1
|
Padonou GG, Konkon AK, Salako AS, Zoungbédji DM, Ossè R, Sovi A, Azondekon R, Sidick A, Ahouandjinou JM, Adoha CJ, Sominahouin AA, Tokponnon FT, Akinro B, Sina H, Baba-Moussa L, Akogbéto MC. Distribution and Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Benin, West Africa. Trop Med Infect Dis 2023; 8:439. [PMID: 37755900 PMCID: PMC10535150 DOI: 10.3390/tropicalmed8090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Updated information on the distribution and abundance of Aedes aegypti and Aedes albopictus is crucial to prepare African countries, such as Benin, for possible arboviral disease outbreaks. This study aims to evaluate the geographical distribution, abundance and biting behaviour of these two vectors in Benin. Three sampling techniques were used in this study. The collection of Aedes spp. adults were made through human landing catch (HLC), immatures were captured with the use of ovitraps, and a dipping technique was used for the collection of Aedes spp. in 23 communes located along the North-South and East-West transect of Benin. Adult Aedes mosquitoes were collected indoors and outdoors using HLC. Mosquito eggs, larvae and pupae were collected from containers and ovitraps. The adult mosquitoes were morphologically identified, then confirmed using a polymerase chain reaction (PCR). Overall, 12,424 adult specimens of Aedes spp. were collected, out of which 76.53% (n = 9508) and 19.32% (n = 2400) were morphologically identified as Ae. aegypti and Ae. albopictus, respectively. Geographically, Ae. aegypti was found across the North-South transect unlike Ae. albopictus, which was only encountered in the southern part of the country, with a great preponderance in Avrankou. Furthermore, an exophagic behaviour was observed in both vectors. This updated distribution of Aedes mosquito species in Benin will help to accurately identify areas that are at risk of arboviral diseases and better plan for future vector control interventions.
Collapse
Affiliation(s)
- Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Albert Sourou Salako
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- École de Gestion et d’Exploitation des Systèmes d’Élevage, Université Nationale d’Agriculture de Porto-Novo, Porto-Novo 01 BP 55, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Faculty of Agronomy, University of Parakou, Parakou BP 123, Benin
- Faculty of Infectious and Tropical Diseases, Disease Control Department, The London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Roseric Azondekon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Juvénal Minassou Ahouandjinou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Constantin Jesukèdè Adoha
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - André Aimé Sominahouin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Filémon Tatchémè Tokponnon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Martin Codjo Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| |
Collapse
|
2
|
Konkon AK, Padonou GG, Osse R, Salako AS, Zoungbédji DM, Sina H, Sovi A, Tokponnon F, Aïkpon R, Noukpo H, Baba-Moussa L, Akogbéto MC. Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in southern Benin, West Africa. Trop Med Health 2023; 51:22. [PMID: 37085936 PMCID: PMC10122308 DOI: 10.1186/s41182-023-00514-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The emergence of insecticide resistance in Aedes mosquitoes could undermine efforts to control arboviruses. The present study aims to assess in some communes of Southern Benin, the susceptibility level of Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) to insecticides commonly used in public health, as well as mechanisms involved. METHODS Females Ae. albopictus and Ae. aegypti collected in Ifangni, Porto-Novo, Avrankou, Adjarra and Kétou from June 2021 to October 2022, were exposed to: deltamethrin 0.05%, permethrin 0.75%, alpha-cypermethrin 0.05%, pirimiphos methyl 0.25% and bendiocarb 0.1%, following the standard WHO susceptibility tube test protocol. In some sites, pre-exposure to the synergist PBO was used to verify if pyrethroid resistance of populations of Aedes was mediated by oxidases. RESULTS Full susceptibility to deltamethrin and permethrin was observed in all tested populations of Ae. albopictus. However, with alphacypermethrin, a suspected resistance was observed in Adjarra (94.67%), Ifangni (93%) and Porto-Novo (94%), and a resistance in Avrankou (83%). The PBO-alphacypermethrin tests performed, led to a full susceptibility (100%) in all four sites, which confirms the full involvement of oxidases in resistance of all tested populations of Ae. albopictus to alphacypermethrin. At the opposite, Aedes aegypti was either resistant or suspected of being resistant to all tested pyrethroids in all four sites, except in Ifangni where a full susceptibility to alphacypermethrin was observed. The full susceptibility of Ae. aegypti to bendiocarb and pirimiphos-methyl in all communes suggests that these two insecticides can be good candidates for an effective control of pyrethroid-resistant Aedes vector populations. Use of permethrin and deltamethrin could also be considered for controlling populations of Ae. albopictus. CONCLUSION Results of the present study will help guide strategy to implement for an effective control of Aedes vector populations in Benin.
Collapse
Affiliation(s)
- Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- École de Gestion et d’exploitation des Systèmes d’élevage de l’Université Nationale d’Agriculture de Porto-Novo, Porto-Novo, Benin
| | | | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Haziz Sina
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Department of Biochemistry and Cellular Biology, Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculty of Agronomy, University of Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Filemon Tokponnon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Rock Aïkpon
- Ministère de la Santé, 08 BP 882, Cotonou, Benin
- Université Nationale des Sciences, Technologies, Ingénierie Et Mathématiques (UNSTIM), Abomey, Benin
| | - Herbert Noukpo
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Lamine Baba-Moussa
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Department of Biochemistry and Cellular Biology, Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | | |
Collapse
|
3
|
Tajudeen YA, Oladunjoye IO, Mustapha MO, Mustapha ST, Ajide-Bamigboye NT. Tackling the global health threat of arboviruses: An appraisal of the three holistic approaches to health. Health Promot Perspect 2021; 11:371-381. [PMID: 35079581 PMCID: PMC8767080 DOI: 10.34172/hpp.2021.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The rapid circulation of arboviruses in the human population has been linked with changes in climatic, environmental, and socio-economic conditions. These changes are known to alter the transmission cycles of arboviruses involving the anthropophilic vectors and thus facilitate an extensive geographical distribution of medically important arboviral diseases, thereby posing a significant health threat. Using our current understanding and assessment of relevant literature, this review aimed to understand the underlying factors promoting the spread of arboviruses and how the three most renowned interdisciplinary and holistic approaches to health such as One Health, Eco-Health, and Planetary Health can be a panacea for control of arboviruses. Methods: A comprehensive structured search of relevant databases such as Medline, PubMed, WHO, Scopus, Science Direct, DOAJ, AJOL, and Google Scholar was conducted to identify recent articles on arboviruses and holistic approaches to health using the keywords including "arboviral diseases", "arbovirus vectors", "arboviral infections", "epidemiology of arboviruses", "holistic approaches", "One Health", "Eco-Health", and "Planetary Health". Results: Changes in climatic factors like temperature, humidity, and precipitation support the growth, breeding, and fecundity of arthropod vectors transmitting the arboviral diseases. Increased human migration and urbanization due to socio-economic factors play an important role in population increase leading to the rapid geographical distribution of arthropod vectors and transmission of arboviral diseases. Medical factors like misdiagnosis and misclassification also contribute to the spread of arboviruses. Conclusion: This review highlights two important findings: First, climatic, environmental, socio-economic, and medical factors influence the constant distributions of arthropod vectors. Second, either of the three holistic approaches or a combination of any two can be adopted on arboviral disease control. Our findings underline the need for holistic approaches as the best strategy to mitigating and controlling the emerging and reemerging arboviruses.
Collapse
|
4
|
Simo Tchetgna H, Sado Yousseu F, Kamgang B, Tedjou A, McCall PJ, Wondji CS. Concurrent circulation of dengue serotype 1, 2 and 3 among acute febrile patients in Cameroon. PLoS Negl Trop Dis 2021; 15:e0009860. [PMID: 34695135 PMCID: PMC8568189 DOI: 10.1371/journal.pntd.0009860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/04/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections using real time RT-PCR on fragments of the 5’ and 3’ UTR genomic regions. In total, 12.8% (41/320) of cases examined were positive for dengue. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. Phylogenetic analysis of the envelope gene identified DENV-1 as belonging to genotype V, DENV-2 to genotype II and DENV-3 to genotype III. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region. Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections by Polymerase chain reaction. In total, 12.8% (41/320) of cases examined were infected by dengue virus. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region.
Collapse
Affiliation(s)
| | - Francine Sado Yousseu
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- University of Buéa, Buéa, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Armel Tedjou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | - Philip J. McCall
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
5
|
Namountougou M, Soma DD, Balboné M, Kaboré DA, Kientega M, Hien A, Coulibaly A, Ouattara PE, Meda BG, Drabo S, Koala L, Nignan C, Kagoné T, Diabaté A, Fournet F, Gnankiné O, Dabiré RK. Monitoring Insecticide Susceptibility in Aedes Aegypti Populations from the Two Biggest Cities, Ouagadougou and Bobo-Dioulasso, in Burkina Faso: Implication of Metabolic Resistance. Trop Med Infect Dis 2020; 5:E84. [PMID: 32471266 PMCID: PMC7345320 DOI: 10.3390/tropicalmed5020084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
In West Africa, Aedes aegypti remains the major vector of dengue virus. Since 2013, dengue fever has been reemerging in Burkina Faso with annual outbreaks, thus becoming a major public health problem. Its control relies on vector control, which is unfortunately facing the problem of insecticide resistance. At the time of this study, although data on phenotypic resistance were available, information related to the metabolic resistance in Aedes populations from Burkina Faso remained very scarce. Here, we assessed the phenotypic and the metabolic resistance of Ae. aegypti populations sampled from the two main urban areas (Ouagadougou and Bobo-Dioulasso) of Burkina Faso. Insecticide susceptibility bioassays to chlorpyriphos-methyl 0.4%, bendiocarb 0.1% and deltamethrin 0.05% were performed on natural populations of Ae. aegypti using the WHO protocol. The activity of enzymes involved in the rapid detoxification of insecticides, especially non-specific esterases, oxidases (cytochrome P450) and glutathione-S-transferases, was measured on individual mosquitos. The mortality rates for deltamethrin 0.05% were low and ranged from 20.72% to 89.62% in the Bobo-Dioulasso and Ouagadougou sites, respectively. When bendiocarb 0.1% was tested, the mortality rates ranged from 7.73% to 71.23%. Interestingly, in the two urban areas, mosquitoes were found to be fully susceptible to chlorpyriphos-methyl 0.4%. Elevated activity of non-specific esterases and glutathione-S-transferases was reported, suggesting multiple resistance mechanisms involved in Ae. aegypti populations from Bobo-Dioulasso and Ouagadougou (including cytochrome P450). This update to the insecticide resistance status within Ae. aegypti populations in the two biggest cities is important to better plan dengue vectors control in the country and provides valuable information for improving vector control strategies in Burkina Faso, West Africa.
Collapse
Affiliation(s)
- Moussa Namountougou
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
- Institut Supérieur des Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso BP 1091, Burkina Faso
| | - Dieudonné Diloma Soma
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
- Institut Supérieur des Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso BP 1091, Burkina Faso
| | - Mahamoudou Balboné
- Département de Biologie et de Physiologie Animales, Université Joseph Ki-Zerbo, Ouagadougou BP 7021, Burkina Faso; (M.B.); (S.D.); (O.G.)
| | - Didier Alexandre Kaboré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Aristide Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Ahmed Coulibaly
- Unité de Formation et de Recherche en Sciences et Techniques, Université Norbert Zongo, Koudougou BP 376, Burkina Faso;
| | - Parfait Eric Ouattara
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Benson Georges Meda
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Samuel Drabo
- Département de Biologie et de Physiologie Animales, Université Joseph Ki-Zerbo, Ouagadougou BP 7021, Burkina Faso; (M.B.); (S.D.); (O.G.)
| | - Lassane Koala
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Charles Nignan
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Thérèse Kagoné
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Florence Fournet
- Maladies Infectieuses et Vecteurs: Écologie et Contrôle (MIVEGEC), Univ Montpellier, CNRS, IRD, 34394 Montpellier, France;
| | - Olivier Gnankiné
- Département de Biologie et de Physiologie Animales, Université Joseph Ki-Zerbo, Ouagadougou BP 7021, Burkina Faso; (M.B.); (S.D.); (O.G.)
| | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP 545, Burkina Faso; (D.D.S.); (D.A.K.); (M.K.); (A.H.); (P.E.O.); (B.G.M.); (L.K.); (C.N.); (A.D.)
- Département des Sciences Biomédicales, Centre Muraz, Bobo-Dioulasso BP 390, Burkina Faso;
| |
Collapse
|
6
|
Padonou GG, Ossè R, Salako AS, Aikpon R, Sovi A, Kpanou C, Sagbohan H, Akadiri Y, Lamine BM, Akogbeto MC. Entomological assessment of the risk of dengue outbreak in Abomey-Calavi Commune, Benin. Trop Med Health 2020; 48:20. [PMID: 32308531 PMCID: PMC7147049 DOI: 10.1186/s41182-020-00207-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background In May 2019, a confirmed dengue fever case was detected at the local hospital of Abomey-Calavi Commune in southern Benin. In Benin, there remains a dearth of literature concerning the distribution and biology of Aedes aegypti, the principal vector of dengue fever. This study was initiated by the Ministry of Health to partially fill this gap. The findings allowed us to assess the arboviral transmission risk incurred by the population of Abomey-Calavi to support programmatic decision-making. Methods Entomological assessments were conducted in 5% of the houses, meaning 314 houses selected from 11 boroughs in Abomey-Calavi Centre district and 9 villages in Hêvié district. The surveyed breeding sites were water containers located in (domestic) and around (peri-domestic) the dwellings. When a container was positive (housing larvae), a portion of the immature population was sampled with a larval dipper and poured into labeled jars. Immatures were then reared to adulthood at the Centre de Recheche Entomologique de Cotonou (CREC) insectary. Adult mosquitoes were morphologically identified to species level by site and, a subsample of the collected Ae. aegypti mosquitoes were used for WHO susceptibility tube tests. Results Of the 1372 adult Aedes specimens which emerged from the collected larvae and pupae, 1356 Ae. aegypti (98.83%), 10 Ae. luteocephalus, and 4 Ae. vittatus were identified. The Breteau indices were 160.2 in Abomey-Calavi Centre and 150 in Hêvié, whereas the House indices were 58.5% and 61.6% in the respective districts. WHO insecticide susceptibility tube tests showed that the mortality rates were 38.71% in Abomey-Calavi Centre and 85.71% in Hêvié for permethrin, and 72.22% in Abomey-Calavi Centre and 100% in Hêvié for deltamethrin. Conclusion The two districts were highly infested by Ae. aegypti whose breeding sites were mostly man-made. Considering this, human behavioral change to substantially reduce the number of larval habitats is necessary to control the vector populations. As Aedes mosquitoes are day biters, the use of repellents such as ointments and smoke coils can also be useful.
Collapse
Affiliation(s)
- Germain Gil Padonou
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin.,7Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Razaki Ossè
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin.,Université Nationale d'Agriculture, Porto-Novo, Bénin
| | - Albert Sourou Salako
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin.,3Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Rock Aikpon
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin.,Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey, Bénin
| | - Arthur Sovi
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin.,5Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin.,6Disease Control Department, Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Casimir Kpanou
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin.,3Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Hermann Sagbohan
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin.,3Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Yessoufou Akadiri
- 3Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Baba-Moussa Lamine
- 7Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Martin C Akogbeto
- 1Centre de Recherche entomologique de Cotonou (CREC), Cotonou, Benin
| |
Collapse
|
7
|
Tchuandom SB, Tchadji JC, Tchouangueu TF, Biloa MZ, Atabonkeng EP, Fumba MIM, Massom ES, Nchinda G, Kuiate JR. A cross-sectional study of acute dengue infection in paediatric clinics in Cameroon. BMC Public Health 2019; 19:958. [PMID: 31319834 PMCID: PMC6637490 DOI: 10.1186/s12889-019-7252-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/28/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dengue fever is the world's fastest spreading mosquito borne viral infection. It is prevalent throughout both subtropical and tropical region, and affects over 128 countries. Dengue virus (DENV) infection poses a serious global public health challenge to three billion people, resulting in approximately 200 million cases of morbidity and 50,000 cases of mortality annually. In Cameroon like in most sub-Saharan African countries, DENV infection occur concurrently with other infectious diseases whose symptoms often overlap, rendering differential diagnosis challenging. This study aims at determining the frequency of acute dengue among febrile children under 15 years attending hospitals in some areas of Cameroon. METHODS A total of 961 children under the age of 15 were recruited in a cross-sectional study using systematic sampling technique and by selecting each subject out of the three. The study was conducted in 10 public health centers in Cameroon. Demographic data and risk factors of the subjects were obtained using well-structured questionnaires. Dengue virus NS1 antigen, IgM and IgG were analysed using a Tell me fast® Combo Dengue NS1-IgG/IgM Rapid Test. An in-house ELISA test for dengue specific IgM antibody was equally performed for confirmation. Descriptive statistical analysis was performed using Graph pad version 6.0. RESULTS A prevalence of 6.14% acute dengue virus infection was observed among children with febrile illness with a significant difference (p = 0.0488) between males (4.7%) and females (7.7%). In addition, children who reportedly were unprotected from vectors, showed a comparatively higher prevalence of the disease seropositivity than those practicing protective measures. CONCLUSION DENV infection therefore is an important cause of fever among children in Cameroon. Thus, there is a need to include differential screening for DENV infections as a tool in the management of fever in children in the country.
Collapse
Affiliation(s)
- Salomon Bonsi Tchuandom
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
- Public School of Medical Laboratory Technicians, Yaoundé, Cameroon
| | - Jules Colince Tchadji
- Laboratory of Vaccinology/Biobanking, CIRCB, Melen Yaoundé, Cameroon
- Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Thibau Flaurant Tchouangueu
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
- Laboratory of Vaccinology/Biobanking, CIRCB, Melen Yaoundé, Cameroon
| | | | | | | | | | - Godwin Nchinda
- Laboratory of Vaccinology/Biobanking, CIRCB, Melen Yaoundé, Cameroon
| | | |
Collapse
|
8
|
Emerging souvenirs-clinical presentation of the returning traveller with imported arbovirus infections in Europe. Clin Microbiol Infect 2018; 24:240-245. [PMID: 29339224 DOI: 10.1016/j.cmi.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Arboviruses are an emerging group of viruses that are causing increasing health concerns globally, including in Europe. Clinical presentation usually consists of a nonspecific febrile illness that may be accompanied by rash, arthralgia and arthritis, with or without neurological or haemorrhagic syndromes. The range of differential diagnoses of other infectious and noninfectious aetiologies is broad, presenting a challenge for physicians. While knowledge of the geographical distribution of pathogens and the current epidemiological situation, incubation periods, exposure risk factors and vaccination history can help guide the diagnostic approach, the nonspecific and variable clinical presentation can delay final diagnosis. AIMS AND SOURCES This narrative review aims to summarize the main clinical and laboratory-based findings of the three most common imported arboviruses in Europe. Evidence is extracted from published literature and clinical expertise of European arbovirus experts. CONTENT We present three cases that highlight similarities and differences between some of the most common travel-related arboviruses imported to Europe. These include a patient with chikungunya virus infection presenting in Greece, a case of dengue fever in Turkey and a travel-related case of Zika virus infection in Romania. IMPLICATIONS Early diagnosis of travel-imported cases is important to reduce the risk of localized outbreaks of tropical arboviruses such as dengue and chikungunya and the risk of local transmission from body fluids or vertical transmission. Given the global relevance of arboviruses and the continuous risk of (re)emerging arbovirus events, clinicians should be aware of the clinical syndromes of arbovirus fevers and the potential pitfalls in diagnosis.
Collapse
|
9
|
Ren H, Zheng L, Li Q, Yuan W, Lu L. Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121518. [PMID: 29211001 PMCID: PMC5750936 DOI: 10.3390/ijerph14121518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Dengue fever (DF) is a common and rapidly spreading vector-borne viral disease in tropical and subtropical regions. In recent years, this imported disease has posed an increasing threat to public health in China, especially in many southern cities. Although the severity of DF outbreaks in these cities is generally associated with known risk factors at various administrative levels, spatial heterogeneities of these associations remain little understood on a finer scale. In this study, the neighboring Guangzhou and Foshan (GF) cities were considered as a joint area for characterizing the spatial variations in the 2014 DF epidemic at various grid levels from 1 × 1 km2 to 6 × 6 km2. On an appropriate scale, geographically weighted regression (GWR) models were employed to interpret the influences of socioeconomic and environmental factors on this epidemic across the GF area. DF transmissions in Guangzhou and Foshan cities presented synchronous temporal changes and spatial expansions during the main epidemic months. Across the GF area, this epidemic was obviously spatially featured at various grid levels, especially on the 2 × 2 km2 scale. Its spatial variations were relatively sufficiently explained by population size, road density, and economic status integrated in the GWR model with the lowest Akaike Information Criterion (AICc = 5227.97) and highest adjusted R square (0.732) values. These results indicated that these three socioeconomic factors acted as geographical determinants of spatial variability of the 2014 DF epidemic across the joint GF area, although some other potential factors should be added to improve the explaining the spatial variations in the central zones. This work improves our understanding of the effects of socioeconomic conditions on the spatial variations in this epidemic and helps local hygienic authorities to make targeted joint interventions for preventing and controlling this epidemic across the GF area.
Collapse
Affiliation(s)
- Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lan Zheng
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China.
| | - Qiaoxuan Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
- College of Geographical Science, Fujian Normal University, Fuzhou 350007, China.
| | - Wu Yuan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Liang Lu
- Department of Vector Biology and Control, Natural Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
10
|
The dengue preface to endemic in mainland China: the historical largest outbreak by Aedes albopictus in Guangzhou, 2014. Infect Dis Poverty 2017; 6:148. [PMID: 28934991 PMCID: PMC5609019 DOI: 10.1186/s40249-017-0352-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/17/2017] [Indexed: 01/24/2023] Open
Abstract
Background Dengue was regarded as a mild epidemic in mainland China transmitted by Aedes albopictus. However, the 2014 record-breaking outbreak in Guangzhou could change the situation. In order to provide an early warning of epidemic trends and provide evidence for prevention and control strategies, we seek to characterize the 2014 outbreak through application of detailed cases and entomological data, as well as phylogenetic analysis of viral envelope (E) gene. Methods We used case survey data identified through the Notifiable Infectious Disease Report System, entomological surveillance and population serosurvey, along with laboratory testing for IgM/IgG, NS1, and isolation of viral samples followed by E gene sequencing and phylogenetic analysis to examine the epidemiological and molecular characteristics of the outbreak. Results The 2014 dengue outbreak in Guangzhou accounted for nearly 80% of total reported cases that year in mainland China; a total of 37,376 cases including 37,340 indigenous cases with incidence rate 2908.3 per million and 36 imported cases were reported in Guangzhou, with 14,055 hospitalized and 5 deaths. The epidemic lasted for 193 days from June 11 to December 21, with the highest incidence observed in domestic workers, the unemployed and retirees. The inapparent infection rate was 18.00% (135/750). In total, 96 dengue virus 1 (DENV-1) and 11 dengue virus 2 (DENV-2) strains were isolated. Phylogenetic analysis indicated that the DENV-1 strains were divided into genotype I and V, similar to the strains isolated in Guangzhou and Dongguan in 2013. The DENV-2 strains isolated were similar to those imported from Thailand on May 11 in 2014 and that imported from Indonesia in 2012. Conclusions The 2014 dengue epidemic was confirmed to be the first co-circulation of DENV-1 and DENV-2 in Guangzhou. The DENV-1 strain was endemic, while the DENV-2 strain was imported, being efficiently transmitted by the Aedes albopictus vector species at levels as high as Aedes aegypti. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0352-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Neumayr A, Muñoz J, Schunk M, Bottieau E, Cramer J, Calleri G, López-Vélez R, Angheben A, Zoller T, Visser L, Serre-Delcor N, Genton B, Castelli F, Van Esbroeck M, Matteelli A, Rochat L, Sulleiro E, Kurth F, Gobbi F, Norman F, Torta I, Clerinx J, Poluda D, Martinez M, Calvo-Cano A, Sanchez-Seco MP, Wilder-Smith A, Hatz C, Franco L. Sentinel surveillance of imported dengue via travellers to Europe 2012 to 2014: TropNet data from the DengueTools Research Initiative. ACTA ACUST UNITED AC 2017; 22:30433. [PMID: 28080959 PMCID: PMC5388098 DOI: 10.2807/1560-7917.es.2017.22.1.30433] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
Abstract
We describe the epidemiological pattern and genetic characteristics of 242 acute dengue infections imported to Europe by returning travellers from 2012 to 2014. The overall geographical pattern of imported dengue (South-east Asia > Americas > western Pacific region > Africa) remained stable compared with 1999 to 2010. We isolated the majority of dengue virus genotypes and epidemic lineages causing outbreaks and epidemics in Asia, America and Africa during the study period. Travellers acted as sentinels for four unusual dengue outbreaks (Madeira, 2012–13; Luanda, 2013; Dar es Salaam, 2014; Tokyo, 2014). We were able to characterise dengue viruses imported from regions where currently no virological surveillance data are available. Up to 36% of travellers infected with dengue while travelling returned during the acute phase of the infection (up to 7 days after symptom onset) or became symptomatic after returning to Europe, and 58% of the patients with acute dengue infection were viraemic when seeking medical care. Epidemiological and virological data from dengue-infected international travellers can add an important layer to global surveillance efforts. A considerable number of dengue-infected travellers are viraemic after arrival back home, which poses a risk for dengue introduction and autochthonous transmission in European regions where suitable mosquito vectors are prevalent.
Collapse
Affiliation(s)
- Andreas Neumayr
- Department of Medicine and Diagnostics, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Jose Muñoz
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Mirjam Schunk
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jakob Cramer
- Department of Internal Medicine I, Section Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Guido Calleri
- Travel Medicine Unit, Department of Infectious Diseases, Amedeo di Savoia Hospital- ASLTO2, Torino, Italy
| | - Rogelio López-Vélez
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Andrea Angheben
- Centre for Tropical Diseases, Sacro Cuore - Don Calabria Hospital, Negrar, Italy
| | - Thomas Zoller
- University of Basel, Switzerland.,Clinical Research Unit, Department of Medicine and Diagnostics, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Leo Visser
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Núria Serre-Delcor
- Tropical Medicine and International Health Unit Vall d'Hebron-Drassanes. PROSICS. Hospital Vall d'Hebron. Institut Català de la Salut, Barcelona, Spain
| | - Blaise Genton
- Infectious Disease Service & Department of Ambulatory Care, University Hospital, Lausanne, Switzerland
| | - Francesco Castelli
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alberto Matteelli
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Laurence Rochat
- Travel Clinic, Department of Ambulatory Care and Community Medicine, University Hospital, Lausanne, Switzerland
| | - Elena Sulleiro
- Microbiology Department, Hospital Vall d´Hebron. PROSICS Barcelona. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Federico Gobbi
- Centre for Tropical Diseases, Sacro Cuore - Don Calabria Hospital, Negrar, Italy
| | - Francesca Norman
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Ilaria Torta
- Travel Medicine Unit, Department of Infectious Diseases, Amedeo di Savoia Hospital- ASLTO2, Torino, Italy
| | - Jan Clerinx
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - David Poluda
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Miguel Martinez
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Antonia Calvo-Cano
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - Annelies Wilder-Smith
- Institute of Public Health, University of Heidelberg, Germany.,Department of Global Health and Epidemiology, Umea University, Umea, Sweden
| | - Christoph Hatz
- Department of Medicine and Diagnostics, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leticia Franco
- National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain.,Gorgas Memorial Institute, Panama, Panama
| | | |
Collapse
|
12
|
The Epidemiological Characteristics and Dynamic Transmission of Dengue in China, 2013. PLoS Negl Trop Dis 2016; 10:e0005095. [PMID: 27820815 PMCID: PMC5098828 DOI: 10.1371/journal.pntd.0005095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/07/2016] [Indexed: 01/22/2023] Open
Abstract
Background There was a dengue epidemic in several regions of China in 2013. No study has explored the dynamics of dengue transmission between different geographical locations with dengue outbreaks in China. The purpose of the study is to analyze the epidemiological characteristics and to explore the dynamic transmission of dengue in China, 2013. Methodology and Principal Findings Records of dengue cases of 2013 were obtained from the China Notifiable Disease Surveillance System. Full E-gene sequences of dengue virus detected from the outbreak regions of China were download from GenBank. Geographical Information System and heatmaps were used to describe the epidemiological characteristics. Maximum Likelihood phylogenetic and Bayesian phylogeographic analyses were conducted to explore the dengue dynamic transmission. Yunnan Province and Guangdong Province had the highest imported cases in the 2013 epidemic. In the locations with local dengue transmission, most of imported cases occurred from June to November 2013 while local dengue cases developed from July to December, 2013. There were significant variations for the incidences of dengue, in terms of age distributions, among different geographic locations. However, gender differences were identified in Guangzhou, Foshan and Xishuangbanna. DENV 1–3 were detected in all locations with the disease outbreaks. Some genotypes were detected in more than one locations and more than one genotypes have been detected in several locations. The dengue viruses introduced to outbreak areas were predominantly from Southeast Asia. In Guangdong Province, the phylogeographical results indicated that dengue viruses of DENV 1 were transmitted to neighboring cities Foshan and Zhongshan from Guangzhou city, and then transmitted to Jiangmen city. The virus in DENV 3 was introduced to Guangzhou city, Guangdong Province from Xishuangbanna prefecture, Yunnan Province. Conclusions Repeated dengue virus introductions from Southeast Asia and subsequent domestic dengue transmission within different regions may have contributed to the dengue epidemics in China, 2013. Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease. As an imported disease in China, the imported cases play a vital role for the local dengue transmission. There were dengue outbreaks in three Provinces (covering nine Cities/Prefectures) of China in 2013, with several regions had their first dengue outbreak in history including the one from central China. There has been no study so far to explore the dengue transmission dynamics between different regions in China. The purpose of the study is to describe the 2013 dengue epidemiological characteristics and to explore the transmission dynamics of dengue viruses between epidemic focus. The study results indicated that repeated dengue virus introductions from Southeast Asia and subsequent domestic dengue transmission within different regions may have contributed to the dengue epidemics in China, 2013. Population movement could have played a critical role in dengue dynamic transmission, which introduced dengue viruses to non-epidemic areas at broad or finer spatial scales. Therefore, it should be considered in the design of mosquito eradication campaign for dengue control and prevention.
Collapse
|
13
|
Ridde V, Agier I, Bonnet E, Carabali M, Dabiré KR, Fournet F, Ly A, Meda IB, Parra B. Presence of three dengue serotypes in Ouagadougou (Burkina Faso): research and public health implications. Infect Dis Poverty 2016; 5:23. [PMID: 27044528 PMCID: PMC4820922 DOI: 10.1186/s40249-016-0120-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/15/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The significant malaria burden in Africa has often eclipsed other febrile illnesses. Burkina Faso's first dengue epidemic occurred in 1925 and the most recent in 2013. Yet there is still very little known about dengue prevalence, its vector proliferation, and its poverty and equity impacts. METHODS An exploratory cross-sectional survey was performed from December 2013 to January 2014. Six primary healthcare centers in Ouagadougou were selected based on previously reported presence of Flavivirus. All patients consulting with fever or having had fever within the previous week and with a negative rapid diagnostic test (RDT) for malaria were invited to participate. Sociodemographic data, healthcare use and expenses, mobility, health-related status, and vector control practices were captured using a questionnaire. Blood samples of every eligible subject were obtained through finger pricks during the survey for dengue RDT using SD BIOLINE Dengue Duo (NS1Ag and IgG/IgM)® and to obtain blood spots for reverse transcription polymerase chain reaction (RT-PCR) analysis. In a sample of randomly selected yards and those of patients, potential Aedes breeding sites were found and described. Larvae were collected and brought to the laboratory to monitor the emergence of adults and identify the species. RESULTS Of the 379 subjects, 8.7 % (33/379) had positive RDTs for dengue. Following the 2009 WHO classification, 38.3 % (145/379) had presumptive, probable, or confirmed dengue, based on either clinical symptoms or laboratory testing. Of 60 samples tested by RT-PCR (33 from the positive tests and 27 from the subsample of negatives), 15 were positive. The serotypes observed were DENV2, DENV3, and DENV4. Odds of dengue infection in 15-to-20-year-olds and persons over 50 years were 4.0 (CI 95 %: 1.0-15.6) and 7.7 (CI 95 %: 1.6-37.1) times higher, respectively, than in children under five. Average total spending for a dengue episode was 13 771 FCFA [1 300-67 300 FCFA] (1$US = 478 FCFA). On average, 2.6 breeding sites were found per yard. Potential Aedes breeding sites were found near 71.4 % (21/28) of patients, but no adult Aedes were found. The most frequently identified potential breeding sites were water storage containers (45.2 %). Most specimens collected in yards were Culex (97.9 %). CONCLUSIONS The scientific community, public health authorities, and health workers should consider dengue as a possible cause of febrile illness in Burkina Faso.
Collapse
Affiliation(s)
- Valéry Ridde
- />Department of Social and Preventive Medicine, University of Montreal School of Public Health (ESPUM), Montréal, Canada
- />University of Montreal Public Health Research Institute (IRSPUM), Pavillon 7101 Avenue du Parc, P.O. Box 6128, Centre-ville Station, Montreal, Quebec H3C 3J7 Canada
| | - Isabelle Agier
- />University of Montreal Public Health Research Institute (IRSPUM), Pavillon 7101 Avenue du Parc, P.O. Box 6128, Centre-ville Station, Montreal, Quebec H3C 3J7 Canada
| | - Emmanuel Bonnet
- />Identités et Différenciations de l’Environnement des Espaces et des Sociétés – Caen (IDEES), University of Caen Basse-Normandie, Caen, France
| | - Mabel Carabali
- />International Vaccine Institute, Dengue Vaccine Initiative, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Korea
| | - Kounbobr Roch Dabiré
- />Institut de Recherche en Sciences de la Santé (IRSS), B.P. 545 Bobo-Dioulasso, Burkina Faso
| | - Florence Fournet
- />Unité Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Institut de recherche pour le développement (IRD), B.P. 171 Bobo-Dioulasso, Burkina Faso
| | - Antarou Ly
- />Institut de Recherche en Sciences de la Santé (IRSS), 03 B.P. 7192 Ouagadougou, Burkina Faso
| | | | - Beatriz Parra
- />Grupo de Virus Emergentes y Enfermedad, Departamento de Microbiología Universidad del Valle, Cali, Colombia
| |
Collapse
|
14
|
Okuläre Komplikation bei einer Patientin mit Dengue-Fieber. Ophthalmologe 2016; 113:334-7. [DOI: 10.1007/s00347-015-0093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|