1
|
Feng X, Liu Z, Mo Y, Zhang S, Ma XX. Role of nucleotide pair frequency and synonymous codon usage in the evolution of bovine viral diarrhea virus. Arch Virol 2025; 170:64. [PMID: 40011265 DOI: 10.1007/s00705-025-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 02/28/2025]
Abstract
Synonymous codon usage plays an important role in the adaptation of viruses to their hosts. Bovine viral diarrhea virus (BVDV) relies on a high mutation rate in its genome to achieve the necessary fitness in a particular host. However, the question of which selective forces influence nucleotide pair and synonymous codon usage patterns in different BVDV genotypes remains unresolved. Here, 169 BVDV strains isolated at different times in various countries were analyzed to compare their dinucleotide frequency and synonymous codon usage. Examination of the nucleotide usage pattern in the open reading frame (ORF) of BVDV revealed a significantly higher frequency of purine than pyrimidine, with the highest extent of nucleotide usage bias observed in the first codon position. Moreover, a nucleotide pair bias, especially favoring CpG dinucleotides, was observed in all of the genotypes. Together, the nucleotide composition constraints and nucleotide pair bias appear to have influenced the overall codon usage pattern. Nucleotide pair and synonymous codon usage biases were associated with individual genotypes to different degrees. Of particular note, BVDV-1 exhibited more variation in its nucleotide pair and synonymous codon usage than BVDV-2 and BVDV-3, suggesting that these patterns are shaped both by selection of mutations in the viral genome and translational selection in the host.
Collapse
Affiliation(s)
- Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zeyu Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yongli Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shubin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Kikuchi F, Hayashi A, Yamada K, Matsui Y, Shimbashi R, Noguchi Y, Tachibana K, Mizutani T, Tokaji A, Yoshikawa A, Ihara M, Oishi K, Kamiya H, Arai S, Suzuki M. The Role of Wild Boar as Host of Japanese Encephalitis Virus in the Absence of Domestic Pigs. Viruses 2024; 16:1273. [PMID: 39205248 PMCID: PMC11360753 DOI: 10.3390/v16081273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Pigs are the most common amplifying hosts of the Japanese encephalitis virus (JEV). In 2016, four residents on Tsushima Island who did not own pig farms were diagnosed with JE. Therefore, a serosurvey was conducted to estimate the risk and seroprevalence of JEV after the outbreak. Sera collected from 560 Tsushima Island residents between January and September 2017 were tested for neutralizing antibodies against JEV strains JaGAr01 (genotype 3) and Muar (genotype 5). Sera collected from six wild boars between June and July 2022 were tested. The seroprevalence rates of neutralizing antibodies against JaGAr01 and Muar were 38.8% and 24.6%, respectively. High anti-JEV neutralizing antibody titers of ≥320 were identified in 16 residents, including 3 younger than 6 years with prior JEV vaccination, 2 in their 40s, and 11 older than 70. However, no anti-JEV-specific IgM was detected. Residents who engaged in outdoor activities had higher anti-JEV antibody titers. Sera from wild boars were negative for JEV RNA, but four of six samples contained neutralizing antibodies against JEV. Therefore, JEV transmission continues on Tsushima Island, even in the absence of pig farms, and wild boars might serve as the amplifying hosts.
Collapse
Affiliation(s)
- Fuka Kikuchi
- Center for Infectious Diseases Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (F.K.); (T.M.)
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
| | - Ai Hayashi
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Karen Yamada
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Yusuke Matsui
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
| | - Reiko Shimbashi
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
| | - Yuji Noguchi
- Nagasaki Prefecture Tsushima Hospital, Nagasaki 817-0322, Japan
| | | | - Tetsuya Mizutani
- Center for Infectious Diseases Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (F.K.); (T.M.)
| | - Akihiko Tokaji
- Department of Health Policy, Kochi Public Health and Environmental Science Research Institute, Kochi 780-0850, Japan;
| | - Akira Yoshikawa
- Department of Public Health, Nagasaki Prefectural Institute for Environmental Research and Public Health, Nagasaki 856-0026, Japan; (A.Y.); (M.I.)
| | - Motoki Ihara
- Department of Public Health, Nagasaki Prefectural Institute for Environmental Research and Public Health, Nagasaki 856-0026, Japan; (A.Y.); (M.I.)
| | - Kazunori Oishi
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
- Toyama Institute of Health, 17-1 Nakataikouyama, Imizu, Toyama 939-0363, Japan
| | - Hajime Kamiya
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
| | - Satoru Arai
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
| | - Motoi Suzuki
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.H.); (K.Y.); (R.S.); (K.O.); (H.K.); (M.S.)
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Nie M, Zhou Y, Li F, Deng H, Zhao M, Huang Y, Jiang C, Sun X, Xu Z, Zhu L. Epidemiological investigation of swine Japanese encephalitis virus based on RT-RAA detection method. Sci Rep 2022; 12:9392. [PMID: 35672440 PMCID: PMC9172605 DOI: 10.1038/s41598-022-13604-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
JEV is one of the zoonotic pathogens that cause serious diseases in humans. JEV infection can cause abortion, mummified foetus and stillbirth in sows, orchitis and semen quality decline in boars, causing huge economic losses to pig industry. In order to investigate the epidemiology of JEV in pigs in Sichuan province, a rapid and efficient fluorescent Reverse transcription recombinase-aided amplification (RT-RAA) detection method was established. Aborted fetuses and testicular swollen boar samples were detected by RT-RAA in pigs in the mountain areas around Sichuan Basin, and the detection rate of JEV was 6.49%. The positive samples were identified as JEV GI strain and GIIIstrain by sequencing analysis. We analyzed the whole gene sequence of a positive sample for the GI virus. The Envelope Protein (E protein) phylogenetic tree analysis was far related to the Chinese vaccine strain SA14-14-2, and was most closely related to the JEV GI strains SH17M-07 and SD0810 isolated from China. The results showed that we established an efficient, accurate and sensitive method for clinical detection of JEV, and JEV GI strains were prevalent in Sichuan area. It provides reference for the prevention and control of JEV in Sichuan.
Collapse
|
4
|
Effectiveness of Live-Attenuated Genotype III Japanese Encephalitis Viral Vaccine against Circulating Genotype I Viruses in Swine. Viruses 2022; 14:v14010114. [PMID: 35062317 PMCID: PMC8778556 DOI: 10.3390/v14010114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Expansion of genotype I (GI) Japanese encephalitis viruses (JEV) has resulted in the replacement of the dominant genotype III (GIII) viruses, raising serious public health concerns for using GIII virus-derived vaccines to effectively control JEV epidemics. Therefore, this study used swine as the model to estimate the effectiveness of GIII live-attenuated vaccine against GI virus infection by comparing the incidence of stillbirth/abortion in gilts from vaccinated and non-vaccinated pig farms during the GI-circulation period. In total, 389 and 213 litters of gilts were recorded from four vaccinated and two non-vaccinated pig farms, respectively. All viruses detected in the aborted fetuses and mosquitoes belonged to the GI genotype during the study period. We thus estimated that the vaccine effectiveness of GIII live-attenuated vaccine against GI viruses in naive gilts based on the overall incidence of stillbirth/abortion and incidence of JEV-confirmed stillbirth/abortion was 65.5% (50.8–75.7%) and 74.7% (34.5–90.2%), respectively. In contrast to previous estimates, the GIII live-attenuated vaccine had an efficacy of 95.6% (68.3–99.4%) to prevent the incidence of stillbirth/abortion during the GIII-circulating period. These results indicate that the vaccine effectiveness of GIII live-attenuated JEV vaccine to prevent stillbirth/abortion caused by GI viruses is lower than that against GIII viruses.
Collapse
|
5
|
Young CL, Lyons AC, Hsu WW, Vanlandingham DL, Park SL, Bilyeu AN, Ayers VB, Hettenbach SM, Zelenka AM, Cool KR, Peterson GJ, Higgs S, Huang YJS. Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antiviral Res 2019; 174:104675. [PMID: 31825852 DOI: 10.1016/j.antiviral.2019.104675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus endemic in the Asia Pacific region. Despite use of several highly effective vaccines, it is estimated that up to 44,000 new cases of Japanese encephalitis (JE) occur every year including 14,000 deaths and 24,000 survivors with permanent sequelae. Humoral immunity induced by vaccination is critical for effective protection. Potently neutralizing antibodies reactive with the JEV envelope (E) protein are important since protective immune responses induced by both live-attenuated and inactivated JE vaccines target the E protein. Our understanding of how vaccine-induced humoral immunity protects vaccinees from morbidity and mortality is, however, limited and largely obtained from in vitro studies. With the exception of neurovirulence mouse models, very few platforms are available for evaluating the protective efficacy of neutralizing antibodies against JEV in vivo. Swine are a major amplifying host in the natural JEV transmission cycle and develop multiple pathological outcomes similar to humans infected with JEV. In this study, prophylactic passive immunization was performed in a miniature swine model, using two vaccination-induced monoclonal antibodies (mAb), JEV-31 and JEV-169. These were selected as representatives for antibodies reactive with the major antigenic structures in the E protein of JEV and related flaviviruses. JEV-31 recognizes the lateral ridge of E protein domain III (EDIII) whilst JEV-169 has a broad footprint of binding involving residues throughout domains I (EDI) and II (EDII) of the E protein. Detection of neutralizing antibodies in the serum of immunized animals mimics the presence of neutralizing antibodies in vaccinated individuals. Passive immunization with both mAbs significantly reduced the severity of diseases that resemble the symptoms of human JE including fever, viremia, viral shedding, systemic infection, and neuroinvasion. In contrast to the uniformed decrease of viral loads in lymphoid and central nervous systems, distinct kinetics in the onset of fever and viremia between animals receiving JEV-31 and JEV-169 suggest potential differences in immune protection mechanisms between anti-EDI and anti-EDIII neutralizing antibodies elicited by vaccination. Our data demonstrate the feasibility of using swine models in characterizing the protective humoral immunity against JEV and increase our understanding of how clonal populations of anti-E mAbs derived from JE vaccination protect against infection in vivo.
Collapse
Affiliation(s)
- Christian L Young
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Amy C Lyons
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley N Bilyeu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Victoria B Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Susan M Hettenbach
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley M Zelenka
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Konner R Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Gregory J Peterson
- University Research Compliance Office, Kansas State University, Manhattan, KS, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
6
|
Fan YC, Liang JJ, Chen JM, Lin JW, Chen YY, Su KH, Lin CC, Tu WC, Chiou MT, Ou SC, Chang GJJ, Lin YL, Chiou SS. NS2B/NS3 mutations enhance the infectivity of genotype I Japanese encephalitis virus in amplifying hosts. PLoS Pathog 2019; 15:e1007992. [PMID: 31381617 PMCID: PMC6695206 DOI: 10.1371/journal.ppat.1007992] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/15/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022] Open
Abstract
Genotype I (GI) virus has replaced genotype III (GIII) virus as the dominant Japanese encephalitis virus (JEV) in the epidemic area of Asia. The mechanism underlying the genotype replacement remains unclear. Therefore, we focused our current study on investigating the roles of mosquito vector and amplifying host(s) in JEV genotype replacement by comparing the replication ability of GI and GIII viruses. GI and GIII viruses had similar infection rates and replicated to similar viral titers after blood meal feedings in Culex tritaeniorhynchus. However, GI virus yielded a higher viral titer in amplifying host-derived cells, especially at an elevated temperature, and produced an earlier and higher viremia in experimentally inoculated pigs, ducklings, and young chickens. Subsequently we identified the amplification advantage of viral genetic determinants from GI viruses by utilizing chimeric and recombinant JEVs (rJEVs). Compared to the recombinant GIII virus (rGIII virus), we observed that both the recombinant GI virus and the chimeric rJEVs encoding GI virus-derived NS1-3 genes supported higher replication ability in amplifying hosts. The replication advantage of the chimeric rJEVs was lost after introduction of a single substitution from a GIII viral mutation (NS2B-L99V, NS3-S78A, or NS3-D177E). In addition, the gain-of-function assay further elucidated that rGIII virus encoding GI virus NS2B-V99L/NS3-A78S/E177E substitutions re-gained the enhanced replication ability. Thus, we conclude that the replication advantage of GI virus in pigs and poultry is the result of three critical NS2B/NS3 substitutions. This may lead to more efficient transmission of GI virus than GIII virus in the amplifying host-mosquito cycle. Flaviviral vertebrate amplifying host(s), invertebrate vector(s), genetics, and environmental factors shape the viral geographical distribution and epidemic disease pattern. Newly emerging dengue virus genotypes, West Nile virus clades, or Zika virus strains exhibited an enhancement in mosquito vector competence. However, hosts and viral determinants responsible for the occurrence of JEV genotype replacement remains unclear. Here, we demonstrated that emerging GI viruses with enhanced transmission potential in amplifying hosts such as pigs and avian species was encoded by three critical GI-specific mutations in NS2B/NS3 proteins. This discovery provides insight into the viral genetic mechanism underlying the GI virus advantage and adaptation in the pig/avian species-mosquito cycle. Our results also emphasize the importance of monitoring viral evolution in amplifying vertebrate hosts to clarify the role of avian species in local transmission of GI virus in JE endemic and epidemic countries.
Collapse
Affiliation(s)
- Yi-Chin Fan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Jen-Wei Lin
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Hsuan Su
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shan-Chia Ou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Gwong-Jen J. Chang
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Chen KC, Lin YF, Huang AC, Gao JY, Lin CW, Lien JC. Molecular interaction of the antiviral compound CW‑33 and its analogues with the NS2B‑NS3 protease of the Japanese encephalitis virus. Int J Mol Med 2019; 43:2024-2032. [PMID: 30816489 PMCID: PMC6443346 DOI: 10.3892/ijmm.2019.4113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
In a previous study from our group, a novel compound, namely CW‑33 (ethyl 2‑(3',5'‑dimethylanilino)‑4‑oxo‑4,5‑dihydrofuran‑3‑carboxylate) was identified that exhibited antiviral activity for Japanese encephalitis virus (JEV). The viral NS2B‑NS3 serine protease serves an important role in cytoplasmic cleavage events that occur during viral polyprotein maturation. The inhibition of viral RNA and protein syntheses was responsible for the antiviral activities of the novel furanonaphthoquinone derivatives that were discovered for the prevention of JEV infection. Consequently, the present study examined the molecular docking simulation of JEV protease with compound CW‑33 and its analogues, and developed quantitative structure‑activity relationship (QSAR) models to assess the potential antiviral activities of these compounds with regard to JEV. Molecular docking simulation indicated the potential ligand‑protein interactions associated with the antiviral activities of these compounds. According to the results of the QSAR models, the secondary amine group was an important moiety required for compound bioactivity, which enabled the formation of hydrogen bonding with the residue Glu155. Furthermore, the aromatic ring mapping of the phenyl moiety of each compound was predicted to form a π‑cation interaction with residue Arg76, whereas the hydrophobic feature represented by the ethyl moiety exhibited hydrophobic contacts with residue Glu74. Finally, the hydrophobic substituents in the meta‑position of the phenyl ring further contributed to the efficacy of the antiviral activity. These results unravel the structural characteristics that are required for binding of CW‑33 to the JEV protease and can be used for potential therapeutic and drug development purposes for JEV.
Collapse
Affiliation(s)
| | - Yu-Fong Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26647
| | | | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402,Department of Biotechnology, Asia University, Taichung 41354,Professor Cheng-Wen Lin, Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan, R.O.C., E-mail:
| | - Jin-Cherng Lien
- School of Pharmacy,Department of Medical Research, Hospital of China Medical University, Taichung 40402, Taiwan, R.O.C,Correspondence to: Professor Jin-Cherng Lien, School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan, R.O.C., E-mail:
| |
Collapse
|
8
|
Huang YJS, Higgs S, Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses. Curr Opin Virol 2019; 34:104-109. [DOI: 10.1016/j.coviro.2019.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
|
9
|
Garjito TA, Prihatin MT, Susanti L, Prastowo D, Sa'adah SR, Taviv Y, Satoto TBT, Waluyo J, Manguin S, Frutos R. First evidence of the presence of genotype-1 of Japanese encephalitis virus in Culex gelidus in Indonesia. Parasit Vectors 2019; 12:19. [PMID: 30621763 PMCID: PMC6325860 DOI: 10.1186/s13071-018-3285-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/28/2018] [Indexed: 12/04/2022] Open
Abstract
Background Japanese encephalitis has become a public health threat in Indonesia. Three genotypes have been recorded in Indonesia, i.e. genotype II (GII), genotype III (GIII) and genotype IV (GIV). Genotype I (GI) and genotype V (GV) have never been reported in Indonesia. Results A Japanese encephalitis virus (JEV) belonging to the genotype I-a (GI-a) has been isolated for the first time from a Culex gelidus mosquito in the Province of Jambi, Indonesia. This virus is related to a 1983 isolate from Thailand whereas the infected Cx. gelidus mosquito belonged to a Chinese haplotype. Conclusions Surveillance of JEV and mosquito dissemination is recommended.
Collapse
Affiliation(s)
- Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development (NIHRD-MoH), Salatiga, Indonesia. .,Université de Montpellier, Montpellier, France. .,HydroSciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD), CNRS, Université de Montpellier, Montpellier, France.
| | - Mega Tyas Prihatin
- Institute for Vector and Reservoir Control Research and Development (NIHRD-MoH), Salatiga, Indonesia
| | - Lulus Susanti
- Institute for Vector and Reservoir Control Research and Development (NIHRD-MoH), Salatiga, Indonesia
| | - Dhian Prastowo
- Institute for Vector and Reservoir Control Research and Development (NIHRD-MoH), Salatiga, Indonesia
| | - Siti Rofiatus Sa'adah
- Institute for Vector and Reservoir Control Research and Development (NIHRD-MoH), Salatiga, Indonesia
| | - Yulian Taviv
- Health Research and Development unit Baturaja, Baturaja, South Sumatra, Indonesia
| | | | - Joko Waluyo
- Institute for Vector and Reservoir Control Research and Development (NIHRD-MoH), Salatiga, Indonesia
| | - Sylvie Manguin
- Université de Montpellier, Montpellier, France.,HydroSciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD), CNRS, Université de Montpellier, Montpellier, France
| | - Roger Frutos
- Université de Montpellier, Montpellier, France.,CIRAD, Intertryp, Montpellier, France.,IES, Université de Montpellier-CNRS, Montpellier, France
| |
Collapse
|
10
|
Experimental Evaluation of the Role of Ecologically-Relevant Hosts and Vectors in Japanese Encephalitis Virus Genotype Displacement. Viruses 2019; 11:v11010032. [PMID: 30621345 PMCID: PMC6356879 DOI: 10.3390/v11010032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a flavivirus that is maintained via transmission between Culex spp. mosquitoes and water birds across a large swath of southern Asia and northern Australia. Currently JEV is the leading cause of vaccine-preventable encephalitis in humans in Asia. Five genotypes of JEV (G-I–G-V) have been responsible for historical and current outbreaks in endemic regions, and G-I and G-III co-circulate throughout Southern Asia. While G-III has historically been the dominant genotype worldwide, G-I has gradually but steadily displaced G-III. The objective of this study was to better understand the phenomenon of genotype displacement for JEV by evaluating both avian host and mosquito vector susceptibilities to infection with representatives from both G-I and G-III. Since ducks and Culex quinquefasciatus mosquitoes are prevalent avian hosts and vectors perpetuating JEV transmission in JE endemic areas, experimental evaluation of virus replication in these species was considered to approximate the natural conditions necessary for studying the role of host, vectors and viral fitness in the JEV genotype displacement context. We evaluated viremia in ducklings infected with G-I and G-III, and did not detect differences in magnitude or duration of viremia. Testing the same viruses in mosquitoes revealed that the rates of infection, dissemination and transmission were higher in virus strains belonging to G-I than G-III, and that the extrinsic incubation period was shorter for the G-I strains. These data suggest that the characteristics of JEV infection of mosquitoes but not of ducklings, may have play a role in genotype displacement.
Collapse
|
11
|
Liang JJ, Chou MW, Lin YL. DC-SIGN Binding Contributed by an Extra N-Linked Glycosylation on Japanese Encephalitis Virus Envelope Protein Reduces the Ability of Viral Brain Invasion. Front Cell Infect Microbiol 2018; 8:239. [PMID: 30042931 PMCID: PMC6048278 DOI: 10.3389/fcimb.2018.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
The major structural envelope (E) protein of Japanese encephalitis virus (JEV) facilitates cellular binding/entry and is the primary target of neutralizing antibodies. JEV E protein has one N-linked glycosylation site at N154 (G2 site), but the related dengue virus E protein has two glycosylation sites at N67 (G1 site) and N153 (G2 site). We generated three recombinant JEVs with different glycosylation patterns on the E protein. As compared with wild-type (WT) JEV with G2 glycosylation, viral growth in culture cells as well as neurovirulence and neuroinvasiveness in challenged mice were reduced when infected with the G1 mutant (E-D67N/N154A) with glycosylation shifted to G1 site, and the G0 mutant (E-N154A) with non-glycosylation. The G1G2 mutant (E-D67N), with E-glycosylation on both G1 and G2 sites, showed potent in vitro viral replication and in vivo neurovirulence, but reduced neuroinvasiveness. Furthermore, the JEV mutants with G1 glycosylation showed enhanced DC-SIGN binding, which may then lead to reduced brain invasion and explain the reason why WT JEV is devoid of this G1 site of glycosylation. Overall, the patterns of N-linked glycosylation on JEV E proteins may affect viral interaction with cellular lectins and contribute to viral replication and pathogenesis.
Collapse
Affiliation(s)
- Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Min-Wei Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|