1
|
KI and WU Polyomaviruses: Seroprevalence Study and DNA Prevalence in SARS-CoV-2 RNA Positive and Negative Respiratory Samples. Microorganisms 2022; 10:microorganisms10040752. [PMID: 35456801 PMCID: PMC9031565 DOI: 10.3390/microorganisms10040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to study the possible co-infection of KI and WU polyomavirus (KIPyV and WUPyV, respectively) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory samples and to detect the seroprevalence of KIPyV and WUPyV. A total of 1030 nasopharyngeal samples were analyzed from SARS-CoV-2 RNA positive (n = 680) and negative (n = 350) adults and children (age: 1 day to 94.2 years) collected from August 2020 to October 2021. KIPyV DNA was detected in two SARS-CoV-2-positive samples (2/680, 0.29%) and in three SARS-CoV-2-negative samples (3/350, 0.86%). WUPyV DNA was observed in one-one samples from both groups (1/680, 0.15% vs. 1/350, 0.29%). We did not find an association between SARS-CoV-2 and KIPyV or WUPyV infection, and we found low DNA prevalence of polyomaviruses studied after a long-term lockdown in Hungary. To exclude a geographically different distribution of these polyomaviruses, we studied the seroprevalence of KIPyV and WUPyV by enzyme-linked immunosorbent assay among children and adults (n = 692 for KIPyV and n = 705 for WUPyV). Our data confirmed that primary infections by KIPyV and WUPyV occur mainly during childhood; the overall seropositivity of adults was 93.7% and 89.2% for KIPyV and WUPyV, respectively. Based on our data, we suggest that the spread of KIPyV and WUPyV might have been restricted in Hungary by the lockdown.
Collapse
|
2
|
WU polyomavirus detection in a pediatric liver transplant recipient with interstitial pneumonitis. J Infect Chemother 2020; 27:530-532. [PMID: 33121863 DOI: 10.1016/j.jiac.2020.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022]
Abstract
The WU polyomavirus (WUPyV) was detected by real-time PCR in the sputum of a pediatric liver transplant recipient with interstitial pneumonitis. A lower viral load was observed seven months after the initial detection. The case provides circumstantial evidence suggesting a potential role for WUPyV as a respiratory pathogen in immunocompromised children.
Collapse
|
3
|
Wang C, Wei T, Huang Y, Guo Q, Xie Z, Song J, Chen A, Zheng L. Isolation and characterization of WUPyV in polarized human airway epithelial cells. BMC Infect Dis 2020; 20:488. [PMID: 32646445 PMCID: PMC7344044 DOI: 10.1186/s12879-020-05224-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Washington University polyomavirus (WUPyV) is a novel human polyomavirus detected in childwith acute respiratory infection in 2007. However, the relationship between WUPyV and respiratory diseases has yet to be established for lacking of a suitable in vitro culture system. METHODS To isolate WUPyV with human airway epithelial (HAE) cells, the positive samples were incubated in HAE, and then the nucleic acid, VP1 protein and virions were detected using real-time PCR, immunofluorescence and electron microscopy respectively. RESULTS The result showed that WUPyV could replicate effectively in HAE cells and virions with typical polyomavirus characteristics could be observed. Additionally, the entire genome sequence of the isolated strain (BJ0771) was obtained and phylogenetic analysis indicated that BJ0771 belongs to gene cluster I. CONCLUSIONS Our findings demonstrated clinical WUPyV strain was successfully isolated for the first time in the world and this will help unravel the etiology and pathogenic mechanisms of WUPyV in respiratory infection diseases.
Collapse
Affiliation(s)
- Chao Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Tianli Wei
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An St., Xi-Cheng District, Beijing, 100050, China
| | - Yiman Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Qiong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Zhiping Xie
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Jingdong Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Aijun Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China.
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China.
| |
Collapse
|
4
|
Ciotti M, Prezioso C, Pietropaolo V. An Overview On Human Polyomaviruses Biology and Related Diseases. Future Virol 2019; 14:487-501. [DOI: 10.2217/fvl-2019-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Marco Ciotti
- Laboratory of Virology Polyclinic Tor Vergata Foundation Viale Oxford 81
Rome
00133
Italy
| | - Carla Prezioso
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| | - Valeria Pietropaolo
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| |
Collapse
|
5
|
Abstract
Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients. Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts. IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.
Collapse
|
6
|
Uda K, Koyama-Wakai C, Shoji K, Iwase N, Motooka D, Nakamura S, Miyairi I. WU polyomavirus detected in children with severe respiratory failure. J Clin Virol 2018; 107:25-28. [PMID: 30114678 PMCID: PMC7106500 DOI: 10.1016/j.jcv.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
WU polyomavirus (WUPyV) was detected in 14 children with respiratory failure. Of these children, eight had a perinatal disease and three were immunocompromised. Multiplex PCR and culture were negative for other pathogens in five patients. These five patients showed perihilar infiltrates after several days of symptoms. WUPyV can be a pathogen in children with a history of perinatal disease.
Background WU polyomavirus (WUPyV) is a relatively new virus associated with respiratory infections. However, its role is unclear in children with severe respiratory failure. Objectives We aimed to evaluate the characteristics of severe respiratory failure associated with WUPyV infection in children. Study design We retrospectively reviewed cases of respiratory tract infection at a tertiary children's hospital in Japan and performed real-time polymerase chain reaction (PCR) for WUPyV using residual extracted nucleic acid samples taken from respiratory tract samples of pediatric patients primarily with respiratory failure. We investigated the clinical characteristics of patients positive for WUPyV and assessed samples positive for WUPyV for other respiratory pathogens using multiplex PCR. Results WUPyV was detected in 14 of 318 specimens of respiratory tract infections. The median age was 34 months and males were predominant (n = 11, 64%). An underlying disease was found in 11 (79%) patients including five preterm and three immunocompromised patients. The most common clinical diagnosis was pneumonia (n = 13, 93%). The majority of the samples were endotracheal tube aspirates (n = 11, 79%). Other viruses were co-detected in nine (64%) patients, while WUPyV was the only pathogen detected in five patients with a history of admission to the neonatal intensive care unit. These five patients presented with fever and cough, and perihilar infiltrates were detected on chest radiograph in several days. Conclusions WUPyV was detected in children with severe respiratory failure independently or concurrently with other pathogens. WUPyV can be a pathogen for children with a history of preterm birth or an underlying disease.
Collapse
Affiliation(s)
- Kazuhiro Uda
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
| | - Chitose Koyama-Wakai
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.
| | - Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan.
| | - Noriyasu Iwase
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0276. [PMID: 28893943 DOI: 10.1098/rstb.2016.0276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
8
|
Novel Human Polyomavirus Noncoding Control Regions Differ in Bidirectional Gene Expression according to Host Cell, Large T-Antigen Expression, and Clinically Occurring Rearrangements. J Virol 2018; 92:JVI.02231-17. [PMID: 29343574 DOI: 10.1128/jvi.02231-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Human polyomavirus (HPyV) DNA genomes contain three regions denoted the early viral gene region (EVGR), encoding the regulatory T-antigens and one microRNA, the late viral gene region (LVGR), encoding the structural Vp capsid proteins, and the noncoding control region (NCCR). The NCCR harbors the origin of viral genome replication and bidirectional promoter/enhancer functions governing EVGR and LVGR expression on opposite DNA strands. Despite principal similarities, HPyV NCCRs differ in length, sequence, and architecture. To functionally compare HPyV NCCRs, sequences from human isolates were inserted into a bidirectional reporter vector using dsRed2 for EVGR expression and green fluorescent protein (GFP) for LVGR expression. Transfecting HPyV NCCR reporter vectors into human embryonic kidney 293 (HEK293) cells and flow cytometry normalized to archetype BKPyV NCCR revealed a hierarchy of EVGR expression levels with MCPyV, HPyV12, and STLPyV NCCRs conferring stronger levels and HPyV6, HPyV9, and HPyV10 NCCRs weaker levels, while LVGR expression was less variable and showed comparable activity levels. Transfection of HEK293T cells expressing simian virus 40 (SV40) large T antigen (LTag) increased EVGR expression for most HPyV NCCRs, which correlated with the number of LTag-binding sites (Spearman's r, 0.625; P < 0.05) and decreased following SV40 LTag small interfering RNA (siRNA) knockdown. LTag-dependent activation was specifically confirmed for two different MCPyV NCCRs in 293MCT cells expressing the cognate MCPyV LTag. HPyV NCCR expression in different cell lines derived from skin (A375), cervix (HeLaNT), lung (A549), brain (Hs683), and colon (SW480) demonstrated that host cell properties significantly modulate the baseline HPyV NCCR activity, which partly synergized with SV40 LTag expression. Clinically occurring NCCR sequence rearrangements of HPyV7 PITT-1 and -2 and HPyV9 UF1 were found to increase EVGR expression compared to the respective HPyV archetype, but this was partly host cell type specific.IMPORTANCE HPyV NCCRs integrate essential viral functions with respect to host cell specificity, persistence, viral replication, and disease. Here, we show that HPyV NCCRs not only differ in sequence length, number, and position of LTag- and common transcription factor-binding sites but also confer differences in bidirectional viral gene expression. Importantly, EVGR reporter expression was significantly modulated by LTag expression and by host cell properties. Clinical sequence variants of HPyV7 and HPyV9 NCCRs containing deletions and insertions were associated with increased EVGR expression, similar to BKPyV and JCPyV rearrangements, emphasizing that HPyV NCCR sequences are major determinants not only of host cell tropism but also of pathogenicity. These results will help to define secondary HPyV cell tropism beyond HPyV surface receptors, to identify key viral and host factors shaping the viral life cycle, and to develop preclinical models of HPyV persistence and replication and suitable antiviral targets.
Collapse
|
9
|
Baez CF, Brandão Varella R, Villani S, Delbue S. Human Polyomaviruses: The Battle of Large and Small Tumor Antigens. Virology (Auckl) 2017; 8:1178122X17744785. [PMID: 29238174 PMCID: PMC5721967 DOI: 10.1177/1178122x17744785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
About 40 years ago, the large and small tumor antigens (LT-Ag and sT-Ag) of the polyomavirus (PyVs) simian vacuolating virus 40 have been identified and characterized. To date, it is well known that all the discovered human PyVs (HPyVs) encode these 2 multifunctional and tumorigenic proteins, expressed at viral replication early stage. The 2 T-Ags are able to transform cells both in vitro and in vivo and seem to play a distinct role in the pathogenesis of some tumors in humans. In addition, they are involved in viral DNA replication, transcription, and virion assembly. This short review focuses on the structural and functional features of the HPyVs’ LT-Ag and sT-Ag, with special attention to their transforming properties.
Collapse
Affiliation(s)
- Camila Freze Baez
- Department of Preventive Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| |
Collapse
|
10
|
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer with neuroendocrine features. MCC pathogenesis is associated with either the presence of Merkel cell polyomavirus or chronic exposure to ultraviolet light (UV), which can cause a characteristic pattern of multiple DNA mutations. Notably, in the Northern hemisphere, the majority of MCC cases are of viral aetiology; by contrast, in areas with high UV exposure, UV-mediated carcinogenesis is predominant. The two aetiologies share similar clinical, histopathological and prognostic characteristics. MCC presents with a solitary cutaneous or subcutaneous nodule, most frequently in sun-exposed areas. In fact, UV exposure is probably involved in both viral-mediated and non-viral-mediated carcinogenesis, by contributing to immunosuppression or DNA damage, respectively. Confirmation of diagnosis relies on analyses of histological features and immunological marker expression profiles of the lesion. At primary diagnosis, loco-regional metastases are already present in ∼30% of patients. Excision of the tumour is the first-line therapy; if not feasible, radiotherapy can often effectively control the disease. Chemotherapy was the only alternative in advanced-stage or refractory MCC until several clinical trials demonstrated the efficacy of immune-checkpoint inhibitors.
Collapse
|
11
|
Besch-Williford C, Pesavento P, Hamilton S, Bauer B, Kapusinszky B, Phan T, Delwart E, Livingston R, Cushing S, Watanabe R, Levin S, Berger D, Myles M. A Naturally Transmitted Epitheliotropic Polyomavirus Pathogenic in Immunodeficient Rats: Characterization, Transmission, and Preliminary Epidemiologic Studies. Toxicol Pathol 2017; 45:593-603. [PMID: 28782456 DOI: 10.1177/0192623317723541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the identification, pathogenesis, and transmission of a novel polyomavirus in severe combined immunodeficient F344 rats with null Prkdc and interleukin 2 receptor gamma genes. Infected rats experienced weight loss, decreased fecundity, and mortality. Large basophilic intranuclear inclusions were observed in epithelium of the respiratory tract, salivary and lacrimal glands, uterus, and prostate gland. Unbiased viral metagenomic sequencing of lesioned tissues identified a novel polyomavirus, provisionally named Rattus norvegicus polyomavirus 2 (RatPyV2), which clustered with Washington University (WU) polyomavirus in the Wuki clade of the Betapolyomavirus genus. In situ hybridization analyses and quantitative polymerase chain reaction (PCR) results demonstrated viral nucleic acids in epithelium of respiratory, glandular, and reproductive tissues. Polyomaviral disease was reproduced in Foxn1rnu nude rats cohoused with infected rats or experimentally inoculated with virus. After development of RatPyV2-specific diagnostic assays, a survey of immune-competent rats from North American research institutions revealed detection of RatPyV2 in 7 of 1,000 fecal samples by PCR and anti-RatPyV2 antibodies in 480 of 1,500 serum samples. These findings suggest widespread infection in laboratory rat populations, which may have profound implications for established models of respiratory injury. Additionally, RatPyV2 infection studies may provide an important system to investigate the pathogenesis of WU polyomavirus diseases of man.
Collapse
Affiliation(s)
| | - Patricia Pesavento
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Beth Bauer
- 1 IDEXX BioResearch, Columbia, Missouri, USA
| | - Beatrix Kapusinszky
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Tung Phan
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Eric Delwart
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | - Rie Watanabe
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Stephen Levin
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | - Diana Berger
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
12
|
Dela Cruz FN, Li L, Delwart E, Pesavento PA. A novel pulmonary polyomavirus in alpacas (Vicugna pacos). Vet Microbiol 2017; 201:49-55. [PMID: 28284622 DOI: 10.1016/j.vetmic.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Viral metagenomic analysis detected a novel polyomavirus in a 6-month old female alpaca (Vicugna pacos) euthanized after a diagnosis of disseminated lymphosarcoma. The viral genome was fully sequenced, found to be similar to other polyomaviruses in gene architecture and provisionally named Alpaca polyomavirus or AlPyV. Viral nucleic acid was detected by PCR in venous blood, spleen, thymus, and lung. AlPyV phylogenetically clustered in the "Wuki" group of PyVs, which includes WU and KI polyomaviruses, commonly found in human respiratory samples. In an ISH analysis of 17 alpaca necropsies, 7 had detectable virus within the lung. In animals without pneumonia, probe hybridization was restricted to the nuclei of scattered individual bronchiolar epithelial cells. Three of the ISH positive alpacas had interstitial pneumonia of unknown origin, and in these animals there was viral nucleic acid detected in bronchiolar epithelium, type II pneumocytes, and alveolar macrophages. The pattern of AlPyV distribution is consistent with a persistent respiratory virus that has a possible role in respiratory disease.
Collapse
Affiliation(s)
- Florante N Dela Cruz
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Linlin Li
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - P A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Identification and Characterization of Novel Rat Polyomavirus 2 in a Colony of X-SCID Rats by P-PIT assay. mSphere 2016; 1:mSphere00334-16. [PMID: 28028546 PMCID: PMC5177731 DOI: 10.1128/msphere.00334-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies. Polyomaviruses (PyVs) are known to infect a wide range of vertebrates and invertebrates and are associated with a broad spectrum of diseases, including cancers, particularly in immune-suppressed hosts. A novel polyomavirus, designated rat polyomavirus 2 (RatPyV2), was identified from a breeding colony of rats having X-linked severe combined immunodeficiency. Using a human panpolyomavirus immunohistochemistry test (P-PIT), RatPyV2 was initially detected in the parotid salivary gland of a colony member. Rolling circle amplification using DNA from harderian and parotid glands identified a novel 5.1-kb polyomavirus genome closely related to human Washington University (WU) and Karolinska Institute (KI) and vole polyomaviruses but notably divergent from Rattus norvegicus PyV1 (RnorPyV1; also designated RatPyV1). Further screening showed RatPyV2 inclusion body infection in the lung epithelium and variably in other respiratory, reproductive, and glandular tissues of 12/12 (100%) rats. IMPORTANCE Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies.
Collapse
|
14
|
Siebrasse EA, Nguyen NL, Willby MJ, Erdman DD, Menegus MA, Wang D. Multiorgan WU Polyomavirus Infection in Bone Marrow Transplant Recipient. Emerg Infect Dis 2016; 22:24-31. [PMID: 26691850 PMCID: PMC4696717 DOI: 10.3201/eid2201.151384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Virus was detected in the lung and trachea of a deceased patient. WU polyomavirus (WUPyV) was detected in a bone marrow transplant recipient with severe acute respiratory distress syndrome who died in 2001. Crystalline lattices of polyomavirus-like particles were observed in the patient’s lung by electron microscopy. WUPyV was detected in the lung and other tissues by real-time quantitative PCR and identified in the lung and trachea by immunohistochemistry. A subset of WUPyV-positive cells in the lung had morphologic features of macrophages. Although the role of WUPyV as a human pathogen remains unclear, these results clearly demonstrate evidence for infection of respiratory tract tissues in this patient.
Collapse
|
15
|
Abstract
Mammalian polyomaviruses are characterized by establishing persistent infections in healthy hosts and generally causing clinical disease only in hosts whose immune systems are compromised. Despite the fact that these viruses were discovered decades ago, our knowledge of the mechanisms that govern viral persistence and reactivation is limited. Whereas mouse polyomavirus has been studied in a fair amount of detail, our understanding of the human viruses in particular is mostly inferred from experiments aimed at addressing other questions. In this review, we summarize the state of our current knowledge, draw conclusions when possible, and suggest areas that are in need of further study.
Collapse
Affiliation(s)
- Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109;
| | - Mengxi Jiang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
16
|
Abstract
Elevated serum IgE has many etiologies including parasitic infection, allergy and asthma, malignancy, and immune dysregulation. The hyper-IgE syndromes caused by mutations in STAT3, DOCK8, and PGM3 are monogenic primary immunodeficiencies associated with high IgE, eczema, and recurrent infections. These primary immunodeficiencies are associated with recurrent pneumonias leading to bronchiectasis; however, each has unique features and genetic diagnosis is essential in guiding therapy, discussing family planning, and defining prognosis. This article discusses the clinical features of these primary immunodeficiencies with a particular focus on the pulmonary manifestations and discussion of the genetics, pathogenesis, and approaches to therapy.
Collapse
Affiliation(s)
- Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, NIAID, NHLBI, National Institutes of Health, Bethesda, MD, USA.
| | - Kenneth N Olivier
- Laboratory of Clinical Infectious Diseases, NIAID, NHLBI, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TFF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A. The Ancient Evolutionary History of Polyomaviruses. PLoS Pathog 2016; 12:e1005574. [PMID: 27093155 PMCID: PMC4836724 DOI: 10.1371/journal.ppat.1005574] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. Polyomaviruses are a family of DNA-based viruses that are known to infect various terrestrial vertebrates, including humans. In this report, we describe our discovery of highly divergent polyomaviruses associated with various marine fish. Searches of public deep sequencing databases unexpectedly revealed the existence of polyomavirus-like sequences in scorpion and spider datasets. Our analysis of these new sequences suggests that polyomaviruses have slowly co-evolved with individual host animal lineages through an established mechanism known as intrahost divergence. The proposed model is similar to the mechanisms through with other DNA viruses, such as papillomaviruses, are thought to have evolved. Our analysis also suggests that distantly related polyomaviruses sometimes recombine to produce new chimeric lineages. We propose a possible taxonomic scheme that can account for these inferred ancient recombination events.
Collapse
Affiliation(s)
- Christopher B. Buck
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | | | - Alberto Peretti
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Eileen M. Geoghegan
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Tisza
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua P. Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison A. McBride
- Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Alvin C. Camus
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Alexa J. McDermott
- Animal Health Department, Georgia Aquarium, Inc., Atlanta, Georgia, United States of America
| | - Jennifer A. Dill
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Terry F. F. Ng
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Diana V. Pastrana
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
18
|
Toptan T, Yousem SA, Ho J, Matsushima Y, Stabile LP, Fernández-Figueras MT, Bhargava R, Ryo A, Moore PS, Chang Y. Survey for human polyomaviruses in cancer. JCI Insight 2016; 1. [PMID: 27034991 DOI: 10.1172/jci.insight.85562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past 8 years, the discovery of 11 new human polyomaviruses (HPyVs) has revived interest in this DNA tumor virus family. Although HPyV infection is widespread and largely asymptomatic, one of these HPyVs, Merkel cell polyomavirus (MCV), is a bona fide human tumor virus. JC virus (JCV), BK virus, HPyV7, and trichodysplasia-spinulosa virus (TSV) can cause nonneoplastic diseases in the setting of immunosuppression. Few specific reagents are available to study the biology of the newly discovered HPyVs. We developed a pan-HPyV-screening method using a cocktail of 3 antibodies that, when combined, recognize T antigen proteins of all HPyVs. We validated detection characteristics of the antibody cocktail by immunoblotting and immunohistochemistry and screened 1,184 cases, including well-defined diseases and tumor tissue microarrays. This assay robustly detected MCV, TSV, JCV, and HPyV7 in etiologically related diseases. We further identified WU polyomavirus in a case of chronic lymphocytic lymphoma-associated bronchitis. Except for scattered, incidentally infected cells in 5% of lung squamous cell carcinomas and colon adenocarcinomas, a broad panel of tumor tissues was largely negative for infection by any HPyV. This method eliminates known HPyVs as suspected causes of cancers investigated in this study. Pan-HPyV survey can be applied to identify diseases associated with recently discovered polyomaviruses.
Collapse
Affiliation(s)
- Tuna Toptan
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Samuel A Yousem
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kanagawa, Japan
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Rohit Bhargava
- Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| |
Collapse
|