.3.861-871.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/16/2005] [Accepted: 11/18/2005] [Indexed: 12/31/2022] Open
Abstract
The objectives of this study were to collect and characterize epidemic meningococcal isolates from Ethiopia from 2002 to 2003 and to compare them to 21 strains recovered during the previous large epidemic of 1988 to 1989. Ninety-five patients in all age groups with clinical signs of meningitis and a turbid cerebrospinal fluid (CSF) sample were included in the study of isolates from 2002 to 2003. Seventy-one patients (74.7%) were confirmed as having Neisseria meningitidis either by culture (n = 40) or by porA PCR (n = 31) of their CSF. The overall case fatality rate (CFR) was 11.6%; the N. meningitidis-specific CFR was 4.2%. All 40 strains were fully susceptible to all antibiotics tested except sulfonamide, were serotyped as A:4/21:P1.20,9, and belonged to sequence type 7 (ST-7). The strains from 1988 to 1989 were also equally susceptible and were characterized as A:4/21:P1.20,9, but they belonged to ST-5. Antigenic characterization of the strains revealed differences in the repertoire of lipooligosaccharides and Opa proteins between the old and the recent strains. PCR analysis of the nine lgt genes revealed the presence of the lgtAHFG genes in both old and recent strains; lgtB was present in only some of the strains, but no correlation with sequence type was observed. Further analysis showed that in addition to their pgm alleles, the Ethiopian ST-5 and ST-7 strains also differed in their tbpB, opa, fetA, and lgtA genes. The occurrence of new antigenic structures in strains sharing the same serogroup, PorA, and PorB may help explain the replacement of ST-5 by ST-7 in the African meningitis belt.
Collapse
MESH Headings
- Adolescent
- Adult
- Base Sequence
- Child
- Child, Preschool
- DNA, Bacterial/genetics
- Disease Outbreaks/history
- Ethiopia/epidemiology
- Female
- Genes, Bacterial
- Genotype
- History, 20th Century
- History, 21st Century
- Humans
- Infant
- Male
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/history
- Meningitis, Meningococcal/microbiology
- Middle Aged
- Molecular Sequence Data
- Neisseria meningitidis, Serogroup A/classification
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/isolation & purification
- Phenotype
- Serotyping
- Time Factors
Collapse
Affiliation(s)
- Gunnstein Norheim
- Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Neisseria meningitidis is the leading cause of bacterial meningitis in the United States and worldwide. A serogroup A/C/W-135/Y polysaccharide meningococcal vaccine has been licensed in the United States since 1981 but has not been used universally outside of the military. On 14 January 2005, a polysaccharide conjugate vaccine that covers meningococcal serogroups A, C, W-135, and Y was licensed in the United States for 11- to 55-year-olds and is now recommended for the routine immunization of adolescents and other high-risk groups. This review covers the changing epidemiology of meningococcal disease in the United States, issues related to vaccine prevention, and recommendations on the use of the new vaccine.
Collapse
Affiliation(s)
- Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, 521 Parran Hall, 130 Desoto St., University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
10
|
Birtles A, Hardy K, Gray SJ, Handford S, Kaczmarski EB, Edwards-Jones V, Fox AJ. Multilocus sequence typing of Neisseria meningitidis directly from clinical samples and application of the method to the investigation of meningococcal disease case clusters. J Clin Microbiol 2005; 43:6007-14. [PMID: 16333090 PMCID: PMC1317198 DOI: 10.1128/jcm.43.12.6007-6014.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 08/25/2005] [Accepted: 09/27/2005] [Indexed: 11/20/2022] Open
Abstract
Infections associated with Neisseria meningitidis are a major public health problem in England, Wales, and Northern Ireland. Currently, over 40% of cases are confirmed directly from clinical specimens using PCR-based methodologies without an organism being isolated. A nested/seminested multilocus sequence typing (MLST) system was developed at the Health Protection Agency Meningococcal Reference Unit to allow strain characterization beyond the serogroup for cases confirmed by PCR only. This system was evaluated on a panel of 20 meningococcus-positive clinical specimens (3 cerebrospinal fluid and 17 blood samples) from different patients containing various concentrations of meningococcal DNA that had corresponding N. meningitidis isolates. In each case, the sequence type generated from the clinical specimens matched that produced from the corresponding N. meningitidis isolate; the sensitivity of the MLST system was determined to be less than 12 genome copies per PCR. The MLST system was then applied to 15 PCR meningococcus-positive specimens (2 cerebrospinal fluid and 13 blood samples), each from a different patient, involved in three case clusters (two serogroup B and one serogroup W135) for which no corresponding N. meningitidis organisms had been isolated. In each case, an MLST sequence type was generated, allowing the accurate assignment of individual cases within each of the case clusters. In summary, the adaptation of the N. meningitidis MLST to a sensitive nested/seminested format for strain characterization directly from clinical specimens provides an important tool for surveillance and management of meningococcal infection.
Collapse
Affiliation(s)
- Andrew Birtles
- Health Protection Agency, Manchester Medical Microbiology Partnership, P.O. Box 209, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
11
|
Yazdankhah SP, Lindstedt BA, Caugant DA. Use of variable-number tandem repeats to examine genetic diversity of Neisseria meningitidis. J Clin Microbiol 2005; 43:1699-705. [PMID: 15814988 PMCID: PMC1081323 DOI: 10.1128/jcm.43.4.1699-1705.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive DNA motifs with potential variable-number tandem repeats (VNTR) were identified in the genome of Neisseria meningitidis and used to develop a typing method. A total of 146 meningococcal isolates recovered from carriers and patients were studied. These included 82 of the 107 N. meningitidis isolates previously used in the development of multilocus sequence typing (MLST), 45 isolates recovered from different counties in Norway in connection with local outbreaks, and 19 serogroup W135 isolates of sequence type 11 (ST-11), which were recovered in several parts of the world. The latter group comprised isolates related to the Hajj outbreak of 2000 and isolates recovered from outbreaks in Burkina Faso in 2001 and 2002. All isolates had been characterized previously by MLST or multilocus enzyme electrophoresis (MLEE). VNTR analysis showed that meningococcal isolates with similar MLST or MLEE types recovered from epidemiologically linked cases in a defined geographical area often presented similar VNTR patterns while isolates of the same MLST or MLEE types without an obvious epidemiological link showed variable VNTR patterns. Thus, VNTR analysis may be used for fine typing of meningococcal isolates after MLST or MLEE typing. The method might be especially valuable for differentiating among ST-11 strains, as shown by the VNTR analyses of serogroup W135 ST-11 meningococcal isolates recovered since the mid-1990s.
Collapse
Affiliation(s)
- Siamak P Yazdankhah
- Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway.
| | | | | |
Collapse
|
12
|
Urwin R, Russell JE, Thompson EAL, Holmes EC, Feavers IM, Maiden MCJ. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect Immun 2004; 72:5955-62. [PMID: 15385499 PMCID: PMC517544 DOI: 10.1128/iai.72.10.5955-5962.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Neisseria meningitidis is a major cause of meningitis and septicemia worldwide. Outer membrane proteins (OMPs) are candidates in the search for comprehensive meningococcal vaccines; however, the formulation of OMP vaccines is complicated by antigenic diversity, which is generated by high levels of genetic reassortment and strong positive selection in the meningococcal antigen genes. The genetic and antigenic diversity of three OMPs (FetA, PorA, and PorB) among a global collection of meningococcal isolates representative of the major hyperinvasive clonal complexes was determined. There was evidence for antigenic structuring among the three OMPs that could not be explained purely by descent. These observations violated the predictions of the clonal and epidemic clonal models of population structure but were in concordance with models of strain structure which propose that host immunity selects for nonoverlapping antigen combinations. The patterns of antigenic variant combinations suggested that an OMP-based vaccine with as few as six PorA and five FetA variant sequences could generate homologous immune responses against all 78 isolates examined.
Collapse
Affiliation(s)
- Rachel Urwin
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Meyers LA, Levin BR, Richardson AR, Stojiljkovic I. Epidemiology, hypermutation, within-host evolution and the virulence of Neisseria meningitidis. Proc Biol Sci 2003; 270:1667-77. [PMID: 12964993 PMCID: PMC1691427 DOI: 10.1098/rspb.2003.2416] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many so-called pathogenic bacteria such as Neisseria meningitidis, Haemophilus influenzae, Staphylococcus aureus and Streptococcus pneumoniae are far more likely to colonize and maintain populations in healthy individuals asymptomatically than to cause disease. Disease is a dead-end for these bacteria: virulence shortens the window of time during which transmission to new hosts can occur and the subpopulations of bacteria actually responsible for disease, like those in the blood or cerebral spinal fluid, are rarely transmitted to new hosts. Hence, the virulence factors underlying their occasional pathogenicity must evolve in response to selection for something other than making their hosts sick. What are those selective pressures? We address this general question of the evolution of virulence in the context of phase shifting in N. meningitidis, a mutational process that turns specific genes on and off, and, in particular, contingency loci that code for virulence determinants such as pili, lipopolysaccharides, capsular polysaccharides and outer membrane proteins. We use mathematical models of the epidemiology and the within-host infection dynamics of N. meningitidis to make the case that rapid phase shifting evolves as an adaptation for colonization of diverse hosts and that the virulence of this bacterium is an inadvertent consequence of short-sighted within-host evolution, which is exasperated by the increased mutation rates associated with phase shifting. We present evidence for and suggest experimental and retrospective tests of these hypotheses.
Collapse
Affiliation(s)
- Lauren Ancel Meyers
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712-0253, USA.
| | | | | | | |
Collapse
|
14
|
Sacchi CT, Whitney AM, Reeves MW, Mayer LW, Popovic T. Sequence diversity of Neisseria meningitidis 16S rRNA genes and use of 16S rRNA gene sequencing as a molecular subtyping tool. J Clin Microbiol 2002; 40:4520-7. [PMID: 12454145 PMCID: PMC154644 DOI: 10.1128/jcm.40.12.4520-4527.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Revised: 08/28/2002] [Accepted: 09/20/2002] [Indexed: 11/20/2022] Open
Abstract
We investigated the diversity of the primary sequences of 16S rRNA genes among Neisseria meningitidis strains (Men) and evaluated the use of this approach as a molecular subtyping tool. We aligned and compared a 1,417-bp fragment of the 16S rRNA gene from 264 Men strains of serogroups A, B, C, and Y (MenA, MenB, MenC, and MenY, respectively) isolated throughout the world over a 30-year period. Thirty-one positions of difference were found among 49 16S types: differences between types ranged from 1 to 14 positions (0.07 to 0.95%). 16S types and serogroups were highly associated; only 3 out 49 16S types were shared by two or more serogroups. We have identified 16S types that are exclusively associated with strains of certain hypervirulent clones: 16S type 5 with MenA subgroup III, 16S type 4 with the MenB electrophoretic type 5 (ET-5) complex, and 16S types 12 and 13 with MenC of the ET-37 complex. For MenC strains, 16S sequencing provided the highest sensitivity and specificity and the best overall association with the outbreak-related versus sporadic isolates when compared with pulsed-field gel electrophoresis, multilocus enzyme electrophoresis, and multilocus sequence typing. We demonstrated for the first time an unexpected diversity among 16S rRNA genes of Men strains, identified 16S types associated with well-defined hypervirulent clones, and showed the potential of this approach to rapidly identify virulent strains associated with outbreaks and/or an increased incidence of sporadic disease.
Collapse
Affiliation(s)
- Claudio T Sacchi
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | |
Collapse
|
15
|
Gagneux S, Wirth T, Hodgson A, Ehrhard I, Morelli G, Kriz P, Genton B, Smith T, Binka F, Pluschke G, Achtman M. Clonal groupings in serogroup X Neisseria meningitidis. Emerg Infect Dis 2002; 8:462-6. [PMID: 11996679 PMCID: PMC2732495 DOI: 10.3201/eid0805.010227] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genetic diversity of 134 serogroup X Neisseria meningitis isolates from Africa, Europe, and North America was analyzed by multilocus sequence typing and pulsed-field gel electrophoresis. Although most European and American isolates were highly diverse, one clonal grouping was identified in sporadic disease and carrier strains isolated over the last 2 decades in the United Kingdom, the Netherlands, Germany, and the United States. In contrast to the diversity in the European and American isolates, most carrier and disease isolates recovered during the last 30 years in countries in the African meningitis belt belonged to a second clonal grouping. During the last decade, these bacteria have caused meningitis outbreaks in Niger and Ghana. These results support the development of a comprehensive conjugate vaccine that would include serogroup X polysaccharide.
Collapse
Affiliation(s)
- Sébastien Gagneux
- Swiss Tropical Institute, Basel, Switzerland
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | - Thierry Wirth
- Max-Planck-Institut für Infektionsbiologie, Berlin, Germany
| | - Abraham Hodgson
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | | | | | - Paula Kriz
- National Institute of Public Health, Prague, Czech Republic
| | | | - Tom Smith
- Swiss Tropical Institute, Basel, Switzerland
| | - Fred Binka
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | | | - Mark Achtman
- Max-Planck-Institut für Infektionsbiologie, Berlin, Germany
| |
Collapse
|
16
|
Zhu P, van der Ende A, Falush D, Brieske N, Morelli G, Linz B, Popovic T, Schuurman IG, Adegbola RA, Zurth K, Gagneux S, Platonov AE, Riou JY, Caugant DA, Nicolas P, Achtman M. Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc Natl Acad Sci U S A 2001; 98:5234-9. [PMID: 11287631 PMCID: PMC33193 DOI: 10.1073/pnas.061386098] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Indexed: 11/18/2022] Open
Abstract
The genetic variability at six polymorphic loci was examined within a global collection of 502 isolates of subgroup III, serogroup A Neisseria meningitidis. Nine "genoclouds" were identified, consisting of genotypes that were isolated repeatedly plus 48 descendent genotypes that were isolated rarely. These genoclouds have caused three pandemic waves of disease since the mid-1960s, the most recent of which was imported from East Asia to Europe and Africa in the mid-1990s. Many of the genotypes are escape variants, resulting from positive selection that we attribute to herd immunity. Despite positive selection, most escape variants are less fit than their parents and are lost because of competition and bottlenecks during spread from country to country. Competition between fit genotypes results in dramatic changes in population composition over short time periods.
Collapse
Affiliation(s)
- P Zhu
- Max-Planck Institut für Molekulare Genetik, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nicolas P, Décousset L, Riglet V, Castelli P, Stor R, Blanchet G. Clonal expansion of sequence type (ST-)5 and emergence of ST-7 in serogroup A meningococci, Africa. Emerg Infect Dis 2001; 7:849-54. [PMID: 11747698 PMCID: PMC2631866 DOI: 10.3201/eid0705.010513] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One hundred four serogroup A meningococci in our collection, isolated in Africa from 1988 to 1999, were characterized by multilocus sequence typing (MLST). Our results and data from the Internet indicate that sequence type 5 (ST-5) strains were responsible for most of African outbreaks and sporadic cases during this period. In 1995, a new clone, characterized by ST-7 sequence, emerged and was responsible for severe outbreaks in Chad (1998) and Sudan (1999). MLST and epidemiologic data indicate that ST-5 and ST-7 represent two virulent clones. These two STs, which belong to subgroup III, differ only in the pgm locus: allele pgm3 is characteristic for ST-5 and allele pgm19 for ST-7. Subgroup III strains were responsible for two pandemics in the 1960s and 1980s. Our data show that the third subgroup III pandemic has now reached Africa.
Collapse
Affiliation(s)
- P Nicolas
- Institut de Médecine Tropicale du Service de Santé des Armées, World Organization Collaborating Center, Marseille Armées, France. imtssa.meningo.free.fr
| | | | | | | | | | | |
Collapse
|