1
|
Ndione MHD, Ndiaye EH, Faye M, Diagne MM, Diallo D, Diallo A, Sall AA, Loucoubar C, Faye O, Diallo M, Faye O, Barry MA, Fall G. Re-Introduction of West Nile Virus Lineage 1 in Senegal from Europe and Subsequent Circulation in Human and Mosquito Populations between 2012 and 2021. Viruses 2022; 14:2720. [PMID: 36560724 PMCID: PMC9785585 DOI: 10.3390/v14122720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a virus of the Japanese encephalitis antigenic complex and belongs to the family Flaviviridae of the genus flavivirus. The virus can cause infection in humans which in most cases is asymptomatic, however symptomatic cases exist and the disease can be severe causing encephalitis and meningoencephalitis. The virus is maintained in an enzootic cycle involving mosquitoes and birds, humans and other mammals such as horses can be accidental hosts. A mosquito-based arbovirus surveillance system and the sentinel syndromic surveillance network (4S) have been in place since 1988 and 2015 respectively, to better understand the transmission dynamics of arboviruses including WNV in Senegal. Arthropod and human samples have been collected from the field and analysed at Institut Pasteur de Dakar using different methods including RT-PCR, ELISA, plaque reduction neutralization test and viral isolation. RT-PCR positive samples have been analysed by Next Generation Sequencing. From 2012 to 2021, 7912 samples have been analysed and WNV positive cases have been detected, 20 human cases (19 IgM and 1 RT-PCR positive cases) and 41 mosquito pools. Phylogenetic analyzes of the sequences of complete genomes obtained showed the circulation of lineage 1a, with all these recent strains from Senegal identical to each other and very close to strains isolated from horse in France in 2015, Italy and Spain. Our data showed lineage 1a endemicity in Senegal as previously described, with circulation of WNV in humans and mosquitoes. Phylogenetic analyzes carried out with the genome sequences obtained also revealed exchanges of WNV strains between Europe and Senegal which could be possible via migratory birds. The surveillance systems that have enabled the detection of WNV in humans and arthropods should be extended to animals in a one-health approach to better prepare for global health threats.
Collapse
Affiliation(s)
| | - El Hadji Ndiaye
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Martin Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Diawo Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mawlouth Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| |
Collapse
|
2
|
Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus. Viruses 2021; 13:v13122507. [PMID: 34960776 PMCID: PMC8704790 DOI: 10.3390/v13122507] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/01/2022] Open
Abstract
The global spread of invasive mosquito species increases arbovirus infections. In addition to the invasive species Aedes albopictus and Aedes japonicus, Aedes koreicus has spread within Central Europe. Extensive information on its vector competence is missing. Ae. koreicus from Germany were investigated for their vector competence for chikungunya virus (CHIKV), Zika virus (ZIKV) and West Nile virus (WNV). Experiments were performed under different climate conditions (27 ± 5 °C; 24 ± 5 °C) for fourteen days. Ae. koreicus had the potential to transmit CHIKV and ZIKV but not WNV. Transmission was exclusively observed at the higher temperature, and transmission efficiency was rather low, at 4.6% (CHIKV) or 4.7% (ZIKV). Using a whole virome analysis, a novel mosquito-associated virus, designated Wiesbaden virus (WBDV), was identified in Ae. koreicus. Linking the WBDV infection status of single specimens to their transmission capability for the arboviruses revealed no influence on ZIKV transmission. In contrast, a coinfection of WBDV and CHIKV likely has a boost effect on CHIKV transmission. Due to its current distribution, the risk of arbovirus transmission by Ae. koreicus in Europe is rather low but might gain importance, especially in regions with higher temperatures. The impact of WBDV on arbovirus transmission should be analyzed in more detail.
Collapse
|
3
|
Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines (Basel) 2020; 8:vaccines8030507. [PMID: 32899581 PMCID: PMC7563189 DOI: 10.3390/vaccines8030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.
Collapse
|
4
|
Culex torrentium: A Potent Vector for the Transmission of West Nile Virus in Central Europe. Viruses 2019; 11:v11060492. [PMID: 31146418 PMCID: PMC6630772 DOI: 10.3390/v11060492] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
The continuous circulation of West Nile virus (WNV) in Central, South and East Europe and its recent detection in several dead birds and two horses in Germany highlights the need for information on WNV vector competence of mosquitoes from Central Europe. Therefore, three common Culex species (Culex pipiens biotype pipiens, Culex pipiens biotype molestus and Culex torrentium) from Germany were orally infected with WNV and kept at 18 °C, 21 °C, 24 °C or 27 °C for 14 or 21 days post infection (dpi). Thereafter viable WNV was present in the saliva in all tested taxa, but only at incubation temperatures of 24 °C or 27 °C and predominantly at the extended incubation period of 21 dpi. Highest transmission efficiency rates of 17 % (24 °C) and 24% (27 °C) were found for Cx. torrentium. Culex p. pipiens and Cx. p. molestus showed low transmission efficiencies with a maximum of only 3%. Consequently, temperatures above 21 °C support transmission of WNV, which matches the predominant distribution of human WNV cases around the Mediterranean Sea and in South-East Europe. Culex torrentium has been identified as a potent vector for WNV in Central and Northern Europe, which highlights the need for surveillance of mosquito-borne viruses north of the Alps.
Collapse
|
5
|
Fall G, Di Paola N, Faye M, Dia M, Freire CCDM, Loucoubar C, Zanotto PMDA, Faye O, Sall AA. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 2017; 11:e0006078. [PMID: 29117195 PMCID: PMC5695850 DOI: 10.1371/journal.pntd.0006078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus’ biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation. The West Nile virus (WNV) can cause severe neurological diseases including meningitis, encephalitis, and acute flaccid paralysis. Differences in WNV genetics could play a role in the frequency of neurological symptoms from an infection. For the first time, we observed how geographically similar but genetically distinct lineages grow in cellular environments that agree with the transmission chain of West Nile virus—vertebrate-arthropod-vertebrate. We were able to connect our in vitro and in vivo results with relevant epidemiological and molecular data. Our findings highlight the existence of West African lineages with higher virulence and replicative efficiency in vitro and in vivo compared to lineages similar to circulating strains in the United States and Europe. Our investigation of four West African lineages of West Nile virus will help us better understand the biology of the virus and assess future epidemiological threats.
Collapse
Affiliation(s)
- Gamou Fall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Nicholas Di Paola
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Dia
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Cheikh Loucoubar
- Groupe à 4 ans de Biostatistiques, Bioinformatique et modélisation, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| | - Ousmane Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
6
|
Layton DS, Choudhary A, Bean AGD. Breaking the chain of zoonoses through biosecurity in livestock. Vaccine 2017; 35:5967-5973. [PMID: 28826750 DOI: 10.1016/j.vaccine.2017.07.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Increases in global travel, trade and urbanisation are leading to greater incidence of zoonotic disease, and livestock are often a key link in the spread of disease to humans. As such, livestock vaccination strategies, as a part of broader biosecurity solutions, are critical to both animal and human health. Importantly, approaches that restrict infectious agents in livestock, not only protects their economic value but should reduce the potential for spill over infections in humans. Biosecurity solutions to livestock health can take a number of different forms and are generally heavily weighted towards prevention of infection rather than treatment. Therefore, vaccination can provide an effective component of a strategic approach, particularly as production economics dictate the use of cost effective solutions. Furthermore, in an evolving global environment there is a need for vaccines that accommodate for lower socioeconomic and rapidly emerging zoonotics.
Collapse
Affiliation(s)
- Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia
| | - Anupma Choudhary
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia
| | - Andrew G D Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia.
| |
Collapse
|
7
|
Lustig Y, Kaufman Z, Mannasse B, Koren R, Katz-Likvornik S, Orshan L, Glatman-Freedman A, Mendelson E. West Nile virus outbreak in Israel in 2015: phylogenetic and geographic characterization in humans and mosquitoes. Clin Microbiol Infect 2017; 23:986-993. [PMID: 28487165 DOI: 10.1016/j.cmi.2017.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES West Nile Virus (WNV) is endemic in Israel and was responsible for several outbreaks in the past 16 years. The aim of the present study was to investigate the spatial distribution of WNV acute infections from an outbreak that occurred in 2015 in Israel and report the molecular and geographic characterization of WNV isolates from human cases and mosquito pools obtained during this outbreak. METHODS Using a geographical layer comprising 51 continuous areas of Israel, the number of WNV infection cases per 100 000 people in each area and the locations of WNV-infected mosquitoes in 2015 were analysed. Sequencing and phylogenetic analyses followed by geographic localization were performed on 13 WNV human isolates and 19 WNV-infected mosquito pools. RESULTS Substantial geographical variation in the prevalence of acute WNV in patients in Israel was found and an overall correlation with WNV-infected mosquitoes. All human patients sequenced were infected only with the Mediterranean subtype of WNV Lineage 1 and resided primarily in the coastal regions in central Israel. In contrast, mosquitoes were infected with both the Mediterranean and Eastern European subtypes of WNV lineage 1; however, only the Mediterranean subtype was found in mosquitoes from the coastal region in central Israel. CONCLUSION These results demonstrate differential geographic dispersion in Israel of the two WNV subtypes and may also point to a differential pattern of human infections. As a geographical bridge between Europe, Asia and Africa, analysis of WNV circulation in humans and mosquitoes in Israel provides information relevant to WNV infections in Eurasia.
Collapse
Affiliation(s)
- Y Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel.
| | - Z Kaufman
- Israel Centre for Disease Control, Ministry of Health, Chaim Sheba Medical Centre, Ramat-Gan, Israel
| | - B Mannasse
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - R Koren
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - S Katz-Likvornik
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - L Orshan
- Laboratory of Entomology, Ministry of Health, Jerusalem, Israel
| | - A Glatman-Freedman
- Israel Centre for Disease Control, Ministry of Health, Chaim Sheba Medical Centre, Ramat-Gan, Israel; School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel; New York Medical College, Valhalla, NY, USA
| | - E Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel; School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
8
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|
9
|
Riabi S, Gaaloul I, Mastouri M, Hassine M, Aouni M. An outbreak of West Nile Virus infection in the region of Monastir, Tunisia, 2003. Pathog Glob Health 2014; 108:148-57. [PMID: 24766339 DOI: 10.1179/2047773214y.0000000137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A West Nile (WN) fever epidemic occurred in the region of Monastir, Tunisia, between August and October 2003. AIM OF THE STUDY We attempt to describe the epidemiology, clinical presentation, and outcome of patients with confirmed West Nile virus (WNV) infection. METHODS Three groups of specimens were prepared. One was made up of serum only (n = 43), the other of cerebrospinal fluid (CSF) only (n = 30), and the third group was made up of both (n = 40). These specimens were obtained from 113 patients. A serological diagnosis and evidence of WNV genome by nested reverse-transcriptase polymerase chain reaction (nRT-PCR) and TaqMan reverse transcription-polymerase chain reaction (RT-PCR) were carried out. RESULTS Thirty-eight cases (33.6%) were serologically positive. Results of nRT-PCR showed a total of 10 positive cases of WNV (8.8%) detected in group 1 (n = 1/43), group 2 (n = 5/30), and group 3 (n = 4/40) whereas the PCR TaqMan showed 18 positive samples (15.9%) found in group 1 (n = 3/43), group 2 (n = 9/30), and group 3 (n = 6/40). All TaqMan PCR positive cases were nRT-PCR positive. In addition, four serologically probable cases were confirmed by TaqMan PCR. The attempts to isolate WNV by cell culture were unsuccessful. Considering the results of TaqMan assay and the serological diagnosis, WNV infection was confirmed in a total of 42 patients. The main clinical presentations were meningoencephalitis (40%), febrile disease (95%), and meningitis (36%). Eight patients (19%) died. The highest case-fatality rates occurred among patients aged ≧55 years. The phylogenetic analysis revealed that isolates of WNV were closely related to the Tunisian strain 1997 (PAH001) and the Israeli one (Is-98). CONCLUSIONS West Nile virus is a reemerging global pathogen that remains an important public health challenge in the next decade.
Collapse
|
10
|
Bellini R, Calzolari M, Mattivi A, Tamba M, Angelini P, Bonilauri P, Albieri A, Cagarelli R, Carrieri M, Dottori M, Finarelli AC, Gaibani P, Landini MP, Natalini S, Pascarelli N, Rossini G, Velati C, Vocale C, Bedeschi E. The experience of West Nile virus integrated surveillance system in the Emilia-Romagna region: five years of implementation, Italy, 2009 to 2013. ACTA ACUST UNITED AC 2014; 19. [PMID: 25394257 DOI: 10.2807/1560-7917.es2014.19.44.20953] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Predicting West Nile virus (WNV) circulation and the risk of WNV epidemics is difficult due to complex interactions of multiple factors involved. Surveillance systems that timely detect virus activity in targeted areas, and allow evidence-based risk assessments may therefore be necessary. Since 2009, a system integrating environmental (mosquitoes and birds) and human surveillance has been implemented and progressively improved in the Emilia-Romagna region, Italy. The objective is to increase knowledge of WNV circulation and to reduce the probability of virus transmission via blood, tissue and organ donation. As of 2013, the system has shown highly satisfactory results in terms of early detection capacity (the environmental surveillance component allowed detection of WNV circulation 3–4 weeks before human cases of West Nile neuroinvasive disease (WNND) occurred), sensitivity (capacity to detect virus circulation even at the enzootic level) and area specificity (capacity to indicate the spatial distribution of the risk for WNND). Strong correlations were observed between the vector index values and the number of human WNND cases registered at the province level. Taking into consideration two scenarios of surveillance, the first with environmental surveillance and the second without, the total costs for the period from 2009 to 2013 were reduced when environmental surveillance was considered (EUR 2.093 million for the first scenario vs EUR 2.560 million for the second). Environmental surveillance helped to reduce costs by enabling a more targeted blood unit testing strategy. The inclusion of environmental surveillance also increased the efficiency of detecting infected blood units and further allowed evidence-based adoption of preventative public health measures.
Collapse
Affiliation(s)
- R Bellini
- Centro Agricoltura Ambiente G.Nicoli , Crevalcore, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Langevin SA, Bowen RA, Reisen WK, Andrade CC, Ramey WN, Maharaj PD, Anishchenko M, Kenney JL, Duggal NK, Romo H, Bera AK, Sanders TA, Bosco-Lauth A, Smith JL, Kuhn R, Brault AC. Host competence and helicase activity differences exhibited by West Nile viral variants expressing NS3-249 amino acid polymorphisms. PLoS One 2014; 9:e100802. [PMID: 24971589 PMCID: PMC4074097 DOI: 10.1371/journal.pone.0100802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023] Open
Abstract
A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs) following West Nile virus (WNV) infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P) and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs) and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature.
Collapse
Affiliation(s)
- Stanley A. Langevin
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christy C. Andrade
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Wanichaya N. Ramey
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Payal D. Maharaj
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Michael Anishchenko
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Joan L. Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Nisha K. Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Hannah Romo
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Aloke Kumar Bera
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Todd A. Sanders
- United States Fish and Wildlife Service, Portland, Oregon, United States of America
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Janet L. Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Aaron C. Brault
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
12
|
Barzon L, Pacenti M, Franchin E, Pagni S, Lavezzo E, Squarzon L, Martello T, Russo F, Nicoletti L, Rezza G, Castilletti C, Capobianchi MR, Salcuni P, Cattai M, Cusinato R, Palù G. Large human outbreak of West Nile virus infection in north-eastern Italy in 2012. Viruses 2013; 5:2825-39. [PMID: 24284876 PMCID: PMC3856417 DOI: 10.3390/v5112825] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022] Open
Abstract
Human cases of West Nile virus (WNV) disease have been reported in Italy since 2008. So far, most cases have been identified in north-eastern Italy, where, in 2012, the largest outbreak of WNV infection ever recorded in Italy occurred. Most cases of the 2012 outbreak were identified in the Veneto region, where a special surveillance plan for West Nile fever was in place. In this outbreak, 25 cases of West Nile neuroinvasive disease and 17 cases of fever were confirmed. In addition, 14 WNV RNA-positive blood donors were identified by screening of blood and organ donations and two cases of asymptomatic infection were diagnosed by active surveillance of subjects at risk of WNV exposure. Two cases of death due to WNND were reported. Molecular testing demonstrated the presence of WNV lineage 1 in all WNV RNA-positive patients and, in 15 cases, infection by the novel Livenza strain was ascertained. Surveillance in other Italian regions notified one case of neuroinvasive disease in the south of Italy and two cases in Sardinia. Integrated surveillance for WNV infection remains a public health priority in Italy and vector control activities have been strengthened in areas of WNV circulation.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (G.P.); Tel.: +39-049-821-8946 (L.B.); Fax: +39-049-827-2355 (L.B.); Tel.: +39-049-827-2350 (G.P.); Fax: +39-049-827-2355 (G.P.)
| | - Monia Pacenti
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Silvana Pagni
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Laura Squarzon
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Thomas Martello
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Francesca Russo
- Department of Public Health and Screening, Veneto Region, Venice I-30123, Italy; E-Mail:
| | - Loredana Nicoletti
- Department of Infectious, Parasitic and Immune-mediated Diseases, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome I-00161, Italy; E-Mails: (L.N.); (G.R.)
| | - Giovanni Rezza
- Department of Infectious, Parasitic and Immune-mediated Diseases, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome I-00161, Italy; E-Mails: (L.N.); (G.R.)
| | - Concetta Castilletti
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome I-00149, Italy; E-Mails: (C.C.); (M.R.C.)
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome I-00149, Italy; E-Mails: (C.C.); (M.R.C.)
| | - Pasquale Salcuni
- Department of Prevention and Communication, Ministry of Health, Rome I-00144, Italy; E-Mail:
| | - Margherita Cattai
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Riccardo Cusinato
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (G.P.); Tel.: +39-049-821-8946 (L.B.); Fax: +39-049-827-2355 (L.B.); Tel.: +39-049-827-2350 (G.P.); Fax: +39-049-827-2355 (G.P.)
| |
Collapse
|
13
|
Engler O, Savini G, Papa A, Figuerola J, Groschup MH, Kampen H, Medlock J, Vaux A, Wilson AJ, Werner D, Jöst H, Goffredo M, Capelli G, Federici V, Tonolla M, Patocchi N, Flacio E, Portmann J, Rossi-Pedruzzi A, Mourelatos S, Ruiz S, Vázquez A, Calzolari M, Bonilauri P, Dottori M, Schaffner F, Mathis A, Johnson N. European surveillance for West Nile virus in mosquito populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4869-95. [PMID: 24157510 PMCID: PMC3823308 DOI: 10.3390/ijerph10104869] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 12/26/2022]
Abstract
A wide range of arthropod-borne viruses threaten both human and animal health either through their presence in Europe or through risk of introduction. Prominent among these is West Nile virus (WNV), primarily an avian virus, which has caused multiple outbreaks associated with human and equine mortality. Endemic outbreaks of West Nile fever have been reported in Italy, Greece, France, Romania, Hungary, Russia and Spain, with further spread expected. Most outbreaks in Western Europe have been due to infection with WNV Lineage 1. In Eastern Europe WNV Lineage 2 has been responsible for human and bird mortality, particularly in Greece, which has experienced extensive outbreaks over three consecutive years. Italy has experienced co-circulation with both virus lineages. The ability to manage this threat in a cost-effective way is dependent on early detection. Targeted surveillance for pathogens within mosquito populations offers the ability to detect viruses prior to their emergence in livestock, equine species or human populations. In addition, it can establish a baseline of mosquito-borne virus activity and allow monitoring of change to this over time. Early detection offers the opportunity to raise disease awareness, initiate vector control and preventative vaccination, now available for horses, and encourage personal protection against mosquito bites. This would have major benefits through financial savings and reduction in equid morbidity/mortality. However, effective surveillance that predicts virus outbreaks is challenged by a range of factors including limited resources, variation in mosquito capture rates (too few or too many), difficulties in mosquito identification, often reliant on specialist entomologists, and the sensitive, rapid detection of viruses in mosquito pools. Surveillance for WNV and other arboviruses within mosquito populations varies between European countries in the extent and focus of the surveillance. This study reviews the current status of WNV in mosquito populations across Europe and how this is informing our understanding of virus epidemiology. Key findings such as detection of virus, presence of vector species and invasive mosquito species are summarized, and some of the difficulties encountered when applying a cost-effective surveillance programme are highlighted.
Collapse
Affiliation(s)
- Olivier Engler
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez 3700, Switzerland; E-Mails: (O.E.); (J.P.)
| | - Giovanni Savini
- Zooprofilactic Institute Abruzzo and Molise “G. Caporale”, Campo Boario, Teramo 64100, Italy; E-Mails: (G.S.); (M.G.); (V.F.)
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-Mail:
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, Sevilla 41092, Spain; E-Mail:
| | - Martin H. Groschup
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Südufer 17493, Germany; E-Mails: (M.H.G.); (H.K.)
| | - Helge Kampen
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Südufer 17493, Germany; E-Mails: (M.H.G.); (H.K.)
| | - Jolyon Medlock
- Public Health England, Medical Entomology group, MRA, Emergency Response Department, Porton Down, Salisbury SP4 0JG, UK; E-Mails: (J.M.); (A.V.)
| | - Alexander Vaux
- Public Health England, Medical Entomology group, MRA, Emergency Response Department, Porton Down, Salisbury SP4 0JG, UK; E-Mails: (J.M.); (A.V.)
| | | | - Doreen Werner
- Institute of Land Use Systems, Leibnitz Centre for Agricultural Lanscape Research (ZALF), Eberswalder Strasse 84, Müncheberg 15374, Germany; E-Mail:
| | - Hanna Jöst
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Hamburg, Germany and German Mosquito Control Association (KABS), Waldsee and Bernhard-Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany; E-Mail:
| | - Maria Goffredo
- Zooprofilactic Institute Abruzzo and Molise “G. Caporale”, Campo Boario, Teramo 64100, Italy; E-Mails: (G.S.); (M.G.); (V.F.)
| | - Gioia Capelli
- Zooprofilactic Institute Venezie, Viale dell’ Università, 10, Padua, 35020 Legnaro, Italy; E-Mail:
| | - Valentina Federici
- Zooprofilactic Institute Abruzzo and Molise “G. Caporale”, Campo Boario, Teramo 64100, Italy; E-Mails: (G.S.); (M.G.); (V.F.)
| | - Mauro Tonolla
- Institute of Microbiology, Laboratory of Applied Microbiology, Via Mirasole 22a, Bellinzona CH-6500, Switzerland; E-Mail:
| | - Nicola Patocchi
- Mosquito Working Group, via al Castello, Canobbio CH-6952, Switzerland; E-Mails: (N.P.); (E.F.); (A.R.-P.)
| | - Eleonora Flacio
- Mosquito Working Group, via al Castello, Canobbio CH-6952, Switzerland; E-Mails: (N.P.); (E.F.); (A.R.-P.)
| | - Jasmine Portmann
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez 3700, Switzerland; E-Mails: (O.E.); (J.P.)
| | - Anya Rossi-Pedruzzi
- Mosquito Working Group, via al Castello, Canobbio CH-6952, Switzerland; E-Mails: (N.P.); (E.F.); (A.R.-P.)
| | | | - Santiago Ruiz
- Servicio de Control de Mosquitos, Diputación Provincial de Huelva, Huelva E-21003, Spain; E-Mail:
| | - Ana Vázquez
- CNM-Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain; E-Mail:
| | - Mattia Calzolari
- Zooprofilactic Institute Lombardy and Emilia Romagna “B. Ubertini”, Brescia 25124, Italy; E-Mails: (M.C.); (P.B.); (M.D.)
| | - Paolo Bonilauri
- Zooprofilactic Institute Lombardy and Emilia Romagna “B. Ubertini”, Brescia 25124, Italy; E-Mails: (M.C.); (P.B.); (M.D.)
| | - Michele Dottori
- Zooprofilactic Institute Lombardy and Emilia Romagna “B. Ubertini”, Brescia 25124, Italy; E-Mails: (M.C.); (P.B.); (M.D.)
| | - Francis Schaffner
- Institute of Parasitology, National Centre for Vector Entomology, University of Zurich, Winterthurerstr 266a, Zurich 8057, Switzerland; E-Mails: (F.S.); (A.M.)
| | - Alexander Mathis
- Institute of Parasitology, National Centre for Vector Entomology, University of Zurich, Winterthurerstr 266a, Zurich 8057, Switzerland; E-Mails: (F.S.); (A.M.)
| | - Nicholas Johnson
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, Surrey KT15, 3NB, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)1932-357-937; Fax: +44-(0)1932-357-239
| |
Collapse
|
14
|
The complex epidemiological scenario of West Nile virus in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4669-89. [PMID: 24084676 PMCID: PMC3823324 DOI: 10.3390/ijerph10104669] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/16/2022]
Abstract
Entomological, veterinary, and human surveillance systems for West Nile virus (WNV) infection have been implemented in Italy since the first detection of the virus in 1998. These surveillance activities documented a progressive increase of WNV activity and spread in different regions and the emergence of new WNV lineages and strains. Italy is a paradigmatic example of the complex epidemiology of WNV in Europe, where sporadic cases of WNV infection, clusters, and small outbreaks have been reported in several regions. In addition, different strains of both WNV lineage 1 and lineage 2 have been identified, even co-circulating in the same area.
Collapse
|
15
|
Sambri V, Capobianchi MR, Cavrini F, Charrel R, Donoso-Mantke O, Escadafal C, Franco L, Gaibani P, Gould EA, Niedrig M, Papa A, Pierro A, Rossini G, Sanchini A, Tenorio A, Varani S, Vázquez A, Vocale C, Zeller H. Diagnosis of west nile virus human infections: overview and proposal of diagnostic protocols considering the results of external quality assessment studies. Viruses 2013; 5:2329-2348. [PMID: 24072061 PMCID: PMC3814591 DOI: 10.3390/v5102329] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 01/14/2023] Open
Abstract
West Nile virus, genus Flavivirus, is transmitted between birds and occasionally other animals by ornithophilic mosquitoes. This virus also infects humans causing asymptomatic infections in about 85% of cases and <1% of clinical cases progress to severe neuroinvasive disease. The virus also presents a threat since most infections remain unapparent. However, the virus contained in blood and organs from asymptomatically infected donors can be transmitted to recipients of these infectious tissues. This paper reviews the presently available methods to achieve the laboratory diagnosis of West Nile virus infections in humans, discussing the most prominent advantages and disadvantages of each in light of the results obtained during four different External Quality Assessment studies carried out by the European Network for 'Imported' Viral Diseases (ENIVD).
Collapse
Affiliation(s)
- Vittorio Sambri
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Maria R. Capobianchi
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome 00149, Italy; E-Mail:
| | - Francesca Cavrini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Rémi Charrel
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
| | - Olivier Donoso-Mantke
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Camille Escadafal
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Leticia Franco
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Paolo Gaibani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ernest A. Gould
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
- NERC Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, UK; E-Mail: (E.A.G.)
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-Mail:
| | - Anna Pierro
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Giada Rossini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Andrea Sanchini
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden
| | - Antonio Tenorio
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Stefania Varani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ana Vázquez
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Caterina Vocale
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Herve Zeller
- European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden; E-Mail:
| |
Collapse
|
16
|
Barzon L, Pacenti M, Franchin E, Lavezzo E, Masi G, Squarzon L, Pagni S, Toppo S, Russo F, Cattai M, Cusinato R, Palu G. Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013. ACTA ACUST UNITED AC 2013; 18. [PMID: 24084339 DOI: 10.2807/1560-7917.es2013.18.38.20591] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A human outbreak of West Nile virus (WNV) infection caused by WNV lineage 2 is ongoing in northern Italy. Analysis of six WNV genome sequences obtained from clinical specimens demonstrated similarities with strains circulating in central Europe and Greece and the presence of unique amino acid changes that identify a new viral strain. In addition, WNV lineage 1 Livenza, responsible for a large outbreak in north-eastern Italy in 2012, was fully sequenced from a blood donor during this 2013 outbreak.
Collapse
Affiliation(s)
- L Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Characterization of the mouse neuroinvasiveness of selected European strains of West Nile virus. PLoS One 2013; 8:e74575. [PMID: 24058590 PMCID: PMC3776840 DOI: 10.1371/journal.pone.0074575] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/06/2013] [Indexed: 01/29/2023] Open
Abstract
West Nile virus (WNV) has caused outbreaks and sporadic infections in Central, Eastern and Mediterranean Europe for over 45 years. Most strains responsible for the European and Mediterranean basin outbreaks are classified as lineage 1. In recent years, WNV strains belonging to lineage 1 and 2 have been causing outbreaks of neuroinvasive disease in humans in countries such as Italy, Hungary and Greece, while mass mortality among birds was not reported. This study characterizes three European strains of WNV isolated in Italy (FIN and Ita09) and Hungary (578/10) in terms of in vitro replication kinetics on neuroblastoma cells, LD50 values in C57BL/6 mice, median day mortality, cumulative mortality, concentration of virus in the brain and spinal cord, and the response to infection in the brain. Overall, the results indicate that strains circulating in Europe belonging to both lineage 1 and 2 are highly virulent and that Ita09 and 578/10 are more neurovirulent compared to the FIN strain.
Collapse
|
18
|
A review of vaccine approaches for West Nile virus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4200-23. [PMID: 24025396 PMCID: PMC3799512 DOI: 10.3390/ijerph10094200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 01/19/2023]
Abstract
The West Nile virus (WNC) first appeared in North America in 1999. The North American lineages of WNV were characterized by the presence of neuroinvasive and neurovirulent strains causing disease and death in humans, birds and horses. The 2012 WNV season in the United States saw a massive spike in the number of neuroinvasive cases and deaths similar to what was seen in the 2002–2003 season, according to the West Nile virus disease cases and deaths reported to the CDC by year and clinical presentation, 1999–2012, by ArboNET (Arboviral Diseases Branch, Centers for Disease Control and Prevention). In addition, the establishment and recent spread of lineage II WNV virus strains into Western Europe and the presence of neurovirulent and neuroinvasive strains among them is a cause of major concern. This review discusses the advances in the development of vaccines and biologicals to combat human and veterinary West Nile disease.
Collapse
|
19
|
Pierro A, Gaibani P, Manisera C, Rossini G, Finarelli AC, Ghinelli F, Macini P, Landini MP, Sambri V. Persistence of anti-West Nile virus-specific antibodies among asymptomatic blood donors in northeastern Italy. Vector Borne Zoonotic Dis 2013; 13:892-3. [PMID: 23919606 DOI: 10.1089/vbz.2012.1157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development and persistence of anti-West Nile Virus (WNV) immunoglobulin G (IgG)- and IgM-specific antibodies were investigated in 68 asymptomatic blood donors (BDs) previously tested as positive between October, 2008, and September, 2009, and living in northeastern Italy. Our study showed that WNV-specific IgG titers became negative (41%) or decreased (33%) in a large percentage of BDs, while they increased in a smaller percentage (10%); 16% of BDs showed no titer variation. Reversion to seronegative status within a short time frame suggests that WNV surveillance should be maintained year after year.
Collapse
Affiliation(s)
- Anna Pierro
- 1 Regional Reference Centre for Microbiological Emergencies (CRREM), of the Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital , Bologna
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Añez G, Grinev A, Chancey C, Ball C, Akolkar N, Land KJ, Winkelman V, Stramer SL, Kramer LD, Rios M. Evolutionary dynamics of West Nile virus in the United States, 1999-2011: phylogeny, selection pressure and evolutionary time-scale analysis. PLoS Negl Trop Dis 2013; 7:e2245. [PMID: 23738027 PMCID: PMC3667762 DOI: 10.1371/journal.pntd.0002245] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/17/2013] [Indexed: 01/28/2023] Open
Abstract
West Nile virus (WNV), an arbovirus maintained in a bird-mosquito enzootic cycle, can infect other vertebrates including humans. WNV was first reported in the US in 1999 where, to date, three genotypes belonging to WNV lineage I have been described (NY99, WN02, SW/WN03). We report here the WNV sequences obtained from two birds, one mosquito, and 29 selected human samples acquired during the US epidemics from 2006–2011 and our examination of the evolutionary dynamics in the open-reading frame of WNV isolates reported from 1999–2011. Maximum-likelihood and Bayesian methods were used to perform the phylogenetic analyses and selection pressure analyses were conducted with the HyPhy package. Phylogenetic analysis identified human WNV isolates within the main WNV genotypes that have circulated in the US. Within genotype SW/WN03, we have identified a cluster with strains derived from blood donors and birds from Idaho and North Dakota collected during 2006–2007, termed here MW/WN06. Using different codon-based and branch-site selection models, we detected a number of codons subjected to positive pressure in WNV genes. The mean nucleotide substitution rate for WNV isolates obtained from humans was calculated to be 5.06×10−4 substitutions/site/year (s/s/y). The Bayesian skyline plot shows that after a period of high genetic variability following the introduction of WNV into the US, the WNV population appears to have reached genetic stability. The establishment of WNV in the US represents a unique opportunity to understand how an arbovirus adapts and evolves in a naïve environment. We describe a novel, well-supported cluster of WNV formed by strains collected from humans and birds from Idaho and North Dakota. Adequate genetic surveillance is essential to public health since new mutants could potentially affect viral pathogenesis, decrease performance of diagnostic assays, and negatively impact the efficacy of vaccines and the development of specific therapies. West Nile Virus (WNV) is a mosquito-borne virus of African origin that is widespread around the world. The WNV life-cycle involves mosquitoes and birds, but humans and other animals can be infected, although they are not considered to be important players in the transmission cycle. Clinically, most WNV infections are unapparent, but the virus can disseminate to the central nervous system causing a potentially fatal neurological disease, especially in susceptible populations including elderly and immunocompromised individuals. West Nile virus can also be transmitted by organ transplant and by transfusion of blood and blood components. Like other arboviruses, WNV has the extraordinary capacity of growing in the different microenvironments represented by the invertebrate vector and the vertebrate hosts. From an evolutionary standpoint, the arrival of WNV in the US in 1999 represents a unique opportunity to explore the processes involved in the adaptation and dissemination of an arbovirus in a naïve environment. From the study of WNV sequences, we can not only learn about the evolutionary mechanisms that govern arboviruses, but also update diagnostic tests that rely on the detection of the viral genome upon the occurrence of mutations and study the existence of genetic markers that may be responsible for increases in clinical cases and their severity.
Collapse
Affiliation(s)
- Germán Añez
- Laboratory of Emerging Pathogens, DETTD/OBRR/CBER, US Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (GA); (AG); (MR)
| | - Andriyan Grinev
- Laboratory of Emerging Pathogens, DETTD/OBRR/CBER, US Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (GA); (AG); (MR)
| | - Caren Chancey
- Laboratory of Emerging Pathogens, DETTD/OBRR/CBER, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christopher Ball
- Idaho Bureau of Laboratories, Boise, Idaho, United States of America
| | - Namita Akolkar
- Laboratory of Emerging Pathogens, DETTD/OBRR/CBER, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Kevin J. Land
- Bonfils Blood Center, Denver, Colorado, United States of America
| | - Valerie Winkelman
- Creative Testing Solutions, Tempe, Arizona, United States of America
| | - Susan L. Stramer
- American Red Cross, Gaithersburg, Maryland, United States of America
| | - Laura D. Kramer
- New York State Department of Health, Albany, New York, United States of America, and School of Public Health, State University of New York at Albany, Albany, New York, United States of America
| | - Maria Rios
- Laboratory of Emerging Pathogens, DETTD/OBRR/CBER, US Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (GA); (AG); (MR)
| |
Collapse
|
21
|
Calzolari M, Bonilauri P, Bellini R, Albieri A, Defilippo F, Tamba M, Tassinari M, Gelati A, Cordioli P, Angelini P, Dottori M. Usutu virus persistence and West Nile virus inactivity in the Emilia-Romagna region (Italy) in 2011. PLoS One 2013; 8:e63978. [PMID: 23667694 PMCID: PMC3646878 DOI: 10.1371/journal.pone.0063978] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The circulation of West Nile virus and Usutu virus was detected in the Emilia-Romagna region in 2008 and 2009. To evaluate the extent of circulation of both viruses, environmental surveillance, based on bird and mosquito testing, was conducted in 2008 and gradually improved over the years. METHODS In February-March 2009-2011, 5,993 hibernating mosquitoes were manually sampled, out of which 80.1% were Culex pipiens; none tested positive for the viruses. From 2008 to 2011, 946,213 mosquitoes, sampled between May and October, were tested; 86.5% were Cx. pipiens. West Nile virus was detected in 32 Cx. pipiens pools, and Usutu virus was detected in 229 mosquito pools (217 Cx. pipiens, 10 Aedes albopictus, one Anopheles maculipennis s.l., and one Aedes caspius). From 2009 to 2011, of 4,546 birds collected, 42 tested positive for West Nile virus and 48 for Usutu virus. West Nile virus and Usutu virus showed different patterns of activity during the 2008-2011 surveillance period. West Nile virus was detected in 2008, 2009, and 2010, but not in 2011. Usutu virus, however, was continuously active throughout 2009, 2010, and 2011. CONCLUSIONS The data strongly suggest that both viruses overwinter in the surveyed area rather than being continually reintroduced every season. The lack of hibernating mosquitoes testing positive for the viruses and the presence of positive birds sampled early in the season support the hypothesis that the viruses overwinter in birds rather than in mosquitoes. Herd immunity in key bird species could explain the decline of West Nile virus observed in 2011, while the persistence of Usutu virus may be explained by not yet identified reservoirs. Reported results are comparable with a peri-Mediterranean circulation of the West Nile virus lineage 1 related strain, which became undetectable in the environment after two to three years of obvious circulation.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna B. Ubertini (IZSLER), Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Development of an internally controlled real-time reverse transcriptase PCR assay for pan-dengue virus detection and comparison of four molecular dengue virus detection assays. J Clin Microbiol 2013; 51:2172-81. [PMID: 23637298 DOI: 10.1128/jcm.00548-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of diagnostic tests are available for dengue virus (DENV) detection, including a variety of nucleic acid amplification tests (NAATs). However, reports describing a direct comparison of different NAATs have been limited. In this study, we report the design of an internally controlled real-time reverse transcriptase PCR (rRT-PCR) that detects all four DENV serotypes but does not distinguish between them (the pan-DENV assay). Two hundred clinical samples were then tested using four different DENV RT-PCR assays: the pan-DENV assay, a commercially produced, internally controlled DENV rRT-PCR (the Altona assay), a widely used heminested RT-PCR, and a serotype-specific multiplex rRT-PCR assay. The pan-DENV assay had a linear range extending from 1.0 to 7.0 log10 cDNA equivalents/μl and a lower limit of 95% detection ranging from 1.7 to 7.6 cDNA equivalents/μl, depending on the serotype. When measured against a composite reference standard, the pan-DENV assay proved to be more clinically sensitive than either the Altona or heminested assays, with a sensitivity of 98.0% compared to 72.3% and 78.8%, respectively (P ≤ 0.0001 for both comparisons). The pan-DENV assay detected DENV in significantly more samples collected on or after day 5 of illness and in a subgroup of patients with detectable anti-DENV IgM at presentation. No significant difference in sensitivity was observed between the pan-DENV assay and the multiplex rRT-PCR, despite the presence of an internal control in the former. The detection of DENV RNA late in the course of clinical illness should serve to lengthen the period during which a confirmed molecular diagnosis of DENV infection can be provided.
Collapse
|
23
|
Waggoner JJ, Abeynayake J, Sahoo MK, Gresh L, Tellez Y, Gonzalez K, Ballesteros G, Pierro AM, Gaibani P, Guo FP, Sambri V, Balmaseda A, Karunaratne K, Harris E, Pinsky BA. Single-reaction, multiplex, real-time rt-PCR for the detection, quantitation, and serotyping of dengue viruses. PLoS Negl Trop Dis 2013; 7:e2116. [PMID: 23638191 PMCID: PMC3630127 DOI: 10.1371/journal.pntd.0002116] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/31/2013] [Indexed: 12/17/2022] Open
Abstract
Background Dengue fever results from infection with one or more of four different serotypes of dengue virus (DENV). Despite the widespread nature of this infection, available molecular diagnostics have significant limitations. The aim of this study was to develop a multiplex, real-time, reverse transcriptase-PCR (rRT-PCR) for the detection, quantitation, and serotyping of dengue viruses in a single reaction. Methodology/Principal Findings An rRT-PCR assay targeting the 5′ untranslated region and capsid gene of the DENV genome was designed using molecular beacons to provide serotype specificity. Using reference DENV strains, the assay was linear from 7.0 to 1.0 log10 cDNA equivalents/µL for each serotype. The lower limit of detection using genomic RNA was 0.3, 13.8, 0.8, and 12.4 cDNA equivalents/µL for serotypes 1–4, respectively, which was 6- to 275-fold more analytically sensitive than a widely used hemi-nested RT-PCR. Using samples from Nicaragua collected within the first five days of illness, the multiplex rRT-PCR was positive in 100% (69/69) of specimens that were positive by the hemi-nested assay, with full serotype agreement. Furthermore, the multiplex rRT-PCR detected DENV RNA in 97.2% (35/36) of specimens from Sri Lanka positive for anti-DENV IgM antibodies compared to just 44.4% (16/36) by the hemi-nested RT-PCR. No amplification was observed in 80 clinical samples sent for routine quantitative hepatitis C virus testing or when genomic RNA from other flaviviruses was tested. Conclusions/Significance This single-reaction, quantitative, multiplex rRT-PCR for DENV serotyping demonstrates superior analytical and clinical performance, as well as simpler workflow compared to the hemi-nested RT-PCR reference. In particular, this multiplex rRT-PCR detects viral RNA and provides serotype information in specimens collected more than five days after fever onset and from patients who had already developed anti-DENV IgM antibodies. The implementation of this assay in dengue-endemic areas has the potential to improve both dengue diagnosis and epidemiologic surveillance. Dengue, or break-bone fever, is the most common mosquito-borne viral disease of humans with over half the world's population at risk for infection. Dengue has a wide spectrum of clinical manifestations, from self-limited febrile illness to fatal hypovolemic shock, and because of this, dengue is difficult to distinguish from many other infections based on clinical characteristics alone. Diagnostic testing is therefore critical to accurately identify dengue virus (DENV)-infected patients and also rule out dengue in patients with undifferentiated fever. Unfortunately, current diagnostics for early DENV detection consist of point-of-care or laboratory-based antigen tests that lack sensitivity or molecular assays that are laborious to perform or lack the test characteristics necessary for routine use. To address these limitations, we developed a single-reaction, multiplex, real-time RT-PCR for the detection, quantitation, and serotyping of dengue viruses from patient serum or plasma. We demonstrate that this diagnostic test is more analytically sensitive than a commonly used reference molecular assay, and is able to detect viral RNA and provide serotype information in specimens collected more than 5 days after fever onset and from patients who had already developed anti-DENV IgM antibodies. This unique combination of sensitivity and serotyping capability in a simple, single-reaction format represents a step forward in dengue diagnostics.
Collapse
Affiliation(s)
- Jesse J. Waggoner
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janaki Abeynayake
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Yolanda Tellez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Karla Gonzalez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Gabriela Ballesteros
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Anna M. Pierro
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies – CRREM, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Paolo Gaibani
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies – CRREM, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Frances P. Guo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vittorio Sambri
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies – CRREM, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Angel Balmaseda
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Kumudu Karunaratne
- Department of Medical Microbiology, Lady Ridgeway Hospital, Colombo, Sri Lanka
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Benjamin A. Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Sambri V, Capobianchi M, Charrel R, Fyodorova M, Gaibani P, Gould E, Niedrig M, Papa A, Pierro A, Rossini G, Varani S, Vocale C, Landini MP. West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment, and prevention. Clin Microbiol Infect 2013; 19:699-704. [PMID: 23594175 DOI: 10.1111/1469-0691.12211] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
West Nile virus (WNV), a mosquito-borne flavivirus in the Japanese encephalitis antigenic group, has caused sporadic outbreaks in humans, horses and birds throughout many of the warmer regions of Europe for at least 20 years. Occasional cases of West Nile encephalitis have also been associated with infected blood transfusions and organ donations. Currently, WNV appears to be expanding its geographical range in Europe and causing increasing numbers of epidemics/outbreaks associated with human morbidity and mortality. This brief review reports on the current epidemic situation regarding WNV in Europe, highlighting the clinical, diagnostic and preventive measures available for controlling this apparently emerging human pathogen.
Collapse
Affiliation(s)
- V Sambri
- Section of Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rossini G, Carletti F, Rigoli R, Piga S, Bagnarelli P, Gaibani P, Pierro A, Nanni Costa A, Grossi P, Ippolito G, Landini MP, Di Caro A, Capobianchi MR, Sambri V. Heterogeneity of West Nile virus genotype 1a in Italy, 2011. J Gen Virol 2013; 94:314-317. [DOI: 10.1099/vir.0.046235-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is currently circulating in several European countries and, over recent decades, concomitantly with enhanced surveillance studies and improved diagnostic capabilities, an increase in the geographical distribution and in the number of cases in Europe has been documented. In Italy in 2011, 14 human cases of WNV neuroinvasive infections due to lineage 1 strains were registered in several Italian regions. Here we report WNV partial sequences obtained from serum samples of two patients living in different regions of Italy (Veneto and Sardinia). Phylogenetic analysis, performed on a fragment (566 nt) of the envelope gene, showed that WNV strains circulating in Italy in 2011 belong to lineage 1a, but are different from lineage 1a strains isolated in 2008–2009.The data reported here are consistent with the hypothesis of multiple recent introductions of WNV lineage 1a strains into Italy.
Collapse
Affiliation(s)
- Giada Rossini
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Fabrizio Carletti
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | | | - Sandro Piga
- Ospedale Santissima Trinità, Unit of Infectious Diseases, Cagliari, Italy
| | - Patrizia Bagnarelli
- Università Politecnica Marche, Virology Unit, Department of Biomedical Sciences and Public Health, Ancona, Italy
| | - Paolo Gaibani
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Anna Pierro
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | | | - Paolo Grossi
- Veneto Regional Coordinating Transplant Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | - Maria Paola Landini
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | | | - Vittorio Sambri
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Barzon L, Pacenti M, Franchin E, Squarzon L, Lavezzo E, Toppo S, Martello T, Cattai M, Cusinato R, Palù G. Novel West Nile virus lineage 1a full genome sequences from human cases of infection in north-eastern Italy, 2011. Clin Microbiol Infect 2012; 18:E541-4. [DOI: 10.1111/1469-0691.12001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Mosquito, bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna Region (Italy) in 2010. PLoS One 2012; 7:e38058. [PMID: 22666446 PMCID: PMC3364206 DOI: 10.1371/journal.pone.0038058] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/02/2012] [Indexed: 12/31/2022] Open
Abstract
Background In 2008, after the first West Nile virus (WNV) detection in the Emilia-Romagna region, a surveillance system, including mosquito- and bird-based surveillance, was established to evaluate the virus presence. Surveillance was improved in following years by extending the monitoring to larger areas and increasing the numbers of mosquitoes and birds tested. Methodology/Principal Findings A network of mosquito traps, evenly distributed and regularly activated, was set up within the surveyed area. A total of 438,558 mosquitoes, grouped in 3,111 pools and 1,276 birds (1,130 actively sampled and 146 from passive surveillance), were tested by biomolecular analysis. The survey detected WNV in 3 Culex pipiens pools while Usutu virus (USUV) was found in 89 Cx. pipiens pools and in 2 Aedes albopictus pools. Two birds were WNV-positive and 12 were USUV-positive. Furthermore, 30 human cases of acute meningoencephalitis, possibly caused by WNV or USUV, were evaluated for both viruses and 1,053 blood bags were tested for WNV, without any positive result. Conclusions/Significance Despite not finding symptomatic human WNV infections during 2010, the persistence of the virus, probably due to overwintering, was confirmed through viral circulation in mosquitoes and birds, as well as for USUV. In 2010, circulation of the two viruses was lower and more delayed than in 2009, but this decrease was not explained by the relative abundance of Cx. pipiens mosquito, which was greater in 2010. The USUV detection in mosquito species confirms the role of Cx. pipiens as the main vector and the possible involvement of Ae. albopictus in the virus cycle. The effects of meteorological conditions on the presence of USUV-positive mosquito pools were considered finding an association with drought conditions and a wide temperature range. The output produced by the surveillance system demonstrated its usefulness and reliability in terms of planning public health policies.
Collapse
|
28
|
Martín-Acebes MA, Saiz JC. West Nile virus: A re-emerging pathogen revisited. World J Virol 2012; 1:51-70. [PMID: 24175211 PMCID: PMC3782267 DOI: 10.5501/wjv.v1.i2.51] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
West Nile virus (WNV), a flavivirus of the Flaviviridae family, is maintained in nature in an enzootic transmission cycle between avian hosts and ornithophilic mosquito vectors, although the virus occasionally infects other vertebrates. WNV causes sporadic disease outbreaks in horses and humans, which may result in febrile illness, meningitis, encephalitis and flaccid paralysis. Until recently, its medical and veterinary health concern was relatively low; however, the number, frequency and severity of outbreaks with neurological consequences in humans and horses have lately increased in Europe and the Mediterranean basin. Since its introduction in the Americas, the virus spread across the continent with worrisome consequences in bird mortality and a considerable number of outbreaks among humans and horses, which have resulted in the largest epidemics of neuroinvasive WNV disease ever documented. Surprisingly, its incidence in human and animal health is very different in Central and South America, and the reasons for it are not yet understood. Even though great advances have been obtained lately regarding WNV infection, and although efficient equine vaccines are available, no specific treatments or vaccines for human use are on the market. This review updates the most recent investigations in different aspects of WNV life cycle: molecular virology, transmission dynamics, host range, clinical presentations, epidemiology, ecology, diagnosis, control, and prevention, and highlights some aspects that certainly require further research.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Miguel A Martín-Acebes, Juan-Carlos Saiz, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | | |
Collapse
|
29
|
Interlaboratory study to evaluate the performance of laboratories involved in West Nile virus RNA screening of blood and blood components by nucleic acid amplification testing in Italy. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 9:425-9. [PMID: 22031284 DOI: 10.2450/2011.0025-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/16/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND An Italian interlaboratory study was run in 2010 to assess the performance of Blood Transfusion Services in detecting the genome of West Nile virus (WNV) in plasma. MATERIALS AND METHODS Each laboratory received a panel of samples containing four samples negative for WNV and six positive samples with a nominal viral concentration close to or below the 95% detection limit of two commercially available nucleic acid amplification tests (NAT) for WNV, the PROCLEIX® WNV kit and the Cobas® TaqScreen West Nile Virus kit. RESULTS Ten laboratories took part in the study. All correctly identified the positive samples with a viral concentration above the 95% detection limit. No pre- or post-analytical errors were observed. CONCLUSIONS The interlaboratory study run in 2010 allowed participants to assess the performance of the NAT methods applied in their seasonal routine screening of blood donations.
Collapse
|
30
|
Gaibani P, Pierro A, Alicino R, Rossini G, Cavrini F, Landini MP, Sambri V. Detection of Usutu-virus-specific IgG in blood donors from northern Italy. Vector Borne Zoonotic Dis 2012; 12:431-3. [PMID: 22217176 DOI: 10.1089/vbz.2011.0813] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We developed a novel enzyme-linked immunosorbent assay to detect the specific IgG response to Usutu virus (USUV) in humans, by evaluating 359 blood donors who were living in northeastern Italy. Our results demonstrate the presence of an anti-USUV response in 4 subjects with no history of other flavivirus infection.
Collapse
|