1
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Lin SX, Wang W, Guo W, Yang HJ, Ma BC, Fang YL, Xu YS. [A molecular epidemiological study of KI polyomavirus and WU polyomavirus in children with acute respiratory infection in Tianjin, China]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28697828 PMCID: PMC7389920 DOI: 10.7499/j.issn.1008-8830.2017.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the relationship of KI polyomavirus (KIPyV) and WU polyomavirus (WUPyV) with acute respiratory infection in children in Tianjin, China. METHODS A total of 3 730 nasopharyngeal secretions were collected from hospitalized children with acute respiratory infection in Tianjin Children's Hospital from January 2011 to December 2013. Viral nucleic acid was extracted, and virus infection (KIPyV and WUPyV) was determined by PCR. Some KIPyV-positive and WUPyV-positive PCR products were subjected to sequencing. Sequencing results were aligned with the known gene sequences of KIPyV and WUPyV to construct a phylogenetic tree. Amplified VP1 fragments of KIPyV were inserted into the cloning vector (PUCm-T) transformed into E. coli competent cells. Positive clones were identified by PCR and sequencing. The nucleotide sequences were submitted to GenBank. In addition, another seven common respiratory viruses in all samples were detected by direct immunofluorescence assay. RESULTS In the 3 730 specimens, the KIPyV-positive rate was 12.14% (453/3 730) and the WUPyV-positive rate was 1.69% (63/3 730). The mean infection rate of KIPyV was significantly higher in June and July, while the mean infection rate of WUPyV peaked in February and March. Most of the KIPyV-positive or WUPyV-positive children were <3 years. The co-infections with KIPyV, WUPyV, and other respiratory viruses were observed in the children. The co-infection rate was 2.31% (86/3 730) and there were nine cases of co-infections with WUPyV and KIPyV. Thirty-five KIPyV-positive and twelve WUPyV-positive PCR products were sequenced and the alignment analysis showed that they had high homology with the known sequences (94%-100% vs 95%-100%). The VP1 gene sequences obtained from two KIPyV strains in this study were recorded in GenBank with the accession numbers of KY465925 and KY465926. CONCLUSIONS For some children with acute respiratory infection in Tianjin, China, the acute respiratory infection may be associated with KIPyV and WUPyV infections. KIPyV infection is common in summer, and WUPyV infection in spring. The epidemic strains in Tianjin have a high homology with those in other regions.
Collapse
Affiliation(s)
- Shu-Xiang Lin
- Pediatric Research Institute, Tianjin Children's Hospital, Tianjin 300134, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Dehority WN, Eickman MM, Schwalm KC, Gross SM, Schroth GP, Young SA, Dinwiddie DL. Complete genome sequence of a KI polyomavirus isolated from an otherwise healthy child with severe lower respiratory tract infection. J Med Virol 2016; 89:926-930. [PMID: 27704585 DOI: 10.1002/jmv.24706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 11/11/2022]
Abstract
Unbiased, deep sequencing of a nasal specimen from an otherwise healthy 13-month-old boy hospitalized in intensive care revealed high gene expression and the complete genome of a novel isolate of KI polyomavirus (KIPyV). Further investigation detected minimal gene expression of additional viruses, suggesting that KIPyV was potentially the causal agent. Analysis of the complete genome of isolate NMKI001 revealed it is different from all previously reported genomes and contains two amino acid differences as compared to the closest virus isolate, Stockholm 380 (EF127908). J. Med. Virol. 89:926-930, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walter N Dehority
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Megan M Eickman
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kurt C Schwalm
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | | | | | - Darrell L Dinwiddie
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Clinical Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
4
|
Nunes MC, Kuschner Z, Rabede Z, Cutland CL, Madimabe R, Kuwanda L, Klugman KP, Adrian PV, Madhi SA. Polyomaviruses-associated respiratory infections in HIV-infected and HIV-uninfected children. J Clin Virol 2014; 61:571-8. [PMID: 25467863 PMCID: PMC7173307 DOI: 10.1016/j.jcv.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Two recently discovered polyomaviruses (PyV), WU and KI, have been identified in respiratory-tract specimens from children with acute respiratory infections, although there are limited data in HIV-infected children. OBJECTIVES To determine the prevalence and clinical manifestations of WUPyV and KIPyV-associated lower respiratory tract infections (LRTIs) hospitalization in HIV-infected and -uninfected children; and probe the role of pneumococcal co-infection. STUDY DESIGN Nasopharyngeal aspirates were collected from a cohort of 39,836 children randomized to receive 9-valent pneumococcal conjugate vaccine (PCV9) or placebo when hospitalized for LRTIs, and were screened by PCR for WUPyV, KIPyV and other respiratory viruses. RESULTS In placebo-recipients the prevalence of WUPyV was 6.3% (18/285) in HIV-infected and 13.9% (66/476) in HIV-uninfected children (p=0.002). In WUPyV-positive LRTIs HIV-infected children had lower oxygen saturation at admission and a higher case fatality rate (11.1% vs. 0%; p=0.04). KIPyV was identified in 10.2% (29/285) of HIV-infected and in 7.4% (35/476) of HIV-uninfected placebo-recipients with LRTIs (p=0.13). HIV-infected compared to HIV-uninfected children with KIPyV-positive LRTIs had lower oxygen saturation, higher respiratory rate and longer duration of hospitalization. Co-infections with other respiratory-viruses were detected in 65.5% of WUPyV-positive LRTIs and in 75.0% of KIPyV-positive LRTIs. Among HIV-uninfected children, there was a lower incidence of hospitalization for clinical pneumonia episodes in which KIPyV (80%; 95% CI: 41, 93) and WUPyV (49%; 95% CI: 9, 71) were identified among PCV9-recipients compared to placebo-recipients. CONCLUSIONS Polyomaviruses were commonly identified in HIV-infected and -uninfected children hospitalized for LRTIs, frequently in association with other viruses and may contribute to the pathogenesis of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Marta C Nunes
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zachary Kuschner
- Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Zelda Rabede
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard Madimabe
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Locadiah Kuwanda
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Keith P Klugman
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Hubert Department of Global Health, Rollins School of Public Health and Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter V Adrian
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases: a division of National Health Laboratory Service, Centre for Vaccines and Immunology, Johannesburg, South Africa.
| |
Collapse
|
5
|
Ringshausen F, Rohde G. [New and rare pneumotropic viruses]. DER PNEUMOLOGE 2013; 10:326-334. [PMID: 32214958 PMCID: PMC7087668 DOI: 10.1007/s10405-013-0675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While acute viral respiratory tract infections are one of the major reasons for the loss of productivity among the general population in industrialized nations, they are one of the top killers among infants worldwide, in particular in low-income countries. With the advances in molecular diagnostics and the introduction of high-throughput screening techniques a variety of novel, so far unknown viruses have been discovered from respiratory secretions. However, the clinical significance is often difficult to determine. This review article provides an introduction to those novel viruses which have been described since the beginning of the millennium and discusses the clinical relevance in the light of current scientific evidence. The viruses covered by the present review are human metapneumovirus, human bocavirus, human coronaviruses OC43, 229E, NL63, HKU1, SARS and MERS, human polyomaviruses KI, MC and WU and human parechoviruses.
Collapse
Affiliation(s)
- F.C. Ringshausen
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Deutschland
| | - G.G.U. Rohde
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
6
|
Horváth KB, Pankovics P, Battyáni Z, Kálmán E, Reuter G. [A probable etiological role of Merkel cell polyomavirus in the development of Merkel cell carcinoma]. Orv Hetil 2013; 154:102-12. [PMID: 23315225 DOI: 10.1556/oh.2013.29525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Approximately 20% of the tumours in humans are associated with contagious viral agents. Merkel cell carcinoma is a rare and highly aggressive tumour which may originate from the epidermal stratum basale, although the origin is still controversial. This tumour is most commonly found in elderly and immunocompromised patients in sun exposed areas, especially in the head and neck regions. Merkel cell carcinoma often causes a diagnostic challenge with a dramatically increasing incidence. In 2008, a DNA tumour virus, a polyomavirus (Merkel cell polyomavirus) was detected in Merkel cell carcinomas, and this finding helped to understand the etiological background of the disease. The infectious - probably viral - etiology resulted in a paradigm shift in pathogenesis and, hopefully, in therapy as well. This review summarizes the current knowledge related to Merkel cell carcinoma and the first oncogenic human polyomavirus, the Merkel cell polyomavirus, to promote the clinical adaptation of the information.
Collapse
Affiliation(s)
- Katalin Barbara Horváth
- Állami Népegészségügyi és Tisztiorvosi Szolgálat Dél-dunántúli Regionális Intézete Regionális Virológiai Laboratórium, Gastroenteralis Vírusok Nemzeti Referencialaboratóriuma Pécs Szabadság u, Általáno Orvostudományi Kar
| | | | | | | | | |
Collapse
|
7
|
Topalis D, Andrei G, Snoeck R. The large tumor antigen: a "Swiss Army knife" protein possessing the functions required for the polyomavirus life cycle. Antiviral Res 2012. [PMID: 23201316 DOI: 10.1016/j.antiviral.2012.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The SV40 large tumor antigen (L-Tag) is involved in the replication and cell transformation processes that take place during the polyomavirus life cycle. The ability of the L-Tag to interact with and to inactivate the tumor suppressor proteins p53 and pRb, makes this polyfunctional protein an interesting target in the search for compounds with antiviral and/or antiproliferative activities designed for the management of polyomavirus-associated diseases. The severe diseases caused by polyomaviruses, mainly in immunocompromised hosts, and the absence of licensed treatments, make the discovery of new antipolyomavirus drugs urgent. Parallels can be made between the SV40 L-Tag and the human papillomavirus (HPV) oncoproteins (E6 and E7) as they are also able to deregulate the cell cycle in order to promote cell transformation and its maintenance. In this review, a presentation of the SV40 L-Tag characteristics, regarding viral replication and cellular transformation, will show how similar these two processes are between the polyoma- and papillomavirus families. Insights at the molecular level will highlight similarities in the binding of polyoma- and papillomavirus replicative helicases to the viral DNA and in their disruptions of the p53 and pRb tumor suppressor proteins.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, KU Leuven, Belgium.
| | | | | |
Collapse
|