1
|
Aspinwall J, Weck B, Martins LA, Jarrett C, Suzuki M, Peyton MP, Sonenshine DE, Saito TB. Behavioral manipulation of Ixodes scapularis by Ehrlichia muris eauclairensis: implications for tick-borne disease transmission. mBio 2025:e0075825. [PMID: 40422662 DOI: 10.1128/mbio.00758-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
Tick-borne diseases pose significant risks to both animals and humans, with emerging pathogens like Ehrlichia muris eauclairensis (EME) underscoring the need for a deeper understanding of pathogen-vector interactions and tick fitness. This study investigates the impact of EME on Ixodes scapularis nymphs, revealing significant behavioral changes in EME-positive ticks. These ticks exhibited increased movement speed, faster bite site-seeking for attachment, and prolonged feeding durations compared to control ticks. Proteomic analyses of the tick synganglion during resting and feeding phases identified 196 differentially expressed proteins in EME-positive ticks, including multiple proteins associated with nicotinic acetylcholine signaling pathways. Our findings indicated altered neuropeptide expression related to stimulus response and activity, suggesting changes in neurophysiology. This research provides the first evidence of behavioral manipulation by an Ehrlichia species, indicating that the tick nervous system is a site of bacterial influence and a potential target for interventions. These findings offer new insights into pathogen-vector dynamics that could lead to the development of transmission-blocking therapies, significantly impacting tick fitness and disease transmission.IMPORTANCETick-borne diseases (TBDs) are increasingly affecting humans, pets, and livestock, with cases rising in recent years. Ticks can carry multiple harmful germs, and human activities and environment are contributing to new TBDs. This study shows that the bacteria Ehrlichia muris eauclairensis (EME) can change the behavior of nymphal black-legged ticks, which spread various diseases. Infected ticks moved faster, attached to hosts more quickly, and fed longer than uninfected ticks. These changes were linked to specific proteins in the tick's nervous system, suggesting that EME manipulates tick behavior. This is the first evidence that an Ehrlichia species can influence tick behavior, potentially increasing disease transmission. Understanding these interactions can help develop strategies to prevent TBDs by targeting the bacteria's influence on ticks, ultimately reducing disease spread and improving public health.
Collapse
Affiliation(s)
- Joseph Aspinwall
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Currently at the Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbara Weck
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Currently at the Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Larissa A Martins
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Currnetly at the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Clayton Jarrett
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Motoshi Suzuki
- Research Technologies Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mina P Peyton
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel E Sonenshine
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tais B Saito
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Huang XB, Tang T, Chen JJ, Zhang YY, Lv CL, Xu Q, Wang GL, Zhu Y, Wei YH, Hay SI, Fang LQ, Liu W. The global distribution and risk prediction of Anaplasmataceae species: a systematic review and geospatial modelling analysis. EBioMedicine 2025; 115:105722. [PMID: 40273471 PMCID: PMC12051633 DOI: 10.1016/j.ebiom.2025.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The family Anaplasmataceae, reclassified under the order Rickettsiales, represents a highly complex group that poses an increasing global threat. However, their infection risk remains poorly understood. We aimed to map the diversity, distribution, and potential infection risk of Anaplasmataceae members. METHODS We searched PubMed, Web of Science, bioRvix, and MedRvix for published articles to extract data on the detection of Anaplasmatacea species in vectors, animals, and humans from 1910 to 2022. We mapped the richness and global distribution of identified Anaplasmatacea species. Machine learning algorithms were applied to determine the ecological and vector-related factors contributing to the occurrence of major Anaplasmatacea members and project their potential risk distributions. FINDINGS A total of 2605 studies meeting our inclusion criteria were used for data extraction. We identified 85 species of Anaplasmataceae family from 134 tick species, 312 wild animals, and 12 domestic animals. Anaplasma phagocytophilum had the widest range of vectors (97 species), followed by Anaplasma marginale (54 species), Anaplasma bovis (46 species), Anaplasma ovis (37 species), and Anaplasma platys (35 species). Aanaplasmaphagocytophilum was also detected in the widest range of wildlife (208 species), followed by Ehrlichia chaffeensis (46 species), Candidatus Neoehrlichia mikurensis (36 species), Ehrlichia canis (35 species), and A. bovis (32 species). In total, 52,315 human cases involving 15 Anaplasmataceae species were recorded, A. phagocytophilum and E. chaffeensis accounted for majority of human infections (66·5% and 32·4%, respectively). According to our modelling analysis, the geographic distribution of six major Anaplasmatacea species is primarily influenced by the projected habitat suitability index of tick vectors and climatic conditions. Among these, A. phagocytophilum presents the highest risk, with an estimated 3·97 billion individuals and 8·95 million km2 area potentially affected. INTERPRETATION The widespread distribution of Anaplasmataceae species emphasizes the need to enhance identification, surveillance, and diagnosis efforts in high-risk areas, particularly within low-income regions. FUNDING The National Key Research and Development Program of China (2023YFC2605603) and the Natural Science Foundation of China (82330103).
Collapse
Affiliation(s)
- Xiao-Bin Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China; School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, China
| | - Yue-Hong Wei
- Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, USA; Institute for Health Metrics and Evaluation, University of Washington, USA
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China; Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, China.
| |
Collapse
|
3
|
Aspinwall J, Weck B, Martins LA, Jarrett C, Suzuki M, Peyton MP, Sonenshine DE, Saito TB. Behavioral Manipulation of Ixodes scapularis by Ehrlichia muris eauclairensis: Implications for Tick-Borne Disease Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641579. [PMID: 40093156 PMCID: PMC11908260 DOI: 10.1101/2025.03.04.641579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tick-borne diseases pose significant risks to both animals and humans, with emerging pathogens like Ehrlichia muris eauclairensis (EME) underscoring the need for a deeper understanding of pathogen-vector interactions and tick fitness. This study investigates the impact of EME on Ixodes scapularis nymphs, revealing significant behavioral changes in EME-positive ticks. These ticks exhibited increased movement speed, faster bite site-seeking for attachment, and prolonged feeding durations compared to control ticks. Proteomic analyses of the tick synganglion during resting and feeding phases identified 196 differentially expressed proteins in EME-positive ticks, including multiple proteins associated with nicotinic acetylcholine signaling pathways. Our findings indicated altered neuropeptide expression related to stimulus response and activity, suggesting changes in neurophysiology. This research provides the first evidence of behavioral manipulation by an Ehrlichia species, indicating that the tick nervous system is a site of bacterial influence and a potential target for interventions. These findings offer new insights into pathogen-vector dynamics that could lead to the development of transmission-blocking therapies, significantly impacting tick fitness and disease transmission.
Collapse
Affiliation(s)
- Joseph Aspinwall
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
- Currently at the Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Barbara Weck
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
- Currently at the Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Larissa A. Martins
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
- Currnetly at the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Clayton Jarrett
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Motoshi Suzuki
- Research Technologies Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mina P. Peyton
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Daniel E. Sonenshine
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Tais B. Saito
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| |
Collapse
|
4
|
Croci C, Erriquez L, Bisaglia B, Bellinzona G, Olivieri E, Sassera D, Castelli M. Genome sequence of Ehrlichia muris from Ixodes ricinus collected in Italy on a migratory bird provides epidemiological and evolutionary insights. Ticks Tick Borne Dis 2024; 15:102409. [PMID: 39488869 DOI: 10.1016/j.ttbdis.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Ticks are prominent vectors of several zoonotic diseases. Tick-borne pathogens include the members of the genus Ehrlichia, which are obligate intracellular bacteria infecting immune and hematopoietic cells. Ehrlichia muris predominantly affects rodents, but was also reported to be a human pathogen. The known geographical distribution of this bacterium ranges from Asia, to the USA and eastern Europe. In the present work, we report the finding of E. muris in an Ixodes ricinus tick collected from a migratory bird (Turdus iliacus) in Italy, southern Europe. We sequenced the total DNA from this tick sample, and, thanks to a dedicated bioinformatic pipeline, selectively assembled the genome of the bacterium, which represents the first one for E. muris from Europe. Phylogenetic and comparative genomic analyses were then performed. Accounting for tick species distribution, bird migratory routes, and molecular phylogeny of the bacterium, it is likely that this bird transported the tick to Italy from an endemic area of E. muris, such as eastern Europe. In addition, comparative genomic analyses highlighted that E. muris and other Ehrlichia spp. display copy number variations in two families of membrane proteins, likely due to recent gene duplication, deletion and recombination events. These differences are probably a source of variability for surface antigens to evade host immunity, with a potential role in host adaptation and specificity. The present results underline the impact of migratory birds on the spread of tick-borne pathogens towards non-endemic areas, highlighting the need for further epidemiological surveillance at bird ringing stations in Italy, and advocating further investigations on possible local transmission of E. muris in competent mammalian hosts.
Collapse
Affiliation(s)
- Carlo Croci
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Luca Erriquez
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Italy.
| |
Collapse
|
5
|
Briggs C, Casey D, Deakins AG, Powell JG, Loftin K, McDermott EG. Natural Panola Mountain Ehrlichia infections in cattle in a longitudinal study of Angus beef calves. Ticks Tick Borne Dis 2024; 15:102408. [PMID: 39515147 DOI: 10.1016/j.ttbdis.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
Panola Mountain Ehrlichia (PME) is an emerging zoonotic pathogen, transmitted by Amblyomma americanum ticks in the southeastern United States. It is closely related to Ehrlichia ruminantium, the causative agent of heartwater disease. Heartwater disease is an often-fatal illness of ruminant livestock present in Africa and the Caribbean. The taxonomic relationship between PME and E. ruminantium has raised concerns about the pathogenicity of PME in livestock. To determine whether cattle could be naturally infected with PME in an endemic area, we conducted a one-year longitudinal study of Angus-breed beef calves in Fayetteville, Arkansas. One hundred seventy-seven calves born between September and October 2022 were sampled for blood and ticks in February, May, and September 2023. Blood and ticks from each animal were tested for bacteria in the family, Anaplasmataceae using quantitative and conventional PCR, and positive samples were sequenced for species identification. Panola Mountain Ehrlichia was detected in 2.34 % of male A. americanum collected in February, and 1.27 % of female, 0.95 % of male, and 0.43 % of nymphal A. americanum collected in May. No PME-positive ticks were collected in September. Active PME infections were detected in two calves: one which tested positive in May 2023 and one which tested positive in September 2023. Neither animal exhibited any signs of disease, and the animal PME-positive in May tested negative in September. Cattle are susceptible to PME, but the pathogen does not appear to cause obvious disease. However, all animals in this study were under one year old, and older animals may be more susceptible. Cattle are at risk of tick-borne illness in the winter as well as spring, and off-season acaricide applications may improve disease management.
Collapse
Affiliation(s)
- Cierra Briggs
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA; Present address: Harris County Public Health, Mosquito and Vector Control Division, Houston, TX 77021, USA
| | - Drew Casey
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Anna Grace Deakins
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jeremy G Powell
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kelly Loftin
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Emily G McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
6
|
Zhang X, Lv W, Teng Z, Zhao N, Zhou Y, Ma D, Ma L, Cheng Y, Wei J, He J, Ma W, Liu D, Qin T. Molecular detection of Rickettsiales and a potential novel Ehrlichia species closely related to Ehrlichia chaffeensis in ticks (Acari: Ixodidae) from Shaanxi Province, China, in 2022 to 2023. Front Microbiol 2024; 14:1331434. [PMID: 38274750 PMCID: PMC10808515 DOI: 10.3389/fmicb.2023.1331434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
Important tick-borne diseases include spotted fever group Rickettsia (SFGR), Anaplasma, and Ehrlichia, which cause harm to animal and human health. Ixodidae are the primary vectors of these pathogens. We aimed to analyze the prevalence and genetic diversity of SFGR, Anaplasma, and Ehrlichia species in the Ixodidae in Shaanxi Province, China. Herein, 1,113 adult Ixodidae ticks were collected from domestic cattle and goats, and detected using nested PCR. A total of four Ixodidae species were collected and Ca. R. jingxinensis (20.58%, 229/1113), A. bovis (3.05%, 34/1113), A. capra (3.32%, 37/1113), A. marginale (0.18%, 2/1113), E. sp. Yonaguni138 (0.18%, 2/1113), and a potent novel Ehrlichia species named E. sp. Baoji96 (0.09%, 1/1113) were detected. A. marginale was detected for the first time in Rhipicephalus microplus. E. sp. Baoji96 was closely related to E. chaffeensis and was first identified in Haemaphysalis longicornis. In addition, co-infection with two Rickettsiales pathogens within an individual tick was detected in 10 (1.54%) ticks. This study provides a reference for the formulation of biological control strategies for ticks and tick-borne diseases in Shaanxi Province, and could lead to an improved control effect.
Collapse
Affiliation(s)
- Xue Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Lv
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Zhongqiu Teng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Zhou
- Long County Center for Disease Control and Prevention, Baoji, China
| | - Di Ma
- Mei County Center for Disease Control and Prevention, Baoji, China
| | - Lin Ma
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Yuqing Cheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianjun Wei
- HanZhong Center for Disease Control and Prevention, Hanzhong, China
| | - Jia He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenke Ma
- Zhenba County Center for Disease Control and Prevention, Hanzhong, China
| | - Dongli Liu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Tian Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Silva-Ramos CR, Faccini-Martínez ÁA, Serna-Rivera CC, Mattar S, Hidalgo M. Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia. Microorganisms 2023; 11:2154. [PMID: 37763998 PMCID: PMC10535066 DOI: 10.3390/microorganisms11092154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 09/29/2023] Open
Abstract
In Colombia, tropical febrile illnesses represent one of the most important causes of clinical attention. Febrile illnesses in the tropics are mainly zoonotic and have a broad etiology. The Colombian surveillance system monitors some notifiable diseases. However, several etiologies are not monitored by this system. In the present review, we describe eleven different etiologies of zoonotic tropical febrile illnesses that are not monitored by the Colombian surveillance system but have scientific, historical, and contemporary data that confirm or suggest their presence in different regions of the country: Anaplasma, Arenavirus, Bartonella, relapsing fever group Borrelia, Coxiella burnetii, Ehrlichia, Hantavirus, Mayaro virus, Orientia, Oropouche virus, and Rickettsia. These could generate a risk for the local population, travelers, and immigrants, due to which they should be included in the mandatory notification system, considering their importance for Colombian public health.
Collapse
Affiliation(s)
- Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Álvaro A. Faccini-Martínez
- Servicio de Infectología, Hospital Militar Central, Bogotá 110110, Colombia;
- Servicios y Asesorías en Infectología—SAI, Bogotá 110110, Colombia
| | - Cristian C. Serna-Rivera
- Grupo de Investigación en Ciencias Veterinarias (CENTAURO), Línea de Investigación Zoonosis Emergentes y Re-Emergentes, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín 050034, Colombia;
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales 170004, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Montería 230001, Colombia;
| | - Marylin Hidalgo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| |
Collapse
|
8
|
Hazelrig CM, Gettings JR, Cleveland CA, Varela-Stokes A, Majewska AA, Hubbard K, Burton KW, Yabsley MJ. Spatial and risk factor analyses of vector-borne pathogens among shelter dogs in the Eastern United States. Parasit Vectors 2023; 16:197. [PMID: 37301970 PMCID: PMC10257847 DOI: 10.1186/s13071-023-05813-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Vector-borne infections pose significant health risks to humans, domestic animals, and wildlife. Domestic dogs (Canis lupus familiaris) in the United States may be infected with and serve as sentinel hosts for several zoonotic vector-borne pathogens. In this study, we analyzed the geographical distribution, risk factors, and co-infections associated with infection with Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi, and Dirofilaria immitis in shelter dogs in the Eastern United States. METHODS From 2016 to 2020, blood samples from 3750 shelter dogs from 19 states were examined with IDEXX SNAP® 4Dx® Plus tests to determine the seroprevalence of infection with tick-borne pathogens and infection with D. immitis. We assessed the impact of factors including age, sex, intact status, breed group, and location on infection using logistic regression. RESULTS The overall seroprevalence of D. immitis was 11.2% (n = 419/3750), the seroprevalence of Anaplasma spp. was 2.4% (n = 90/3750), the seroprevalence of Ehrlichia spp. was 8.0% (n = 299/3750), and the seroprevalence of B. burgdorferi was 8.9% (n = 332/3750). Regional variation in seroprevalence was noted: D. immitis (17.4%, n = 355/2036) and Ehrlichia spp. (10.7%, n = 217/2036) were highest in the Southeast while seroprevalence for B. burgdorferi (19.3%, n = 143/740) and Anaplasma spp. (5.7%, n = 42/740) were highest in the Northeast. Overall, 4.8% (n = 179/3750) of dogs had co-infections, the most common of which were D. immitis/Ehrlichia spp. (1.6%, n = 59/3750), B. burgdorferi/Anaplasma spp. (1.5%, n = 55/3750), and B. burgdorferi/Ehrlichia spp. (1.2%, n = 46/3750). Risk factors significantly influenced infection across the evaluated pathogens were location and breed group. All evaluated risk factors were significant for the seroprevalence of D. immitis antigens. CONCLUSIONS Our results demonstrate a regionally variable risk of infection with vector-borne pathogens in shelter dogs throughout the Eastern United States, likely due to varying distributions of vectors. However, as many vectors are undergoing range expansions or other changes in distribution associated with climate and landscape change, continued vector-borne pathogen surveillance is important for maintaining reliable risk assessment.
Collapse
Affiliation(s)
- Corinna M. Hazelrig
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA USA
| | - Jenna R. Gettings
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA USA
| | - Andrea Varela-Stokes
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
- Present Address: Department of Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA USA
| | - Ania A. Majewska
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - Kris Hubbard
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
- Present Address: West Asheville Family Vet, Asheville, NC USA
| | | | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA USA
| |
Collapse
|
9
|
Teng Z, Shi Y, Zhao N, Zhang X, Jin X, He J, Xu B, Qin T. Molecular Detection of Tick-Borne Bacterial and Protozoan Pathogens in Haemaphysalis longicornis (Acari: Ixodidae) Ticks from Free-Ranging Domestic Sheep in Hebei Province, China. Pathogens 2023; 12:763. [PMID: 37375453 DOI: 10.3390/pathogens12060763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Ticks and tick-borne pathogens significantly threaten human and animal health worldwide. Haemaphysalis longicornis is one of the dominant tick species in East Asia, including China. In the present study, 646 Ha. longicornis ticks were collected from free-ranging domestic sheep in the southern region of Hebei Province, China. Tick-borne pathogens of zoonotic and veterinary importance (i.e., Rickettsia, Anaplasma, Ehrlichia, Borrelia, Theileria, and Hepatozoon spp.) were detected in the ticks using PCR assays and sequence analysis. The prevalence rates of these pathogens were 5.1% (33/646), 15.9% (103/646), 1.2% (8/646), 17.0% (110/646), 0.15% (1/646), and 0.15% (1/646), respectively. For Rickettsia spp., R. japonica (n = 13), R. raoultii (n = 6), and Candidatus R. jingxinensis (n = 14) were detected for the first time in the province, while several Anaplasma spp. were also detected in the ticks, including A. bovis (n = 52), A. ovis (n = 31), A. phagocytophilum (n = 10), and A. capra (n = 10). A putative novel Ehrlichia spp. was also found with a prevalence of 1.2% in the area. The present study provides important data for effectively controlling ticks and tick-borne diseases in the Hebei Province region of China.
Collapse
Affiliation(s)
- Zhongqiu Teng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yan Shi
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050021, China
| | - Na Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xue Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaojing Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jia He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Baohong Xu
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050021, China
| | - Tian Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
10
|
Kopsco HL, Gronemeyer P, Mateus-Pinilla N, Smith RL. Current and Future Habitat Suitability Models for Four Ticks of Medical Concern in Illinois, USA. INSECTS 2023; 14:213. [PMID: 36975898 PMCID: PMC10059838 DOI: 10.3390/insects14030213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The greater U.S. Midwest is on the leading edge of tick and tick-borne disease (TBD) expansion, with tick and TBD encroachment into Illinois occurring from both the northern and the southern regions. To assess the historical and future habitat suitability of four ticks of medical concern within the state, we fit individual and mean-weighted ensemble species distribution models for Ixodes scapularis, Amblyomma americanum, Dermacentor variabilis, and a newly invading species, Amblyomma maculatum using a variety of landscape and mean climate variables for the periods of 1970-2000, 2041-2060, and 2061-2080. Ensemble model projections for the historical climate were consistent with known distributions of each species but predicted the habitat suitability of A. maculatum to be much greater throughout Illinois than what known distributions demonstrate. The presence of forests and wetlands were the most important landcover classes predicting the occurrence of all tick species. As the climate warmed, the expected distribution of all species became strongly responsive to precipitation and temperature variables, particularly precipitation of the warmest quarter and mean diurnal range, as well as proximity to forest cover and water sources. The suitable habitat for I. scapularis, A. americanum, and A. maculatum was predicted to significantly narrow in the 2050 climate scenario and then increase more broadly statewide in the 2070 scenario but at reduced likelihoods. Predicting where ticks may invade and concentrate as the climate changes will be important to anticipate, prevent, and treat TBD in Illinois.
Collapse
Affiliation(s)
- Heather L. Kopsco
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Peg Gronemeyer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nohra Mateus-Pinilla
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rebecca L. Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
11
|
Seroplrevalence of <i>Anaplasma phagocytophilum</i> and <i>Ehrlichia</i> sp. among people affected by tick bites. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. In spring and summer, the population of the Baikal region regularly comes into contact with the pathogens transmitted through the bites of ixodid ticks. In the Center for Diagnosis and Prevention of Tick-Borne Infections (Irkutsk, Russian Federation), we annually detect anaplasmas of the Anaplasma phagocytophilum species, as well as Ehrlichia chaffeensis/E. muris in both ixodid ticks and blood samples from people who have been bitten by ticks. At the same time, there are no data in open sources on the incidence of human granulocytic anaplasmosis and human monocytic ehrlichiosis in the Baikal region. Currently, there is very little information on the studies of intensity of the immune response to anaplasmas and ehrlichia in people living in the surveyed area, although this information is critical for assessing the frequency of contacts and the risk of infection of people in a territory endemic for tick-borne infections. The aim. To update information on the presence and prevalence of specific immunoglobulins M and G to A. phagocytophilum and Ehrlichia sp. among the population of the Irkutsk Region affected by tick bites. Materials and methods. In total, 204 samples of blood serum from the residents of the Irkutsk Region who were registered to be bitten by ticks were analyzed for the presence of IgM and IgG to human monocytic ehrlichiosis and human granulocytic anaplasmosis agents. Results. IgG to A. phagocytophilum were found in 9 samples, IgG to E. chaffeensis/E. muris – in 1 sample; no IgM to both pathogens were found in any sample. Conclusions. The results obtained indicate regular infection of the population with anaplasmas and ehrlichia which is a testifies to the existence of active natural foci of human monocytic ehrlichiosis and human granulocytic anaplasmosis in the Baikal region. To clarify the real epidemic role of these infections, a detailed study of the immune status is required both among healthy individuals and among patients with symptoms of an infectious disease.
Collapse
|
12
|
Preface. Infect Dis Clin North Am 2022; 36:xiii-xvi. [PMID: 36116845 DOI: 10.1016/j.idc.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ehrlichia, Coxiella and Bartonella infections in rodents from Guizhou Province, Southwest China. Ticks Tick Borne Dis 2022; 13:101974. [DOI: 10.1016/j.ttbdis.2022.101974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
|
14
|
Poh KC, Evans JR, Skvarla MJ, Kent CM, Olafson PU, Hickling GJ, Mullinax JM, Machtinger ET. Patterns of deer ked (Diptera: Hippoboscidae) and tick (Ixodida: Ixodidae) infestation on white-tailed deer (Odocoileus virginianus) in the eastern United States. Parasit Vectors 2022; 15:31. [PMID: 35057829 PMCID: PMC8772158 DOI: 10.1186/s13071-021-05148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
White-tailed deer (Odocoileus virginianus) host numerous ectoparasitic species in the eastern USA, most notably various species of ticks and two species of deer keds. Several pathogens transmitted by ticks to humans and other animal hosts have also been found in deer keds. Little is known about the acquisition and potential for transmission of these pathogens by deer keds; however, tick-deer ked co-feeding transmission is one possible scenario. On-host localization of ticks and deer keds on white-tailed deer was evaluated across several geographical regions of the eastern US to define tick-deer ked spatial relationships on host deer, which may impact the vector-borne disease ecology of these ectoparasites.
Methods
Ticks and deer keds were collected from hunter-harvested white-tailed deer from six states in the eastern US. Each deer was divided into three body sections, and each section was checked for 4 person-minutes. Differences in ectoparasite counts across body sections and/or states were evaluated using a Bayesian generalized mixed model.
Results
A total of 168 white-tailed deer were inspected for ticks and deer keds across the study sites. Ticks (n = 1636) were collected from all surveyed states, with Ixodes scapularis (n = 1427) being the predominant species. Counts of I. scapularis from the head and front sections were greater than from the rear section. Neotropical deer keds (Lipoptena mazamae) from Alabama and Tennessee (n = 247) were more often found on the rear body section. European deer keds from Pennsylvania (all Lipoptena cervi, n = 314) were found on all body sections of deer.
Conclusions
The distributions of ticks and deer keds on white-tailed deer were significantly different from each other, providing the first evidence of possible on-host niche partitioning of ticks and two geographically distinct deer ked species (L. cervi in the northeast and L. mazamae in the southeast). These differences in spatial distributions may have implications for acquisition and/or transmission of vector-borne pathogens and therefore warrant further study over a wider geographic range and longer time frame.
Graphical Abstract
Collapse
|
15
|
Dixon DM, Branda JA, Clark SH, Dumler JS, Horowitz HW, Perdue SS, Pritt BS, Sexton DJ, Storch GA, Walker DH. Ehrlichiosis and anaplasmosis subcommittee report to the Tick-borne Disease Working Group. Ticks Tick Borne Dis 2021; 12:101823. [PMID: 34517150 DOI: 10.1016/j.ttbdis.2021.101823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Ehrlichioses and anaplasmosis have undergone dramatic increases in incidence, and the geographic ranges of their occurrence and vectors have also expanded. There is marked underreporting of these diseases owing to deficient physician awareness and knowledge of the illnesses as well as limited access to appropriate diagnostic tests. Human monocytic ehrlichiosis and anaplasmosis are life threatening diseases with estimated case fatality rates of 2.7 and 0.3%, respectively. However, knowledge of their full range of signs and symptoms is incomplete, and the incidence of subclinical infections is unknown. Currently available laboratory diagnostic methods are poorly utilized, and with the exception of nucleic acid amplification tests are not useful for diagnosis during the acute stage of illness when timely treatment is needed. The Ehrlichiosis and Anaplasmosis Subcommittee of the Tick-Borne Disease Working Group recommended active clinical surveillance to determine the true incidence, full clinical spectrum, and risk factors for severe illness, as well as standardized surveillance of ticks for these pathogens, and enhanced education of primary medical caregivers and the public regarding these diseases. The subcommittee identified the needs to develop sensitive, specific acute stage diagnostic tests for local clinical laboratories and point-of-care testing, to develop approaches for utilizing electronic medical records, data mining, and artificial intelligence for assisting early diagnosis and treatment, and to develop adjunctive therapies for severe disease.
Collapse
Affiliation(s)
| | - John A Branda
- Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, United States.
| | - Stephen H Clark
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, United States
| | - J Stephen Dumler
- Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Joint Pathology Center, 4301 Jones Bridge Road, Building B, Room 3152, Bethesda, MD 20814, United States.
| | - Harold W Horowitz
- Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, United States.
| | | | - Bobbi S Pritt
- Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, United States.
| | - Daniel J Sexton
- Duke University Medical Center, Durham, NC 27710, United States.
| | - Gregory A Storch
- Washington University School of Medicine, 425 South Euclid Avenue, St. Louis, MO 63110, United States.
| | - David H Walker
- The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-0609, United States.
| |
Collapse
|
16
|
Sosa JP, Ferreira Caceres MM, Agadi K, Pandav K, Mehendale M, Mehta JM, Go CC, Matos WF, Guntipalli P, Belizaire MPE. Diseases Transmitted by the Black-Legged Ticks in the United States: A Comprehensive Review of the Literature. Cureus 2021; 13:e17526. [PMID: 34471586 PMCID: PMC8403000 DOI: 10.7759/cureus.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/05/2022] Open
Abstract
The black-legged tick is endemic to the midwestern, northeastern, western, south-eastern, and southern regions of the United States. There has been an increased burden of black-legged ticks in humans in recent years. COVID-19 pandemic has further heightened this burden. We thereby reviewed the literature to discuss the seasonality, infections, and clinical spectrum of diseases transmitted by the black-legged ticks. We also discuss the reported delay in the diagnosis of these diseases during the pandemic situation, the alpha-gal syndrome, the importance of prompt diagnosis, and early medical intervention with an aim to increase awareness of the black-legged tick-borne diseases.
Collapse
Affiliation(s)
- Juan P Sosa
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | | | - Kuchalambal Agadi
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | - Krunal Pandav
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | - Meghana Mehendale
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | - Jayati M Mehta
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | | | | | - Prathima Guntipalli
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | | |
Collapse
|
17
|
Vasconcelos EJR, Roy C, Geiger JA, Oney KM, Koo M, Ren S, Oakley BB, Diniz PPVP. Data analysis workflow for the detection of canine vector-borne pathogens using 16 S rRNA Next-Generation Sequencing. BMC Vet Res 2021; 17:262. [PMID: 34332568 PMCID: PMC8325813 DOI: 10.1186/s12917-021-02969-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vector-borne diseases (VBDs) impact both human and veterinary medicine and pose special public health challenges. The main bacterial vector-borne pathogens (VBPs) of importance in veterinary medicine include Anaplasma spp., Bartonella spp., Ehrlichia spp., and Spotted Fever Group Rickettsia. Taxon-targeted PCR assays are the current gold standard for VBP diagnostics but limitations on the detection of genetically diverse organisms support a novel approach for broader detection of VBPs. We present a methodology for genetic characterization of VBPs using Next-Generation Sequencing (NGS) and computational approaches. A major advantage of NGS is the ability to detect multiple organisms present in the same clinical sample in an unsupervised (i.e. non-targeted) and semi-quantitative way. The Standard Operating Procedure (SOP) presented here combines industry-standard microbiome analysis tools with our ad-hoc bioinformatic scripts to form a complete analysis pipeline accessible to veterinary scientists and freely available for download and use at https://github.com/eltonjrv/microbiome.westernu/tree/SOP . RESULTS We tested and validated our SOP by mimicking single, double, and triple infections in genomic canine DNA using serial dilutions of plasmids containing the entire 16 S rRNA gene sequence of (A) phagocytophilum, (B) v. berkhoffii, and E. canis. NGS with broad-range 16 S rRNA primers followed by our bioinformatics SOP was capable of detecting these pathogens in biological replicates of different dilutions. These results illustrate the ability of NGS to detect and genetically characterize multi-infections with different amounts of pathogens in a single sample. CONCLUSIONS Bloodborne microbiomics & metagenomics approaches may help expand the molecular diagnostic toolbox in veterinary and human medicine. In this paper, we present both in vitro and in silico detailed protocols that can be combined into a single workflow that may provide a significant improvement in VBP diagnostics and also facilitate future applications of microbiome research in veterinary medicine.
Collapse
Affiliation(s)
- Elton J. R. Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
- Leeds Omics, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Chayan Roy
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Joseph A. Geiger
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Kristina M. Oney
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Melody Koo
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Songyang Ren
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Pedro Paulo V. P. Diniz
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| |
Collapse
|
18
|
Lyons LA, Brand ME, Gronemeyer P, Mateus-Pinilla N, Ruiz MO, Stone CM, Tuten HC, Smith RL. Comparing Contributions of Passive and Active Tick Collection Methods to Determine Establishment of Ticks of Public Health Concern Within Illinois. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1849-1864. [PMID: 33855433 PMCID: PMC8285025 DOI: 10.1093/jme/tjab031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 05/08/2023]
Abstract
In Illinois, between 1990 and 2017, tick-borne diseases in humans increased 10-fold, yet we have insufficient information on when and where people are exposed to vector ticks (Ixodida: Ixodidae). The aims of our research were to compare contributions of passive and active tick collection methods in determining establishment of ticks of public health concern and obtain information on tick distributions within Illinois. We used three surveillance strategies within the Illinois Tick Inventory Collaboration Network to gather information about the ticks of public health concern: 1) passive collection (voluntary submission by the public); 2) systematic collection (biweekly active surveillance); and 3) special collections (active collections in locations of special interest). Of collected adult and nymphal ticks, 436 were from passive collections, 142 from systematic collections, and 1,270 from special collections. Tick species distribution status changed in 36 counties. Our data provide noteworthy updates to distribution maps for use by public health agencies to develop prevention and control strategies. Additionally, the program built a network of collaborations and partnerships to support future tick surveillance efforts within Illinois and highlighted how the combination of the three surveillance strategies can be used to determine geographic spread of ticks, pinpoint locations in need of more surveillance, and help with long-term efforts that support phenology studies.
Collapse
Affiliation(s)
- Lee Ann Lyons
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Corresponding author, tel: +1 217-300-0532, e-mail:
| | - Mary E Brand
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA
- U.S. Department of Agriculture, Natural Resource Conservation Service, 1211 Old 6 Road, Malcom, IA 50157, USA
| | - Peg Gronemeyer
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA
| | - Nohra Mateus-Pinilla
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA
| | - Marilyn O’Hara Ruiz
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
| | - Chris M Stone
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA
| | - Holly C Tuten
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
19
|
Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1565-1587. [PMID: 33885784 DOI: 10.1093/jme/tjab047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/09/2023]
Abstract
Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, and Schubot Center for Avian Health, Department of Veterinary Pathology, Texas A&M University, College Station, TX, USA
| | - Seungeun Han
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jennifer L Sidge
- Michigan Department of Agriculture and Rural Development, Lansing, MI, USA
| | - Graham J Hickling
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
20
|
Detection of Tick-Borne Bacteria from Whole Blood Using 16S Ribosomal RNA Gene PCR Followed by Next-Generation Sequencing. J Clin Microbiol 2021; 59:JCM.03129-20. [PMID: 33627320 DOI: 10.1128/jcm.03129-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
Reported cases of tick-borne diseases have steadily increased for more than a decade. In the United States, a majority of tick-borne infections are caused by bacteria. Clinical diagnosis may be challenging, as tick-borne diseases can present with similar symptoms. Laboratory diagnosis has historically relied on serologic methods, which have limited utility during the acute phase of disease. Pathogen-specific molecular methods have improved early diagnosis, but can be expensive when bundled together and may miss unexpected or novel pathogens. To address these shortcomings, we developed a 16S rRNA gene PCR with a next-generation sequencing (NGS) approach to detect tick-borne bacteria in whole blood. A workflow was optimized by comparing combinations of two extraction platforms and two primer sets, ultimately pursuing DNA extraction from blood with the MagNA Pure 96 and PCR amplification using dual-priming oligonucleotide primers specific to the V1-V3 region of the 16S rRNA gene. The amplified product underwent modified Illumina 16S metagenomics sequencing library preparation and sequencing on a MiSeq V2 Nano flow cell, with data analysis using Pathogenomix RipSeq NGS software. Results with the developed method were compared to those from a V1-V2 16S rRNA gene primer set described by the Centers for Disease Control and Prevention (CDC). The V1-V3 assay demonstrated equivalent performance to the CDC assay, with each method showing concordance with targeted PCR results in 31 of 32 samples, and detecting 22 of 23 expected organisms. These data demonstrate the potential for using a broad-range bacterial detection approach for diagnosis of tick-borne bacterial infection from blood.
Collapse
|
21
|
Saleh MN, Allen KE, Lineberry MW, Little SE, Reichard MV. Ticks infesting dogs and cats in North America: Biology, geographic distribution, and pathogen transmission. Vet Parasitol 2021; 294:109392. [PMID: 33971481 PMCID: PMC9235321 DOI: 10.1016/j.vetpar.2021.109392] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
A diverse array of ixodid and argasid ticks infest dogs and cats in North America, resulting in skin lesions, blood loss, and disease. The ticks most commonly found on pets in this region are hard ticks of the genera Amblyomma, Dermacentor, Ixodes, and Rhipicephalus, as well as the more recently established Haemaphysalis longicornis. Soft tick genera, especially Otobius and Ornithodoros, are also reported from pets in some regions. In this review, we provide a summary of the complex and diverse life histories, distinct morphologies, and questing and feeding behaviors of the more common ticks of dogs and cats in North America with a focus on recent changes in geographic distribution. We also review pathogens of dogs and cats associated with the different tick species, some of which can cause serious, potentially fatal disease, and describe the zoonotic risk posed by ticks of pets. Understanding the natural history of ticks and the maintenance cycles responsible for providing an ongoing source of tick-borne infections is critical to effectively combatting the challenges ticks pose to the health of pets and people.
Collapse
Affiliation(s)
- Meriam N Saleh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Kelly E Allen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States.
| | - Megan W Lineberry
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Susan E Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| |
Collapse
|
22
|
Targeted Metagenomics for Clinical Detection and Discovery of Bacterial Tick-Borne Pathogens. J Clin Microbiol 2020; 58:JCM.00147-20. [PMID: 32878950 DOI: 10.1128/jcm.00147-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/21/2020] [Indexed: 01/31/2023] Open
Abstract
Tick-borne diseases, due to a diversity of bacterial pathogens, represent a significant and increasing public health threat throughout the Northern Hemisphere. A high-throughput 16S V1-V2 rRNA gene-based metagenomics assay was developed and evaluated using >13,000 residual samples from patients suspected of having tick-borne illness and >1,000 controls. Taxonomic predictions for tick-borne bacteria were exceptionally accurate, as independently validated by secondary testing. Overall, 881 specimens were positive for bacterial tick-borne agents. Twelve tick-borne bacterial species were detected, including two novel pathogens, representing a 100% increase in the number of tick-borne bacteria identified compared to what was possible by initial PCR testing. In three blood specimens, two tick-borne bacteria were simultaneously detected. Seven bacteria, not known to be tick transmitted, were also confirmed to be unique to samples from persons suspected of having tick-borne illness. These results indicate that 16S V1-V2 metagenomics can greatly simplify diagnosis and accelerate the discovery of bacterial tick-borne pathogens.
Collapse
|
23
|
Rau A, Munoz-Zanzi C, Schotthoefer AM, Oliver JD, Berman JD. Spatio-Temporal Dynamics of Tick-Borne Diseases in North-Central Wisconsin from 2000-2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145105. [PMID: 32679849 PMCID: PMC7400118 DOI: 10.3390/ijerph17145105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Lyme disease is a well-recognized public health problem in the USA, however, other tick-borne diseases also have major public health impacts. Yet, limited research has evaluated changes in the spatial and temporal patterns of non-Lyme tick-borne diseases within endemic regions. Using laboratory data from a large healthcare system in north-central Wisconsin from 2000-2016, we applied a Kulldorf's scan statistic to analyze spatial, temporal and seasonal clusters of laboratory-positive cases of human granulocytic anaplasmosis (HGA), babesiosis, and ehrlichiosis at the county level. Older males were identified as the subpopulation at greatest risk for non-Lyme tick-borne diseases and we observed a statistically significant spatial and temporal clustering of cases (p < 0.05). HGA risk shifted from west to east over time (2000-2016) with a relative risk (RR) ranging from 3.30 to 11.85, whereas babesiosis risk shifted from south to north and west over time (2004-2016) with an RR ranging from 4.33 to 4.81. Our study highlights the occurrence of non-Lyme tick-borne diseases, and identifies at-risk subpopulations and shifting spatial and temporal heterogeneities in disease risk. Our findings can be used by healthcare providers and public health practitioners to increase public awareness and improve case detection.
Collapse
Affiliation(s)
- Austin Rau
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
| | - Claudia Munoz-Zanzi
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
| | | | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
| | - Jesse D. Berman
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
- Correspondence: ; Tel.: +1-612-626-0923
| |
Collapse
|
24
|
Mogg M, Wang HH, Baker A, Derouen Z, Borski J, Grant WE. Increased Incidence of Ehrlichia chaffeensis Infections in the United States, 2012 Through 2016. Vector Borne Zoonotic Dis 2020; 20:547-550. [PMID: 32077809 DOI: 10.1089/vbz.2019.2595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human ehrlichioses are tick-borne diseases that have been increasing in incidence in the United States during recent years. Ehrlichia chaffeensis is one of the primary bacteria that cause ehrlichiosis in humans, which typically results in fever-like symptoms, but may also be fatal if left untreated. E. chaffeensis infections are reported to the Centers for Disease Control and Prevention (CDC) through the National Notifiable Diseases Surveillance System (NNDSS). This study analyzed the cases of E. chaffeensis infections reported by the NNDSS from 2012 through 2016. There were 6786 cases and the incidence rate was 4.46 cases per million persons per year. The demographic group most commonly infected was white males between the ages of 40 and 64. Infections were most abundant in the southeast and midwest, particularly in Arkansas, Missouri, Tennessee, and Oklahoma, as well as much of the east coast. The number of cases reported each year from 2012 through 2016 was higher than the number reported in any of the previous 4 years. Ongoing surveillance and reporting of tick-borne diseases are critical to inform public health practice and guide disease treatment and prevention efforts.
Collapse
Affiliation(s)
- Michael Mogg
- Department of Management, Texas A&M University, College Station, Texas, USA
| | - Hsiao-Hsuan Wang
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, USA
| | - Adam Baker
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zakary Derouen
- Department of Ecosystem Science and Management; Texas A&M University, College Station, Texas, USA
| | - Jennifer Borski
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, USA
| | - William E Grant
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
25
|
Abstract
Ticks are the most important vectors of human pathogens, leading to increased public health burdens worldwide. Tick-borne pathogens include viruses (e.g. tick-borne encephalitis and Powassan); bacteria, such as the causative agents of Lyme disease, spotted fever rickettsiosis and human anaplasmosis; and malaria-like protozoan parasites causing babesiosis. Tick-borne diseases are emerging due to the geographical expansion of their tick vectors, especially in the northern hemisphere. Two examples of this phenomenon are Ixodes scapularis and Amblyomma americanum, which have expanded their ranges in the USA in recent decades and are responsible for the continuous emergence of Lyme disease and human ehrlichiosis, respectively. This phenomenon is also occurring worldwide and is reflected by the increasing number of tick-borne encephalitis and haemorrhagic fever cases in Europe and Asia. In this review, we provide a concise synopsis of the most medically important tick-borne pathogen worldwide, with a particular emphasis on emerging public health threats.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA
| | - Alvaro Toledo
- Department of Entomology, Rutgers University, New Brunswick, NJ, USA
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA
| |
Collapse
|
26
|
Horn EJ, Dempsey G, Schotthoefer AM, Prisco UL, McArdle M, Gervasi SS, Golightly M, De Luca C, Evans M, Pritt BS, Theel ES, Iyer R, Liveris D, Wang G, Goldstein D, Schwartz I. The Lyme Disease Biobank: Characterization of 550 Patient and Control Samples from the East Coast and Upper Midwest of the United States. J Clin Microbiol 2020; 58:e00032-20. [PMID: 32102853 PMCID: PMC7269379 DOI: 10.1128/jcm.00032-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
Lyme disease (LD) is an increasing public health problem. Current laboratory testing is insensitive in early infection, the stage at which appropriate treatment is most effective in preventing disease sequelae. The Lyme Disease Biobank (LDB) collects samples from individuals with symptoms consistent with early LD presenting with or without erythema migrans (EM) or an annular, expanding skin lesion and uninfected individuals from areas of endemicity. Samples were collected from 550 participants (298 cases and 252 controls) according to institutional review board-approved protocols and shipped to a centralized biorepository. Testing was performed to confirm the presence of tick-borne pathogens by real-time PCR, and a subset of samples was tested for Borrelia burgdorferi by culture. Serology was performed on all samples using the CDC's standard two-tiered testing algorithm (STTTA) for LD. LD diagnosis was supported by laboratory testing in 82 cases, including positive results by use of the STTTA, PCR, or culture or positive results by two enzyme-linked immunosorbent assays for cases presenting with EM lesion sizes of >5 cm. The remaining 216 cases had negative laboratory testing results. For the controls, 43 were positive by at least one of the tiers and 6 were positive by use of the STTTA. The results obtained with this collection highlight and reinforce the known limitations of serologic testing in early LD, with only 29% of individuals presenting with EM lesion sizes of >5 cm yielding a positive result using the STTTA. Aliquots of whole blood, serum, and urine from clinically characterized patients with and without LD are available to investigators in academia and industry for evaluation or development of novel diagnostic assays for LD, to continue to improve upon currently available methods.
Collapse
Affiliation(s)
| | - George Dempsey
- East Hampton Family Medicine, East Hampton, New York, USA
| | | | - U Lena Prisco
- Vineyard Center for Clinical Research, Martha's Vineyard, Massachusetts, USA
| | | | | | - Marc Golightly
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Cathy De Luca
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Mel Evans
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Bobbi S Pritt
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elitza S Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Guiqing Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Don Goldstein
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
27
|
Bacterial and protozoan pathogens/symbionts in ticks infecting wild grasscutters (Thryonomys swinderianus) in Ghana. Acta Trop 2020; 205:105388. [PMID: 32035054 DOI: 10.1016/j.actatropica.2020.105388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Ticks and tick-borne pathogens constitute a great threat to livestock production and are a potential health hazard to humans. Grasscutters (Thryonomys swinderianus) are widely hunted for meat in Ghana and many other West and Central African countries. However, tick-borne zoonotic risks posed by wild grasscutters have not been assessed. The objective of this study was to investigate bacterial and protozoan pathogens in ticks infecting wild grasscutters. A total of 81 ticks were collected from three hunted grasscutters purchased from Kantamanto, the central bushmeat market in Accra. Ticks were identified as Ixodes aulacodi and Rhipicephalus sp. based on morphological keys, which were further confirmed by sequencing mitochondrial 16S ribosomal DNA (rDNA) and cytochrome oxidase I (COI) genes of specimens. Protozoan infections were tested by PCR amplifying 18S rDNA of Babesia/Theileria/Hepatozoon, while bacterial infections were evaluated by PCRs or real-time PCRs targeting Anaplasmataceae, Borrelia, spotted fever group rickettsiae, chlamydiae and Candidatus Midichloria mitochondrii. The results of PCR screening showed that 35.5% (27 out of 76) of I. aulacodi were positive for parasite infections. Sequencing analysis of the amplified products gave one identical sequence showing similarity with Babesia spp. reported from Africa. The Ca. M. mitochondrii endosymbiont was present in 85.5% (65 out of 76) of I. aulacodi but not in the five Rhipicephalus ticks. Two Anaplasmataceae bacteria genetically related to Ehrlichia muris and Anaplasma phagocytophilum were also detected in two I. aulacodi. None of the ticks were positive for Borrelia spp., spotted fever group rickettsiae and chlamydiae. Since I. aulacodi on wild grasscutters are potential carriers of tick-borne pathogens, some of which could be of zoonotic potential, rigorous tick control and pathogen analyses should be instituted especially when wild caught grasscutters are being used as foundation stock for breeding.
Collapse
|
28
|
Wolf MJ, Watkins HR, Schwan WR. Ixodes scapularis: Vector to an Increasing Diversity of Human Pathogens in the Upper Midwest. WMJ : OFFICIAL PUBLICATION OF THE STATE MEDICAL SOCIETY OF WISCONSIN 2020; 119:16-21. [PMID: 32348066 PMCID: PMC7209771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The black-legged tick, Ixodes scapularis (I scapularis), is now recognized as the deadliest tick vector in the United States. The Upper Midwest, particularly Wisconsin and Minnesota, are endemic to a diversity of tick-transmitted infectious diseases. Although Borrelia burgdorferi, the agent of Lyme disease, still accounts for the majority of diagnosed infections, I scapularis is known to transmit other bacterial, viral, and parasitic agents. OBJECTIVE To provide an overview of the array of pathogenic microorganisms carried by I scapularis ticks in the Upper Midwest. METHODS A literature review was conducted to collect and analyze current information about I scapularis lifestyle, transmission, microorganisms carried by the arthropod vector, and the diseases that occur as a result of infections with these microorganisms in the Upper Midwest. RESULTS Diagnosis of co-infection from tick-borne zoonosis in humans has increased over the last 2 decades. Since I scapularis can transmit multiple pathogens, it is clinically important because different diagnostic testing and treatment strategies may need to be implemented for a patient with I scapularis-borne infection(s). CONCLUSIONS This review has concentrated on I scapularis-transmitted diseases affecting the Upper Midwest and has explored the ecology of the I scapularis vector and its role in pathogen transmission.
Collapse
Affiliation(s)
- Matthew J Wolf
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Hannah R Watkins
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin,
| |
Collapse
|
29
|
Modeling the Distribution of Medically Important Tick Species in Florida. INSECTS 2019; 10:insects10070190. [PMID: 31261713 PMCID: PMC6681331 DOI: 10.3390/insects10070190] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/18/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022]
Abstract
The lone star (Amblyomma americanum), black-legged (Ixodes scapularis) and American dog ticks (Dermacentor variabilis) are species of great public health importance as they are competent vectors of several notable pathogens. While the regional distributions of these species are well characterized, more localized distribution estimates are sparse. We used records of field collected ticks and an ensemble modeling approach to predict habitat suitability for each of these species in Florida. Environmental variables capturing climatic extremes were common contributors to habitat suitability. Most frequently, annual precipitation (Bio12), mean temperature of the driest quarter (Bio9), minimum temperature of the coldest month (Bio6), and mean Normalized Difference Vegetation Index (NDVI) were included in the final models for each species. Agreement between the modeling algorithms used in this study was high and indicated the distribution of suitable habitat for all three species was reduced at lower latitudes. These findings are important for raising awareness of the potential for tick-borne pathogens in Florida.
Collapse
|
30
|
Microbiome analysis of Ixodes scapularis ticks from New York and Connecticut. Ticks Tick Borne Dis 2019; 10:894-900. [DOI: 10.1016/j.ttbdis.2019.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
|
31
|
Xu G, Pearson P, Rich SM. Ehrlichia muris in Ixodes cookei Ticks, Northeastern United States, 2016-2017. Emerg Infect Dis 2019; 24:1143-1144. [PMID: 29774863 PMCID: PMC6004831 DOI: 10.3201/eid2406.171755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ehrlichia muris is an agent of human ehrlichiosis. To determine its geographic spread in the United States, during 2016–2017, we tested 8,760 ticks from 45 states. A distinct clade of E. muris found in 3 Ixodes cookei ticks from the northeastern United States suggests transmission by these ticks in this region.
Collapse
|
32
|
Evason M, Stull JW, Pearl DL, Peregrine AS, Jardine C, Buch JS, Lailer Z, O'Connor T, Chandrashekar R, Weese JS. Prevalence of Borrelia burgdorferi, Anaplasma spp., Ehrlichia spp. and Dirofilaria immitis in Canadian dogs, 2008 to 2015: a repeat cross-sectional study. Parasit Vectors 2019; 12:64. [PMID: 30691522 PMCID: PMC6350403 DOI: 10.1186/s13071-019-3299-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Background Vector-borne pathogens are emerging concerns in multiple regions of Canada. Determining regional prevalence of canine vector-borne pathogens and documenting change will improve clinician awareness, enable targeted prevention, enhance diagnosis and ideally reduce the risk of disease. Study objectives were to: (i) estimate the prevalence of positive canine vector-borne test results from samples submitted in Canada; (ii) assess change in prevalence over time, from baseline (2008) to 2015; and (iii) estimate the prevalence of pathogen co-infections. Methods This repeat cross-sectional study evaluated 753,468 test results for D. immitis antigen and B. burgdorferi, Ehrlichia canis/ewingii/muris serology, and 753,208 test results for Anaplasma phagocytophilum/platys serology using the SNAP® 4Dx®Test and SNAP 4Dx® Plus Test. Results Based on all submitted samples from Canada (2008–2015), the period seroprevalence of B. burgdorferi, Ehrlichia spp., Anaplasma spp. and D. immitis antigen were 2.0%, 0.5%, 0.4% and 0.2%, respectively. Over the 7 years (2008 compared to 2015) we observed a significant increase in seroprevalence for B. burgdorferi (144.4%) and Ehrlichia spp. (150%). Co-infections (positive for two or more pathogens on a single 4 pathogen test kit) were estimated at 5.4% (1162/21,612) of total positive tests. Conclusions The temporal rise and geographical differences in prevalence detected for these pathogens (notably B. burgdorferi) are consistent with anecdotal information on canine illness related to tick-borne pathogen exposure in multiple regions of Canada, particularly canine Lyme disease. Electronic supplementary material The online version of this article (10.1186/s13071-019-3299-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle Evason
- University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada. .,University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jason W Stull
- University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada.,The Ohio State University, Columbus, Ohio, 43210, USA
| | - David L Pearl
- University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | - Jesse S Buch
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, Maine, 04092, USA
| | - Zachary Lailer
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, Maine, 04092, USA
| | - Tom O'Connor
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, Maine, 04092, USA
| | | | - J Scott Weese
- University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
33
|
Khamesipour F, Dida GO, Anyona DN, Razavi SM, Rakhshandehroo E. Tick-borne zoonoses in the Order Rickettsiales and Legionellales in Iran: A systematic review. PLoS Negl Trop Dis 2018; 12:e0006722. [PMID: 30204754 PMCID: PMC6181433 DOI: 10.1371/journal.pntd.0006722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/11/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tick-borne zoonoses in the Order Rickettsiales and Legionellales cause infections that often manifest as undifferentiated fevers that are not easy to distinguish from other causes of acute febrile illnesses clinically. This is partly attributed to difficulty in laboratory confirmation since convalescent sera, specific diagnostic reagents, and the required expertise may not be readily available. As a result, a number of tick-borne zoonoses are underappreciated resulting in unnecessary morbidity, mortality and huge economic loses. In Iran, a significant proportion of human infectious diseases are tick-borne, with anecdotal evidence suggesting that tick-borne zoonoses are widespread but underreported in the country. Epidemiological review is therefore necessary to aid in the effective control and prevention of tick-borne zonooses in Iran. The aim of this review is to provide an in-depth and comprehensive overview of anaplasmosis, ehrlichiosis, spotted fever group rickettsioses and coxiellosis in Iran. METHODS Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, all relevant publications on tick-borne zoonoses in the Order Rickettsiales and Legionellales in Iran were searched using a number of search terms. The search was confined to authentic resources from repositories of popular data bases among them PubMed, Web of Science, Google Scholar, Science Direct, SpringerLink and SCOPUS. The search items included peer reviewed journals, books and book chapters published between 1996 and 2017. RESULTS A total of 1 205 scientific publications and reports were sourced, of which 63 met the search criteria and were reviewed. Of the 63 articles reviewed, 36 (57.1%) reported on coxiellosis, 15 (23.8%) on anaplasmosis, 11 (17.5%) on ehrlichiosis and 1(1.6%) on spotted fever group rickettsiae in a large scale study involving four countries, among them Iran. The existence of tick-borne pathogens in the Order Rickettsiales and Legionellales was confirmed by molecular, serological and microscopic techniques conducted on samples obtained from sheep, cattle, goats, camels, poultry, animal products (milk and eggs), dogs, ticks and even human subjects in different parts of the country; pointing to a countrywide distribution. DISCUSSION Based on the review, coxiellosis, anaplasmosis, ehrlichiosis, and SFG rickettsiae can be categorized as emerging tick-borne zoonotic diseases in Iran given the presence of their causiative agents (C. burnetii, A. phagocytophilum, A. marginale, A. bovis, A. ovis, A. central, E. canis, E. ewingii, E. chaffeensis and R. conorii) collectively reported in a variety of domestic animals, animal products, arthropods and human beings drawn from 22 provinces in Iran. CONCLUSION Given the asymptomatic nature of some of these zoonoses, there is a high likelihood of silent transmission to humans in many parts of the country, which should be considered a public health concern. Presently, information on the transmission intensity of tick-borne zoonoses caused by pathogens in the Order Rickettsiales and Legionellales to humans and its public health impact in Iran is scanty.
Collapse
Affiliation(s)
- Faham Khamesipour
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gabriel O. Dida
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
- Department of Community and Public Health, Technical University of Kenya, Nairobi, Kenya
| | - Douglas N. Anyona
- School of Environment and Earth Sciences, Maseno University, Maseno, Kenya
| | - S. Mostafa Razavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ehsan Rakhshandehroo
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
34
|
Kannangara DW, Patel P. Report of Non-Lyme, Erythema Migrans Rashes from New Jersey with a Review of Possible Role of Tick Salivary Toxins. Vector Borne Zoonotic Dis 2018; 18:641-652. [PMID: 30129909 DOI: 10.1089/vbz.2018.2278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Erythema migrans (EM) rashes once considered pathognomonic of Lyme disease (LD) have been reported following bites of arthropods that do not transmit LD and in areas with no LD. Also, EM rashes have been reported in association with organisms other than members of Borrelia burgdorferi sensu lato complex. Arthropod saliva has chemicals that have effects on the host and pathogen transmission. Tick saliva has protein families similar to spiders and scorpions and even substances homologous to those found in snakes and other venomous animals. Ticks "invertebrate pharmacologists" have a sophisticated arsenal of chemicals that assist in blood feeding, pathogen transmission, and suppressing host defenses. No organisms have been isolated from many EM rashes. We propose that tick salivary toxins may play a role in the causation of rashes and laboratory abnormalities in tick-borne diseases. The role of tick salivary toxins needs further exploration. Cases of Lyme-like EM rashes referred to as STARI (Southern Tick-Associated Rash Illness) following bites of the lone star tick, Amblyomma americanum, in the United States have been reported predominantly in Southeastern Missouri and a few in South Carolina, North Carolina, Georgia, and one case each in Mississippi and Long Island, New York. Although there is one report of Borrelia lonestari in a patient with a rash, biopsies of 31 cases of STARI, with cultures and PCR, failed to show a relationship. Distribution of A. americanum, whose bites are associated with STARI, now extends along the East Coast of the United States, including New Jersey, up to the Canadian border. As far as we are aware, there have been no prior reports of Lyme-like rashes in New Jersey. In this study, we present case examples of 2 Lyme-like rashes, variations of EM rashes, and a brief review of studies that suggest a role of tick salivary toxins in tick-borne diseases.
Collapse
Affiliation(s)
| | - Pritiben Patel
- St Luke's Health NetWork , Warren Campus, Phillipsburg, New Jersey
| |
Collapse
|
35
|
Johnson TL, Graham CB, Maes SE, Hojgaard A, Fleshman A, Boegler KA, Delory MJ, Slater KS, Karpathy SE, Bjork JK, Neitzel DF, Schiffman EK, Eisen RJ. Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks Tick Borne Dis 2018; 9:1499-1507. [PMID: 30055987 DOI: 10.1016/j.ttbdis.2018.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
In the north-central United States, the blacklegged tick (Ixodes scapularis) is currently known to vector seven human pathogens. These include five bacteria (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum, Ehrlichia muris eauclairensis), one protozoan (Babesia microti) and one virus (Powassan). We sought to assess the prevalence and distribution of these pathogens in host-seeking nymphs collected throughout Minnesota, a state on the northwestern edge of the tick's expanding range, where reported cases of I. scapularis-borne diseases have increased in incidence and geographic range over the past decade. Among the 1240 host-seeking I. scapularis nymphs that we screened from 64 sites, we detected all seven pathogens at varying frequencies. Borrelia burgdorferi s.s. was the most prevalent and geographically widespread, found in 25.24% of all nymphs tested. Anaplasma phagocytophilum and Babesia microti were also geographically widespread, but they were less prevalent than Bo. burgdorferi s.s. (detected in 6.29% and 4.68% of ticks, respectively). Spatial clusters of sites with high prevalence for these three pathogens were identified in the north-central region of the state. Prevalence was less than 1.29% for each of the remaining pathogens. Two or more pathogens were detected in 90 nymphs (7.26%); coinfections with Bo. burgdorferi s.s. and either A. phagocytophilum (51 nymphs, 4.11%) or Ba. microti (43 nymphs, 3.47%) were the most common combinations. The distribution and density of infected ticks mirrors the distribution of notifiable tick-borne diseases in Minnesota and provides information on the distribution and prevalence of recently described human pathogens.
Collapse
Affiliation(s)
- Tammi L Johnson
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Christine B Graham
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Sarah E Maes
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Andrias Hojgaard
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Amy Fleshman
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Karen A Boegler
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Mark J Delory
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Kimetha S Slater
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4027, United States
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4027, United States
| | - Jenna K Bjork
- Minnesota Department of Health, 625 Robert St N, St. Paul, MN 55164, United States
| | - David F Neitzel
- Minnesota Department of Health, 625 Robert St N, St. Paul, MN 55164, United States
| | | | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States.
| |
Collapse
|
36
|
Thomson K, Yaaran T, Belshaw A, Curson L, Tisi L, Maurice S, Kiddle G. A new TaqMan method for the reliable diagnosis of Ehrlichia spp. in canine whole blood. Parasit Vectors 2018; 11:350. [PMID: 29914548 PMCID: PMC6006785 DOI: 10.1186/s13071-018-2914-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/23/2018] [Indexed: 12/04/2022] Open
Abstract
Background Ehrlichiosis is an important emerging infectious disease of the canid family and humans worldwide. To date, no extensive evaluation or validation of a molecular diagnostic test for ehrlichiosis has been published. Here, we present data for a newly designed TaqMan assay and compare its performance to a commercial technology (PCRun®). Both of these real-time methods of analysis were evaluated using a comprehensive number of prospective and retrospective samples collected from dogs exhibiting symptoms of ehrlichiosis. Results Whole blood samples collected from dogs, retrospectively in the United Kingdom and prospectively in Israel, were analysed for the presence of Ehrlichia canis and Ehrlichia minasensis DNA using the TaqMan PCR, developed specifically for this study. The results were compared to those of a real time commercial isothermal amplification method (PCRun® system developed by Biogal Galed Labs ACS, Galed, Israel). The sensitivity and specificity (CI: 95%) of the TaqMan PCR and PCRun® were both determined to be 100% and absolute, for all of the samples tested. Interestingly, both tests were demonstrated to be highly comparable, irrespective of differences in amplification chemistry or sequences targeted. Host differences, incidence of disease and geographical location of the isolates had little impact on the positivity recorded by each of the diagnostic methods. Conclusions It was evident that both amplification methods were equally suited for diagnosing canine ehrlichiosis and while the PCRun® clearly amplified all clinically relevant Ehrlichia species known to infect dogs and humans, the TaqMan method was more specific for E. canis and E. minasensis. This work demonstrates that despite good analytical sensitivities and specificities for Ehrlichia spp. neither method could fully account for the clinical diagnosis of thrombocytopenia. Electronic supplementary material The online version of this article (10.1186/s13071-018-2914-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kirsty Thomson
- ERBA Molecular, Bartholomew's Walk, Cambridgeshire Business Park, Ely, Cambridgeshire, CB7 4EA, UK.
| | - Tal Yaaran
- Biogal, Galed Labs Acs Ltd, 1924000, Kibbutz Galed, Israel
| | - Alex Belshaw
- ERBA Molecular, Bartholomew's Walk, Cambridgeshire Business Park, Ely, Cambridgeshire, CB7 4EA, UK
| | - Lucia Curson
- ERBA Molecular, Bartholomew's Walk, Cambridgeshire Business Park, Ely, Cambridgeshire, CB7 4EA, UK
| | - Laurence Tisi
- ERBA Molecular, Bartholomew's Walk, Cambridgeshire Business Park, Ely, Cambridgeshire, CB7 4EA, UK
| | - Sarah Maurice
- Biogal, Galed Labs Acs Ltd, 1924000, Kibbutz Galed, Israel
| | - Guy Kiddle
- ERBA Molecular, Bartholomew's Walk, Cambridgeshire Business Park, Ely, Cambridgeshire, CB7 4EA, UK
| |
Collapse
|
37
|
Tokarz R, Mishra N, Tagliafierro T, Sameroff S, Caciula A, Chauhan L, Patel J, Sullivan E, Gucwa A, Fallon B, Golightly M, Molins C, Schriefer M, Marques A, Briese T, Lipkin WI. A multiplex serologic platform for diagnosis of tick-borne diseases. Sci Rep 2018; 8:3158. [PMID: 29453420 PMCID: PMC5816631 DOI: 10.1038/s41598-018-21349-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Tick-borne diseases are the most common vector-borne diseases in the United States, with serology being the primary method of diagnosis. We developed the first multiplex, array-based assay for serodiagnosis of tick-borne diseases called the TBD-Serochip. The TBD-Serochip was designed to discriminate antibody responses to 8 major tick-borne pathogens present in the United States, including Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, Ehrlichia chaffeensis, Rickettsia rickettsii, Heartland virus and Powassan virus. Each assay contains approximately 170,000 12-mer linear peptides that tile along the protein sequence of the major antigens from each agent with 11 amino acid overlap. This permits accurate identification of a wide range of specific immunodominant IgG and IgM epitopes that can then be used to enhance diagnostic accuracy and integrate differential diagnosis into a single assay. To test the performance of the TBD-Serochip, we examined sera from patients with confirmed Lyme disease, babesiosis, anaplasmosis, and Powassan virus disease. We identified a wide range of specific discriminatory epitopes that facilitated accurate diagnosis of each disease. We also identified previously undiagnosed infections. Our results indicate that the TBD-Serochip is a promising tool for a differential diagnosis not available with currently employed serologic assays for TBDs.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Nischay Mishra
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Teresa Tagliafierro
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Adrian Caciula
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lokendrasingh Chauhan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jigar Patel
- Roche Sequencing Solutions, Madison, WI, USA
| | | | - Azad Gucwa
- Department of Biology, Farmingdale State College, Farmingdale, NY, USA
| | - Brian Fallon
- Lyme and Tick-borne Diseases Research Center, Columbia University, New York, NY, USA
| | - Marc Golightly
- Department of Pathology, Stony Brook University, New York, NY, USA
| | - Claudia Molins
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Martin Schriefer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Adriana Marques
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
38
|
Graham CB, Maes SE, Hojgaard A, Fleshman AC, Sheldon SW, Eisen RJ. A molecular algorithm to detect and differentiate human pathogens infecting Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae). Ticks Tick Borne Dis 2018; 9:390-403. [PMID: 29258802 PMCID: PMC6452875 DOI: 10.1016/j.ttbdis.2017.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
Abstract
The incidence and geographic range of tick-borne illness associated with Ixodes scapularis and Ixodes pacificus have dramatically increased in recent decades. Anaplasmosis, babesiosis, and Borrelia spirochete infections, including Lyme borreliosis, account for tens of thousands of reported cases of tick-borne disease every year. Assays that reliably detect pathogens in ticks allow investigators and public health agencies to estimate the geographic distribution of human pathogens, assess geographic variation in their prevalence, and evaluate the effectiveness of prevention strategies. As investigators continue to describe new species within the Borrelia burgdorferi sensu lato complex and to recognize some Ixodes-borne Borrelia species as human pathogens, assays are needed to detect and differentiate these species. Here we describe an algorithm to detect and differentiate pathogens in unfed I. scapularis and I. pacificus nymphs including Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi sensu stricto, Borrelia mayonii, and Borrelia miyamotoi. The algorithm comprises 5 TaqMan real-time polymerase chain reaction assays and 3 sequencing protocols. It employs multiple targets for each pathogen to optimize specificity, a gene target for I. scapularis and I. pacificus to verify tick-derived DNA quality, and a pan-Borrelia target to detect Borrelia species that may emerge as human disease agents in the future. We assess the algorithm's sensitivity, specificity, and performance on field-collected ticks.
Collapse
Affiliation(s)
- Christine B Graham
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States.
| | - Sarah E Maes
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Amy C Fleshman
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Sarah W Sheldon
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| |
Collapse
|
39
|
Eisen RJ, Kugeler KJ, Eisen L, Beard CB, Paddock CD. Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health. ILAR J 2017; 58:319-335. [PMID: 28369515 PMCID: PMC5610605 DOI: 10.1093/ilar/ilx005] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/02/2023] Open
Abstract
In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents.
Collapse
Affiliation(s)
- Rebecca J Eisen
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Kiersten J Kugeler
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Lars Eisen
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Charles B Beard
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Christopher D Paddock
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| |
Collapse
|
40
|
Adams DA, Thomas KR, Jajosky RA, Foster L, Baroi G, Sharp P, Onweh DH, Schley AW, Anderson WJ. Summary of Notifiable Infectious Diseases and Conditions - United States, 2015. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2017; 64:1-143. [PMID: 28796757 DOI: 10.15585/mmwr.mm6453a1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Summary of Notifiable Infectious Diseases and Conditions - United States, 2015 (hereafter referred to as the summary) contains the official statistics, in tabular and graphical form, for the reported occurrence of nationally notifiable infectious diseases and conditions in the United States for 2015. Unless otherwise noted, data are final totals for 2015 reported as of June 30, 2016. These statistics are collected and compiled from reports sent by U.S. state and territories, New York City, and District of Columbia health departments to the National Notifiable Diseases Surveillance System (NNDSS), which is operated by CDC in collaboration with the Council of State and Territorial Epidemiologists (CSTE). This summary is available at https://www.cdc.gov/MMWR/MMWR_nd/index.html. This site also includes summary publications from previous years.
Collapse
Affiliation(s)
- Deborah A Adams
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Kimberly R Thomas
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Ruth Ann Jajosky
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Loretta Foster
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Gitangali Baroi
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Pearl Sharp
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Diana H Onweh
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Alan W Schley
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Willie J Anderson
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | | |
Collapse
|
41
|
Pritt BS, Allerdice MEJ, Sloan LM, Paddock CD, Munderloh UG, Rikihisa Y, Tajima T, Paskewitz SM, Neitzel DF, Hoang Johnson DK, Schiffman E, Davis JP, Goldsmith CS, Nelson CM, Karpathy SE. Proposal to reclassify Ehrlichia muris as Ehrlichia muris subsp. muris subsp. nov. and description of Ehrlichia muris subsp. eauclairensis subsp. nov., a newly recognized tick-borne pathogen of humans. Int J Syst Evol Microbiol 2017; 67:2121-2126. [PMID: 28699575 DOI: 10.1099/ijsem.0.001896] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously described a novel taxon of the genus Ehrlichia (type strain WisconsinT), closely related to Ehrlichia muris, that causes human ehrlichiosis among patients with exposures to ticks in the upper midwestern USA. DNA from this bacterium was also detected in Ixodes scapularis and Peromyscus leucopus collected in Minnesota and Wisconsin. To determine the relationship between the E. muris-like agent (EMLA) and other species of the genus Ehrlichia phenotypic, genotypic and epidemiologic comparisons were undertaken, including sequence analysis of eight gene loci (3906 nucleotides) for 39 EMLA DNA samples and the type strain of E. muris AS145T. Three loci were also sequenced from DNA of nine strains of E. muris from mouse spleens from Japan. All sequences from E. muris were distinct from homologous EMLA sequences, but differences between them were less than those observed among other species of the genus Ehrlichia. Phenotypic comparison of EMLA and E. muris revealed similar culture and electron microscopic characteristics, but important differences were noted in their geographic distribution, ecological associations and behavior in mouse models of infection. Based on these comparisons, we propose that type strain WisconsinT represents a novel subspecies, Ehrlichia murissubsp. eauclairensis,subsp. nov. This strain is available through the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (CRIRC EMU002T) and through the Collection de Souches de l'Unité des Rickettsies (CSURP2883 T). The subspecies Ehrlichia murissubsp. muris subsp. nov. is automatically created and the type strain AS145T is also available through the same collections (CRIRC EMU001T, CSUR E2T). Included is an emended description of E. muris.
Collapse
Affiliation(s)
- Bobbi S Pritt
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, MN, USA
| | - Michelle E J Allerdice
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Atlanta, GA, USA
| | - Lynne M Sloan
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, MN, USA
| | - Christopher D Paddock
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Atlanta, GA, USA
| | | | | | | | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | - Cynthia S Goldsmith
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Infectious Diseases Pathology Branch, Atlanta, GA, USA
| | - Curtis M Nelson
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Sandor E Karpathy
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Atlanta, GA, USA
| |
Collapse
|
42
|
Abstract
A vast number of novel tick-related microorganisms and tick-borne disease agents have been identified in the past 20 years, and more are being described due to several factors, from the curiosity of clinicians faced with unusual clinical syndromes to new tools used by microbiologists and entomologists. Borrelioses, ehrlichioses, anaplasmosis, and tick-borne rickettsial diseases are some of the emerging diseases that have been described throughout the world in recent years. In this article, we focus on the bacterial agents and diseases that have been recognized in the past 3 years and refer to major recent reviews of other recognized infections.
Collapse
|
43
|
Herrin BH, Peregrine AS, Goring J, Beall MJ, Little SE. Canine infection with Borrelia burgdorferi, Dirofilaria immitis, Anaplasma spp. and Ehrlichia spp. in Canada, 2013-2014. Parasit Vectors 2017; 10:244. [PMID: 28526093 PMCID: PMC5437676 DOI: 10.1186/s13071-017-2184-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/10/2017] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND Canine test results generated by veterinarians throughout Canada from 2013-2014 were evaluated to assess the geographical distribution of canine infection with Borrelia burgdorferi, Dirofilaria immitis, Ehrlichia spp., and Anaplasma spp. METHODS The percent positive test results of 115,636 SNAP® 4Dx® Plus tests from dogs tested were collated by province and municipality to determine the distribution of these vector-borne infections in Canada. RESULTS A total of 2,844/115,636 (2.5%) dogs tested positive for antibody to B. burgdorferi. In contrast, positive test results for D. immitis antigen and antibodies to Ehrlichia spp. and Anaplasma spp. were low, with less than 0.5% of dogs testing positive for any one of these three agents nationwide. Provincial seroprevalence for antibodies to B. burgdorferi ranged from 0.5% (Saskatchewan)-15.7% (Nova Scotia); the areas of highest percent positive test results were in proximity to regions in the USA considered endemic for Lyme borreliosis, including Nova Scotia (15.7%) and Eastern Ontario (5.1%). These high endemic foci, which had significantly higher percent positive test results than the rest of the nation (P < 0.0001), were surrounded by areas of moderate to low seroprevalence in New Brunswick (3.7%), Quebec (2.8%), and the rest of Ontario (0.9%), as well as northward and westward through Manitoba (2.4%) and Saskatchewan (0.5%). Insufficient results were available from the westernmost provinces, including Alberta and British Columbia, to allow analysis. CONCLUSION Increased surveillance of these vector-borne disease agents, especially B. burgdorferi, is important as climate, vector range, and habitat continues to change throughout Canada. Using dogs as sentinels for these pathogens can aid in recognition of the public and veterinary health threat that each pose.
Collapse
Affiliation(s)
- Brian H Herrin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - Andrew S Peregrine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | | | - Susan E Little
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
44
|
Iweriebor BC, Mmbaga EJ, Adegborioye A, Igwaran A, Obi LC, Okoh AI. Genetic profiling for Anaplasma and Ehrlichia species in ticks collected in the Eastern Cape Province of South Africa. BMC Microbiol 2017; 17:45. [PMID: 28241784 PMCID: PMC5327538 DOI: 10.1186/s12866-017-0955-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/14/2017] [Indexed: 11/24/2022] Open
Abstract
Background Anaplasma and Ehrlichia are emerging tick-borne pathogens that cause anaplasmosis and ehrlichiosis in humans and other animals worldwide. Infections caused by these pathogens are deadly if left untreated. There has been relatively no systematic survey of these pathogens among ticks in South Africa, thus necessitating this study. The presence of Anaplasma and Ehrlichia species were demonstrated by PCR in ticks collected from domestic ruminants at some selected communities in the Eastern Cape of South Africa. The ticks were identified by morphological characteristics and thereafter processed to extract bacterial DNA, which was analyzed for the presence of genetic materials of Anaplasma and Ehrlichia. Results Three genera of ticks comprising five species were identified. The screening yielded 16 positive genetic materials that were phylogenetically related to Ehrlichia sequences obtained from GenBank, while no positive result was obtained for Anaplasma. The obtained Ehrlichia sequences were closely related to E. chaffeensis, E. canis, E. muris and the incompletely described Ehrlichia sp. UFMG-EV and Ehrlichia sp. UFMT. Conclusion The findings showed that ticks in the studied areas were infected with Ehrlichia spp. and that the possibility of transmission to humans who might be tick infested is high.
Collapse
Affiliation(s)
- Benson C Iweriebor
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa. .,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa.
| | - Elia J Mmbaga
- The Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Abiodun Adegborioye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa
| | - Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa
| | - Larry C Obi
- Academic and Research Division, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa
| |
Collapse
|
45
|
Regunath H, Rojas-Moreno C, Olano JP, Hammer RD, Salzer W. Early diagnosis of Ehrlichia ewingii infection in a lung transplant recipient by peripheral blood smear. Transpl Infect Dis 2017; 19. [PMID: 28036138 DOI: 10.1111/tid.12652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/11/2016] [Accepted: 09/18/2016] [Indexed: 12/17/2022]
Abstract
Ehrlichiosis in lung transplant (LT) recipients is associated with severe outcomes. Ehrlichia ewingii is a less frequent cause of symptomatic ehrlichiosis, characterized by cytoplasmic inclusions (morulae) within circulating neutrophils. We report a case of E. ewingii infection in an LT recipient diagnosed promptly by blood smear exam and confirmed with molecular studies.
Collapse
Affiliation(s)
- Hariharan Regunath
- Division of Pulmonary and Critical Care, Department of Medicine, University of Missouri, Columbia, MO, USA.,Division of Infectious Diseases, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Christian Rojas-Moreno
- Division of Infectious Diseases, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Juan P Olano
- Department of Pathology, Member, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - William Salzer
- Division of Infectious Diseases, Department of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
46
|
Lynn GE, Oliver JD, Cornax I, O'Sullivan MG, Munderloh UG. Experimental evaluation of Peromyscus leucopus as a reservoir host of the Ehrlichia muris-like agent. Parasit Vectors 2017; 10:48. [PMID: 28129781 PMCID: PMC5273795 DOI: 10.1186/s13071-017-1980-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Ehrlichia muris-like agent (EMLA) is a newly recognized human pathogen in the North Central United States. Although blacklegged ticks (Ixodes scapularis) have been identified as capable vectors, wild reservoirs have not yet been established for EMLA. As key hosts for I. scapularis, white-footed mice (Peromyscus leucopus) are important reservoirs for various tick-borne pathogens, and potentially, for EMLA. The objective of this study was to evaluate reservoir competence in P. leucopus using a natural vector. Results Mice acquired EMLA infection from feeding ticks and were able to transmit infection to naïve ticks. Transmission between simultaneously feeding tick life stages was also demonstrated. Infections in mice were acute and severe, with systemic dissemination. Limited host survival and clearance of infection among survivors resulted in a narrow interval where EMLA could be acquired by feeding ticks. Conclusions Peromyscus leucopus is a competent reservoir of EMLA and likely to play a role in its enzootic transmission cycle. The duration and severity of EMLA infection in these hosts suggests that tick phenology is a critical factor determining the geographic distribution of EMLA in North America.
Collapse
Affiliation(s)
- Geoffrey E Lynn
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA.
| | - Jonathan D Oliver
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| | - Ingrid Cornax
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - Ulrike G Munderloh
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| |
Collapse
|
47
|
Murphy DS, Lee X, Larson SR, Johnson DKH, Loo T, Paskewitz SM. Prevalence and Distribution of Human and Tick Infections with the Ehrlichia muris-Like Agent and Anaplasma phagocytophilum in Wisconsin, 2009-2015. Vector Borne Zoonotic Dis 2017; 17:229-236. [PMID: 28055326 DOI: 10.1089/vbz.2016.2055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ehrlichiosis and anaplasmosis are important emerging tickborne zoonoses that affect both humans and animals. Knowledge of the geographic distribution and prevalence of Ehrlichia spp. and Anaplasma phagocytophilum in Wisconsin is important information as a baseline for future comparisons. Reported human cases between 2009 and 2015 were identified using the Wisconsin Electronic Disease Surveillance System (WEDSS) and mapped by county of residence. Vector surveillance was established using ticks collected from animals by partners, including veterinary medical clinics, domestic animal shelters, and wildlife rehabilitation centers from 40 Wisconsin counties. A total of 1835 Ixodes scapularis tick specimens (larvae, nymphs, and adults) were collected from 18 different domestic and wildlife species from July 2011 to November 2015. An additional 1136 nymphs were collected by drag sampling at 23 locations in 19 counties in 2015. A real-time PCR assay that detects and distinguishes several Ehrlichia species, including a pathogenic Ehrlichia muris-like agent (EMLA), and A. phagocytophilum was performed on adult and nymphal ticks. A total of 757 I. scapularis ticks (predominately adults) were tested from animal collections, with 67 (8.9%) individuals positive for A. phagocytophilum and 22 (2.9%) positive for EMLA DNA. Of the 1150 questing nymphs, 62 (5.4%) were positive for A. phagocytophilum and 10 (0.9%) were positive for EMLA DNA. Specimens of I. scapularis that were positive for A. phagocytophilum were found in 27 of the 33 counties surveyed. Specimens that were positive for EMLA were less common and were found in nine counties. This study provides the first statewide survey of I. scapularis ticks for these pathogens and indicates that the risk of human exposure is widely distributed.
Collapse
Affiliation(s)
- Darby S Murphy
- 1 Department of Entomology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Xia Lee
- 1 Department of Entomology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Scott R Larson
- 1 Department of Entomology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Diep K Hoang Johnson
- 2 Division of Public Health, Wisconsin Department of Health Services , Madison, Wisconsin
| | - Theoren Loo
- 2 Division of Public Health, Wisconsin Department of Health Services , Madison, Wisconsin
| | - Susan M Paskewitz
- 1 Department of Entomology, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
48
|
Harris RM, Couturier BA, Sample SC, Coulter KS, Casey KK, Schlaberg R. Expanded Geographic Distribution and Clinical Characteristics of Ehrlichia ewingii Infections, United States. Emerg Infect Dis 2016; 22:862-5. [PMID: 27089171 PMCID: PMC4861533 DOI: 10.3201/eid2205.152009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This bacterium should be considered as an etiologic agent of tickborne illness that might be missed by serologic testing. Ehrlichiosis is a bacterial zoonosis, spread through the bites of infected ticks, that is most commonly caused in the United States by infection with the bacterium Ehrlichia chaffeensis. We retrospectively reviewed samples from an 18-month study of ehrlichiosis in the United States and found that E. ewingii was present in 10 (9.2%) of 109 case-patients with ehrlichiosis, a higher rate of infection with this species than had previously been reported. Two patients resided in New Jersey and Indiana, where cases have not been reported. All patients with available case histories recovered. Our study suggests a higher prevalence and wider geographic distribution of E. ewingii in the United States than previous reports have indicated.
Collapse
|
49
|
Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent. Epidemics 2016; 19:33-42. [PMID: 28089780 PMCID: PMC5474356 DOI: 10.1016/j.epidem.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/18/2016] [Accepted: 12/18/2016] [Indexed: 01/08/2023] Open
Abstract
Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding – such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.
Collapse
|
50
|
Wei F, Song M, Liu H, Wang B, Wang S, Wang Z, Ma H, Li Z, Zeng Z, Qian J, Liu Q. Molecular Detection and Characterization of Zoonotic and Veterinary Pathogens in Ticks from Northeastern China. Front Microbiol 2016; 7:1913. [PMID: 27965644 PMCID: PMC5126052 DOI: 10.3389/fmicb.2016.01913] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n = 1699), Haemaphysalis concinna (n = 412), Haemaphysalis longicornis (n = 390), Dermacentor nuttalli (n = 253), and Dermacentor silvarum (n = 204) ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. Anaplasma phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%), H. longicornis (1.9%), H. concinna (6.5%), D. nuttalli (1.7%), and D. silvarum (2.3%); Anaplasma bovis was detected in H. longicornis (0.3%) and H. concinna (0.2%); Ehrlichia muris was detected in I. persulcatus (2.5%) and H. concinna (0.2%); Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%). The Ehrlichia variant (GenBank access number KU921424), closely related to Ehrlichia ewingii, was found in H. longicornis (0.8%) and H. concinna (0.2%). I. persulcatus was infected with Babesia venatorum (1.2%), Babesia microti (0.6%), and Babesia divergens (0.6%). Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306) were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep, and cattle (B. gibsoni, B. motasi, and B. crassa). Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029) associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%). These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases.
Collapse
Affiliation(s)
- Feng Wei
- College of Life Science, Jilin Agricultural UniversityChangchun, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical SciencesChangchun, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Huanhuan Liu
- College of Life Science, Jilin Agricultural University Changchun, China
| | - Bo Wang
- Department of Pathology, The Second Clinical Medical School of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital Yakeshi, China
| | - Shuchao Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| | - Zedong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| | - Hongyu Ma
- College of Life Science, Jilin Agricultural University Changchun, China
| | - Zhongyu Li
- College of Life Science, Jilin Agricultural University Changchun, China
| | - Zheng Zeng
- Center for Prevention and Control of Animal Diseases of Chongqing Chongqing, China
| | - Jun Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| | - Quan Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| |
Collapse
|