1
|
Zhang M, Zhao F, Guo M, Duan M, Xie Y, Qiu L. Vitamin E alleviates zebrafish intestinal damage and microbial disturbances caused by pyraclostrobin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106221. [PMID: 40015832 DOI: 10.1016/j.pestbp.2024.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 11/23/2024] [Indexed: 03/01/2025]
Abstract
Pyraclostrobin (PY) is highly toxic to aquatic organisms, and its increased residues in aquatic environments may have harmful effects on the intestine of aquatic creatures. Previous research demonstrated that vitamin E (VE) alleviated the acute toxicity of PY to zebrafish. This study further explored the mitigation effect of VE on PY-induced intestinal toxicity in fish and the underlying mechanisms by exposing adult zebrafish to PY (10, 20 μg/L) with or without 4 μM VE supplementation for 21 days. The results showed that VE alleviated the gut histopathological lesions caused by PY. VE co-exposure also improved PY-induced intestinal inflammation and restored the expression level of genes encoding intestinal tight junction protein. Furthermore, VE restored the anti-oxidation level inhibited by PY and reduced pro-apoptotic cytokine level and apoptotic enzyme activity increased by PY. 16S rRNA high-throughput sequencing showed that VE improved the zebrafish intestinal flora imbalance caused by 20 μg/L PY, increased the relative abundance of beneficial bacterium Cetobacterium, and reduced the relative abundance of pathogenic bacteria. In conclusion, VE alleviated PY-induced intestinal toxicity via repairing the damaged intestinal mucosal barrier, inhibiting inflammation, reducing oxidative stress and apoptosis, and improving the intestinal microbial disorder in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Institute of Rural Revitalization, Dezhou University, Dezhou, Shandong 253023, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
3
|
Bridel S, Bouchez V, Brancotte B, Hauck S, Armatys N, Landier A, Mühle E, Guillot S, Toubiana J, Maiden MCJ, Jolley KA, Brisse S. A comprehensive resource for Bordetella genomic epidemiology and biodiversity studies. Nat Commun 2022; 13:3807. [PMID: 35778384 PMCID: PMC9249784 DOI: 10.1038/s41467-022-31517-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
The genus Bordetella includes bacteria that are found in the environment and/or associated with humans and other animals. A few closely related species, including Bordetella pertussis, are human pathogens that cause diseases such as whooping cough. Here, we present a large database of Bordetella isolates and genomes and develop genotyping systems for the genus and for the B. pertussis clade. To generate the database, we merge previously existing databases from Oxford University and Institut Pasteur, import genomes from public repositories, and add 83 newly sequenced B. bronchiseptica genomes. The public database currently includes 2582 Bordetella isolates and their provenance data, and 2085 genomes ( https://bigsdb.pasteur.fr/bordetella/ ). We use core-genome multilocus sequence typing (cgMLST) to develop genotyping systems for the whole genus and for B. pertussis, as well as specific schemes to define antigenic, virulence and macrolide resistance profiles. Phylogenetic analyses allow us to redefine evolutionary relationships among known Bordetella species, and to propose potential new species. Our database provides an expandable resource for genotyping of environmental and clinical Bordetella isolates, thus facilitating evolutionary and epidemiological research on whooping cough and other Bordetella infections.
Collapse
Affiliation(s)
- Sébastien Bridel
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Bryan Brancotte
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Sofia Hauck
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Estelle Mühle
- Collection de l´Institut Pasteur, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France.,Department of General Pediatrics and Pediatric Infectious Diseases, Université Paris Cité, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France. .,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France.
| |
Collapse
|
4
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Dewan KK, Harvill ET. Did new transmission cycles in anthropogenic, dense, host populations encourage the emergence and speciation of pathogenic Bordetella? PLoS Pathog 2019; 15:e1007600. [PMID: 30921446 PMCID: PMC6438446 DOI: 10.1371/journal.ppat.1007600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Eric T. Harvill
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
7
|
Stefanelli P. Pertussis: Identification, Prevention and Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:127-136. [PMID: 31321754 DOI: 10.1007/5584_2019_408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pertussis is a vaccine-preventable disease. Despite the high vaccination coverage among children, pertussis is considered a re-emerging disease for which identification, prevention and control strategies need to be improved. To control pertussis it is important to maintain a high vaccination coverage to protect the age groups considered at high risk for the disease. Laboratory confirmation of Bordetella pertussis infection together with a differential diagnostic test for other Bordetellae are prerequisite for a correct and timely diagnosis of pertussis. Moreover, investigations of antimicrobial susceptibility and whole genome sequencing may permit to monitor the circulation of antimicrobials resistant and/or vaccine-escape strains. Finally, the preventive framework should no longer consider pertussis exclusively as a childhood infectious disease, since adults may play a role in transmission events.
Collapse
Affiliation(s)
- Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
8
|
Novikov A, Marr N, Caroff M. A comparative study of the complete lipopolysaccharide structures and biosynthesis loci of Bordetella avium, B. hinzii, and B. trematum. Biochimie 2018; 159:81-92. [PMID: 30578925 DOI: 10.1016/j.biochi.2018.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
A dozen species of human and animal pathogens have been described to date in the Bordetella genus, with the majority being respiratory tract pathogens. Bordetella avium lipopolysaccharides have been shown to be important virulence factors for this bird pathogen. B. hinzii is closely related to the B. avium species, but has also been isolated from humans. B. trematum is associated to ear and blood infections in humans. Its lipid A structure, the biological active moiety of LPS, was found to be closely related to those of B. avium and B. hinzii. It is important to unveil the subtle structural modifications orchestrated during the LPS biosynthetic pathway to better understand host adaptation. The present data are also important in the context of deciphering the virulence pathways of this important genus containing the major pathogens B. pertussis and B. parapertussis, responsible for whooping cough. We recently reported the isolated lipid A structures of the three presented species, following the previously identified O-chain structures. In the present study, we provide details on the free and O-chain-linked core oligosaccharides which were required to characterize the complete LPS structures. Data are presented here in relation to relevant biosynthesis genes. The present characterization of the three species is well illustrated by Matrix Assisted Laser Desorption Mass Spectrometry experiments, and data were obtained mainly on native LPS molecules for the first time.
Collapse
Affiliation(s)
- Alexey Novikov
- LPS-BioSciences, Bâtiment 409, Université de Paris-Sud, Paris-Saclay, F-91405, Orsay, France
| | | | - Martine Caroff
- LPS-BioSciences, Bâtiment 409, Université de Paris-Sud, Paris-Saclay, F-91405, Orsay, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Paris-Sud, Université Paris-Saclay, F-91405, Orsay, France.
| |
Collapse
|
9
|
Sugiyama J, Kiyuna T, Nishijima M, An KD, Nagatsuka Y, Tazato N, Handa Y, Hata-Tomita J, Sato Y, Kigawa R, Sano C. Polyphasic insights into the microbiomes of the Takamatsuzuka Tumulus and Kitora Tumulus. J GEN APPL MICROBIOL 2017; 63:63-113. [DOI: 10.2323/jgam.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoshinori Sato
- Tokyo National Research Institute for Cultural Properties
| | - Rika Kigawa
- Tokyo National Research Institute for Cultural Properties
| | - Chie Sano
- Tokyo National Research Institute for Cultural Properties
| |
Collapse
|
10
|
Rath SN, Ray M, Pattnaik A, Pradhan SK. Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study. Genomics Inform 2016; 14:241-254. [PMID: 28154518 PMCID: PMC5287131 DOI: 10.5808/gi.2016.14.4.241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 11/20/2022] Open
Abstract
Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.
Collapse
Affiliation(s)
- Surya Narayan Rath
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Manisha Ray
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Animesh Pattnaik
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Sukanta Kumar Pradhan
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| |
Collapse
|
11
|
Linz B, Ivanov YV, Preston A, Brinkac L, Parkhill J, Kim M, Harris SR, Goodfield LL, Fry NK, Gorringe AR, Nicholson TL, Register KB, Losada L, Harvill ET. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 2016; 17:767. [PMID: 27716057 PMCID: PMC5045587 DOI: 10.1186/s12864-016-3112-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 09/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genus Bordetella consists of nine species that include important respiratory pathogens such as the ‘classical’ species B. bronchiseptica, B. pertussis and B. parapertussis and six more distantly related and less extensively studied species. Here we analyze sequence diversity and gene content of 128 genome sequences from all nine species with focus on the evolution of virulence-associated factors. Results Both genome-wide sequence-based and gene content-based phylogenetic trees divide the genus into three species clades. The phylogenies are congruent between species suggesting genus-wide co-evolution of sequence diversity and gene content, but less correlated within species, mainly because of strain-specific presence of many different prophages. We compared the genomes with focus on virulence-associated genes and identified multiple clade-specific, species-specific and strain-specific events of gene acquisition and gene loss, including genes encoding O-antigens, protein secretion systems and bacterial toxins. Gene loss was more frequent than gene gain throughout the evolution, and loss of hundreds of genes was associated with the origin of several species, including the recently evolved human-restricted B. pertussis and B. holmesii, B. parapertussis and the avian pathogen B. avium. Conclusions Acquisition and loss of multiple genes drive the evolution and speciation in the genus Bordetella, including large scale gene loss associated with the origin of several species. Recent loss and functional inactivation of genes, including those encoding pertussis vaccine components and bacterial toxins, in individual strains emphasize ongoing evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3112-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yury V Ivanov
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Preston
- The Millner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Maria Kim
- J. Craig Venter Institute, Rockville, MD, USA
| | - Simon R Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Laura L Goodfield
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Norman K Fry
- Public Health England, Respiratory and Vaccine Preventable Bacteria Reference Unit, London, UK
| | | | - Tracy L Nicholson
- USDA, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Karen B Register
- USDA, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | | | - Eric T Harvill
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA. .,Singapore Centre on Environmental Life Sciences Engineering, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore. .,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Fabre A, Dupin C, Bénézit F, Goret J, Piau C, Jouneau S, Guillot S, Mégraud F, Kayal S, Desrues B, Le Coustumier A, Guiso N. Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure. Emerg Infect Dis 2016; 21:2122-6. [PMID: 26584467 PMCID: PMC4672423 DOI: 10.3201/eid2112.150400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Diagnosing infections involving this species by routine methods is difficult. We report 2 cases of pulmonary Bordetella hinzii infection in immunodeficient patients. One of these rare cases demonstrated the potential transmission of the bacteria from an avian reservoir through occupational exposure and its persistence in humans. We establish bacteriologic management of these infections and suggest therapeutic options if needed.
Collapse
|
13
|
Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin Microbiol Rev 2016; 29:449-86. [PMID: 27029594 PMCID: PMC4861987 DOI: 10.1128/cmr.00083-15] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pertussis is a severe respiratory infection caused by Bordetella pertussis, and in 2008, pertussis was associated with an estimated 16 million cases and 195,000 deaths globally. Sizeable outbreaks of pertussis have been reported over the past 5 years, and disease reemergence has been the focus of international attention to develop a deeper understanding of pathogen virulence and genetic evolution of B. pertussis strains. During the past 20 years, the scientific community has recognized pertussis among adults as well as infants and children. Increased recognition that older children and adolescents are at risk for disease and may transmit B. pertussis to younger siblings has underscored the need to better understand the role of innate, humoral, and cell-mediated immunity, including the role of waning immunity. Although recognition of adult pertussis has increased in tandem with a better understanding of B. pertussis pathogenesis, pertussis in neonates and adults can manifest with atypical clinical presentations. Such disease patterns make pertussis recognition difficult and lead to delays in treatment. Ongoing research using newer tools for molecular analysis holds promise for improved understanding of pertussis epidemiology, bacterial pathogenesis, bioinformatics, and immunology. Together, these advances provide a foundation for the development of new-generation diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abdulbaset M Salim
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marcus J Zervos
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System and Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Heinz-Josef Schmitt
- Medical and Scientific Affairs, Pfizer Vaccines, Paris, France Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
14
|
Abstract
Pertussis, caused by Bordetella (B.) pertussis, a Gram-negative bacterium, is a highly contagious airway infection. Especially in infants, pertussis remains a major health concern. Acute infection with B. pertussis can cause severe illness characterized by severe respiratory failure, pulmonary hypertension, leucocytosis, and death. Over the past years, rising incidence rates of intensive care treatment in young infants were described. Due to several virulence factors (pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, filamentous hemagglutinin, and lipooligosaccharide) that promote bacterial adhesion and invasion, B. pertussis creates a unique niche for colonization within the human respiratory tract. The resulting long-term infection is mainly caused by the ability of B. pertussis to interfere with the host's innate and adaptive immune system. Although pertussis is a vaccine-preventable disease, it has persisted in vaccinated populations. Epidemiological data reported a worldwide increase in pertussis incidence among children during the past years. Either acellular pertussis (aP) vaccines or whole-cell vaccines are worldwide used. Recent studies did not detect any differences according to pertussis incidence when comparing the different vaccines used. Most of the currently used aP vaccines protect against acute infections for a period of 6-8 years. The resurgence of pertussis may be due to the lack of herd immunity caused by missing booster immunizations among adolescents and adults, low vaccine coverages in some geographic areas, and genetic changes of different B. pertussis strains. Due to the rising incidence of pertussis, probable solution strategies are discussed. Cocooning strategies (vaccination of close contact persons) and immunizations during pregnancy appear to be an approach to reduce neonatal contagiousness. During the past years, studies focused on the pathway of the immune modulation done by B. pertussis to provide a basis for the identification of new therapeutic targets to enhance the host's immune response and to probably modulate certain virulence factors.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Basheer SM, Bouchez V, Novikov A, Augusto LA, Guiso N, Caroff M. Structure activity characterization of Bordetella petrii lipid A, from environment to human isolates. Biochimie 2016; 120:87-95. [DOI: 10.1016/j.biochi.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
|
16
|
Kwon SS, Kim JO, Kim KH, Jeong SH, Lee K. Persistent Bordetella petrii infection related to bone fractures. Ann Lab Med 2015; 36:70-2. [PMID: 26522764 PMCID: PMC4697348 DOI: 10.3343/alm.2016.36.1.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Affiliation(s)
- Soon Sung Kwon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ok Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Kun Han Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Tazato N, Handa Y, Nishijima M, Kigawa R, Sano C, Sugiyama J. Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov. Int J Syst Evol Microbiol 2015; 65:4830-4838. [PMID: 26443672 DOI: 10.1099/ijsem.0.000655] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten strains of Gram-stain-negative, non-spore-forming, non-motile coccobacilli were isolated from the plaster wall surface of 1300-year-old mural paintings inside the stone chamber of the Takamatsuzuka tumulus in Asuka village (Asuka-mura), Nara Prefecture, Japan. Based on 16S rRNA gene sequence analysis of the isolates, they belonged to the proteobacterial genus Bordetella (class Betaproteobacteria) and could be separated into three groups representing novel lineages within the genus Bordetella. Three isolates were selected, one from each group, and identified carefully using a polyphasic approach. The isolates were characterized by the presence of Q-8 as their major ubiquinone system and C16 : 0 (30.0-41.8 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.1-27.0 %) and C17 : 0 cyclo (10.8-23.8 %) as the predominant fatty acids. The major hydroxy fatty acids were C12 : 0 2-OH and C14 : 0 2-OH. The DNA G+C content was 59.6-60.0 mol%. DNA-DNA hybridization tests confirmed that the isolates represented three separate novel species, for which the names Bordetella muralis sp. nov. (type strain T6220-3-2bT = JCM 30931T = NCIMB 15006T), Bordetella tumulicola sp. nov. (type strain T6517-1-4bT = JCM 30935T = NCIMB 15007T) and Bordetella tumbae sp. nov. (type strain T6713-1-3bT = JCM 30934T = NCIMB 15008T) are proposed. These results support previous evidence that members of the genus Bordetella exist in the environment and may be ubiquitous in soil and/or water.
Collapse
Affiliation(s)
- Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co. Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka-shi, Shizuoka 424-0065, Japan
| | - Yutaka Handa
- Technical Department, TechnoSuruga Laboratory Co. Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka-shi, Shizuoka 424-0065, Japan
| | - Miyuki Nishijima
- Technical Department, TechnoSuruga Laboratory Co. Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka-shi, Shizuoka 424-0065, Japan
| | - Rika Kigawa
- Independent Administrative Institution, National Research Institute for Cultural Properties, Tokyo, 13-43 Ueno-Koen, Taito-ku, Tokyo 110-8713, Japan
| | - Chie Sano
- Independent Administrative Institution, National Research Institute for Cultural Properties, Tokyo, 13-43 Ueno-Koen, Taito-ku, Tokyo 110-8713, Japan
| | - Junta Sugiyama
- TechnoSuruga Laboratory Co., Ltd, Chiba Branch Office, No. 4 Sanko Bldg., 3-1532-13 Hasama-cho, Funabashi-shi, Chiba 274-0822, Japan
| |
Collapse
|
18
|
Biederman L, Rosen MR, Bobik BS, Roberts AL. Bordetella petrii recovered from chronic pansinusitis in an adult with cystic fibrosis. IDCases 2015; 2:97-8. [PMID: 26793470 PMCID: PMC4712203 DOI: 10.1016/j.idcr.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 11/05/2022] Open
Abstract
To date Bordetella petrii has infrequently been identified within the clinical setting likely due to the asaccharolytic nature of this organism. We present a case of B. petrii recovered on two separate events in a patient with adult cystic fibrosis experiencing chronic pansinusitis.
Collapse
Affiliation(s)
- Laura Biederman
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Pavilion Building, Suite 207, Philadelphia, PA 19107, USA
| | - Marc R Rosen
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, 925 Chestnut Street, 6th Floor, Philadelphia, PA 19107, USA
| | - Brent S Bobik
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Pavilion Building, Suite 207, Philadelphia, PA 19107, USA
| | - Amity L Roberts
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Pavilion Building, Suite 207, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
|
20
|
Abstract
A case of Bordetella petrii septic arthritis and osteomyelitis in an elbow resulted from a dirt bike accident in Hawaii. Two months of intravenous antibiotics and repeated surgeries were required to cure this infection. Our case, and literature review, suggests that extended-spectrum penicillins, tetracycline, and trimethoprim-sulfamethoxazole are good treatment options.
Collapse
|
21
|
Abstract
The Bordetella genus comprises nine species of which Bordetella pertussis and B. parapertussis are isolated from humans and are the most studied Bordetella species since they cause whooping cough. They both originate from B. bronchiseptica, which infects several mammals and immune compromised humans, but the intensive use of pertussis vaccines induced changes in B. pertussis and B. parapertussis populations. B. petrii and B. holmesii are other species of unknown reservoir and transmission pattern that have been described in humans. It is still unknown whether these species are pathogens for humans or only opportunistic bacteria but biological diagnosis has confirmed the presence of B. holmesii in human respiratory samples while B. petrii and the four other species have little implications for public health.
Collapse
Affiliation(s)
- Nicole Guiso
- Institut Pasteur, Unité de Prévention et Thérapies Moléculaires des Maladies Humaines, 25-28 rue du Dr Roux, F-75015 Paris, France
| | | |
Collapse
|
22
|
Pittet LF, Emonet S, Schrenzel J, Siegrist CA, Posfay-Barbe KM. Bordetella holmesii: an under-recognised Bordetella species. THE LANCET. INFECTIOUS DISEASES 2014; 14:510-9. [PMID: 24721229 DOI: 10.1016/s1473-3099(14)70021-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bordetella holmesii, first described in 1995, is believed to cause both invasive infections (bacteraemia, meningitis, endocarditis, pericarditis, pneumonia, and arthritis) and pertussis-like symptoms. Infection with B holmesii is frequently misidentified as being with B pertussis, the cause of whooping cough, because routine diagnostic tests for pertussis are not species-specific. In this Review, we summarise knowledge about B holmesii diagnosis and treatment, and assess research needs. Although no fatal cases of B holmesii have been reported, associated invasive infections can cause substantial morbidities, even in previously healthy individuals. Antimicrobial treatment can be problematic because B holmesii's susceptibility to macrolides (used empirically to treat B pertussis) and third-generation cephalosporins (often used to treat invasive infections) is lower than would be expected. B holmesii's adaptation to human beings is continuing, and virulence might increase, causing the need for better diagnostic assays and epidemiological surveillance.
Collapse
Affiliation(s)
- Laure F Pittet
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Stéphane Emonet
- Department of Genetics and Laboratory Medicine, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Department of Genetics and Laboratory Medicine, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland; Neonatal Immunology, Departments of Pathology-Immunology and Paediatrics, University of Geneva, Geneva, Switzerland
| | - Klara M Posfay-Barbe
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
23
|
Carleton A, Casserly B, Power L, Linnane B, O’flaherty G, Powell J, Hartnett P, Collins J, Murphy P, Kenna D, O’connell NH, Dunne C. Clustered multidrug‐resistant Bordetella petrii in adult cystic fibrosis patients in Ireland: case report and review of antimicrobial therapies. JMM Case Rep 2014. [DOI: 10.1099/jmmcr.0.000075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ailise Carleton
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - Brian Casserly
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Lorraine Power
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Barry Linnane
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | | | - James Powell
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Peig Hartnett
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | | | - Philip Murphy
- Trinity College Dublin, Clinical Microbiology Department, Dublin, Ireland
| | - Dervla Kenna
- AMRHAI Reference Unit, Reference Microbiology Services, Public Health England, London, United Kingdom
| | - Nuala H. O’connell
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Colum Dunne
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
24
|
Novikov A, Shah NR, AlBitar-Nehme S, Basheer SM, Trento I, Tirsoaga A, Moksa M, Hirst M, Perry MB, Hamidi AE, Fernandez RC, Caroff M. Complete Bordetella avium, Bordetella hinzii and Bordetella trematum lipid A structures and genomic sequence analyses of the loci involved in their modifications. Innate Immun 2013; 20:659-72. [PMID: 24127384 DOI: 10.1177/1753425913506950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/09/2013] [Indexed: 11/16/2022] Open
Abstract
Endotoxin is recognized as one of the virulence factors of the Bordetella avium bird pathogen, and characterization of its structure and corresponding genomic features are important for an understanding of its role in pathogenicity and for an improved general knowledge of Bordetella spp virulence factors. The structure of the biologically active part of B. avium LPS, lipid A, is described and compared to those of another bird pathogen, opportunistic in humans, Bordetella hinzii, and to that of Bordetella trematum, a human pathogen. Sequence analyses showed that the three strains have homologues of acyl-chain modifying enzymes PagL, PagP and LpxO, of the 1-phosphatase LpxE, in addition to LgmA, LgmB and LgmC, which are required for the glucosamine modification. MALDI mass spectrometry identified a high amount of glucosamine substituting the phosphate groups of B. avium lipid A; this modification was absent from B. hinzii and B. trematum. The acylation patterns of the three lipid As were similar, but they differed from those of Bordetella pertussis and Bordetella parapertussis. They were also found to be close to the lipid A structure of Bordetella bronchiseptica, a mammalian pathogen, only differing from the latter by the degree of hydroxylation of the branched fatty acid.
Collapse
Affiliation(s)
- Alexey Novikov
- Equipe "Endotoxines", I.G.M. Université de Paris-Sud, Orsay, France Present address: Start-up LPS-BioSciences, IGM, Orsay, France
| | - Nita R Shah
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | - Soorej M Basheer
- Equipe "Endotoxines", I.G.M. Université de Paris-Sud, Orsay, France
| | - Ilaria Trento
- Equipe "Endotoxines", I.G.M. Université de Paris-Sud, Orsay, France
| | - Alina Tirsoaga
- Equipe "Endotoxines", I.G.M. Université de Paris-Sud, Orsay, France
| | - Michelle Moksa
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | | | - Asmaa El Hamidi
- Equipe "Endotoxines", I.G.M. Université de Paris-Sud, Orsay, France Present address: Start-up LPS-BioSciences, IGM, Orsay, France
| | - Rachel C Fernandez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Martine Caroff
- Equipe "Endotoxines", I.G.M. Université de Paris-Sud, Orsay, France
| |
Collapse
|
25
|
Zelazny AM, Ding L, Goldberg JB, Mijares LA, Conlan S, Conville PS, Stock F, Ballentine SJ, Olivier KN, Sampaio EP, Murray PR, Holland SM. Adaptability and persistence of the emerging pathogen Bordetella petrii. PLoS One 2013; 8:e65102. [PMID: 23750235 PMCID: PMC3672207 DOI: 10.1371/journal.pone.0065102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 04/22/2013] [Indexed: 12/03/2022] Open
Abstract
The first described, environmentally isolated, Bordetella petrii was shown to undergo massive genomic rearrangements in vitro. More recently, B. petrii was isolated from clinical samples associated with jaw, ear bone, cystic fibrosis and chronic pulmonary disease. However, the in vivo consequences of B. petrii genome plasticity and its pathogenicity remain obscure. B. petrii was identified from four sequential respiratory samples and a post-mortem spleen sample of a woman presenting with bronchiectasis and cavitary lung disease associated with nontuberculous mycobacterial infection. Strains were compared genetically, phenotypically and by antibody recognition from the patient and from inoculated mice. The successive B. petrii strains exhibited differences in growth, antibiotic susceptibility and recognition by the patient’s antibodies. Antibodies from mice inoculated with these strains recapitulated the specificity and strain dependent response that was seen with the patient’s serum. Finally, we characterize one strain that was poorly recognized by the patient’s antibodies, due to a defect in the lipopolysaccharide O-antigen, and identify a mutation associated with this phenotype. We propose that B. petrii is remarkably adaptable in vivo, providing a possible connection between immune response and bacterial evasion and supporting infection persistence.
Collapse
Affiliation(s)
- Adrian M Zelazny
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Evaluation of PCR methods for the diagnosis of pertussis by the European surveillance network for vaccine-preventable diseases (EUVAC.NET). Eur J Clin Microbiol Infect Dis 2013; 32:1285-9. [PMID: 23609510 DOI: 10.1007/s10096-013-1874-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
This study aimed to evaluate the performance of polymerase chain reaction (PCR) methods used for the diagnosis of pertussis in laboratories within Europe in 2011. National reference laboratories in 25 European countries were contacted and a total of 24 laboratories from 19 countries agreed to participate in the study. A panel of seven samples of DNA from Bordetella pertussis, Bordetella parapertussis and Bordetella holmesii plus a negative control were distributed and analysed according to the routine PCR methods in each laboratory. The study took place in 2011. Nineteen laboratories used a real-time PCR approach, four laboratories used block-based PCR and one laboratory used a combination of methods. Six different combinations of amplification targets were used, and ten laboratories tested only for the presence of B. pertussis DNA. All laboratories (24/24) correctly identified a sample with high concentration of B. pertussis DNA, while three misidentified the B. parapertussis DNA as B. pertussis and 15 misidentified the B. holmesii DNA as either B. pertussis or B. parapertussis. There was a wide variation in the methods used for PCR-based diagnosis of pertussis among the European laboratories. Several laboratories were not able to discriminate between DNA samples from different Bordetella species.
Collapse
|
27
|
Tizolova A, Guiso N, Guillot S. Insertion sequences shared by Bordetella species and implications for the biological diagnosis of pertussis syndrome. Eur J Clin Microbiol Infect Dis 2012; 32:89-96. [PMID: 22886091 DOI: 10.1007/s10096-012-1718-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022]
Abstract
The molecular diagnosis of pertussis and parapertussis syndromes is based on the detection of insertion sequences (IS) 481 and 1001, respectively. However, these IS are also detected in the genomes of various Bordetella species, such that they are not specific for either B. pertussis or B. parapertussis. Therefore, we screened the genome of recently circulating isolates of Bordetella species to compare the prevalence of IS481, IS1001 and, also IS1002 with previously published data and to sequence all IS detected. We also investigated whether the numbers of IS481 and IS1001 copies vary in recently circulating isolates of the different Bordetella species. We used the polymerase chain reaction (PCR) method for screening the genome of circulating isolates and to prepare the fragments for sequencing. We used Southern blotting and quantitative real-time PCR for quantification of the numbers of IS. We found no significant diversity in the sequences of the IS harboured in the genomes of the Bordetella isolates screened, except for a 71-nucleotide deletion from IS1002 in B. bronchiseptica. The IS copy numbers in the genome of recently circulating isolates were similar to those in reference strains. Our results confirm that biological diagnosis targeting the IS481 and IS1001 elements are not specific and detect the species B. pertussis, B. holmesii and B. bronchiseptica (IS481), and B. parapertussis and B. bronchiseptica (IS1001).
Collapse
Affiliation(s)
- A Tizolova
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6, Czech Republic
| | | | | |
Collapse
|