1
|
Moinet M, Rogers L, Biggs P, Marshall J, Muirhead R, Devane M, Stott R, Cookson A. High-resolution genomic analysis to investigate the impact of the invasive brushtail possum (Trichosurus vulpecula) and other wildlife on microbial water quality assessments. PLoS One 2024; 19:e0295529. [PMID: 38236841 PMCID: PMC10796070 DOI: 10.1371/journal.pone.0295529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Escherichia coli are routine indicators of fecal contamination in water quality assessments. Contrary to livestock and human activities, brushtail possums (Trichosurus vulpecula), common invasive marsupials in Aotearoa/New Zealand, have not been thoroughly studied as a source of fecal contamination in freshwater. To investigate their potential role, Escherichia spp. isolates (n = 420) were recovered from possum gut contents and feces and were compared to those from water, soil, sediment, and periphyton samples, and from birds and other introduced mammals collected within the Mākirikiri Reserve, Dannevirke. Isolates were characterized using E. coli-specific real-time PCR targeting the uidA gene, Sanger sequencing of a partial gnd PCR product to generate a gnd sequence type (gST), and for 101 isolates, whole genome sequencing. Escherichia populations from 106 animal and environmental sample enrichments were analyzed using gnd metabarcoding. The alpha diversity of Escherichia gSTs was significantly lower in possums and animals compared with aquatic environmental samples, and some gSTs were shared between sample types, e.g., gST535 (in 85% of samples) and gST258 (71%). Forty percent of isolates gnd-typed and 75% of reads obtained by metabarcoding had gSTs shared between possums, other animals, and the environment. Core-genome single nucleotide polymorphism (SNP) analysis showed limited variation between several animal and environmental isolates (<10 SNPs). Our data show at an unprecedented scale that Escherichia clones are shared between possums, other wildlife, water, and the wider environment. These findings support the potential role of possums as contributors to fecal contamination in Aotearoa/New Zealand freshwater. Our study deepens the current knowledge of Escherichia populations in under-sampled wildlife. It presents a successful application of high-resolution genomic methods for fecal source tracking, thereby broadening the analytical toolbox available to water quality managers. Phylogenetic analysis of isolates and profiling of Escherichia populations provided useful information on the source(s) of fecal contamination and suggest that comprehensive invasive species management strategies may assist in restoring not only ecosystem health but also water health where microbial water quality is compromised.
Collapse
Affiliation(s)
- Marie Moinet
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Lynn Rogers
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Patrick Biggs
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | | | - Megan Devane
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - Rebecca Stott
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand
| | - Adrian Cookson
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Hoyle DV, Wee BA, Macleod K, Chase-Topping ME, Bease AG, Tongue SC, Gally DL, Delannoy S, Fach P, Pearce MC, Gunn GJ, Holmes A, Allison L. Phylogenetic relationship and virulence composition of Escherichia coli O26:H11 cattle and human strain collections in Scotland; 2002-2020. Front Microbiol 2023; 14:1260422. [PMID: 38029122 PMCID: PMC10657854 DOI: 10.3389/fmicb.2023.1260422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002-2004 and 2014-2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections.
Collapse
Affiliation(s)
- Deborah V. Hoyle
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Bryan A. Wee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Kareen Macleod
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Margo E. Chase-Topping
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Andrew G. Bease
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sue C. Tongue
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - David L. Gally
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sabine Delannoy
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Patrick Fach
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Michael C. Pearce
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - George J. Gunn
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Colello R, Baigorri M, Del Canto F, González J, Rogé A, van der Ploeg C, Sánchez Chopa F, Sparo M, Etcheverría A, Padola NL. Occurrence and genetic characterization of Shiga toxin-producing Escherichia coli on bovine and pork carcasses and the environment from transport trucks. World J Microbiol Biotechnol 2023; 39:174. [PMID: 37115263 DOI: 10.1007/s11274-023-03624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe diseases. The ability of STEC to produce disease is associated with Shiga toxin (Stx) production. We investigated the occurrence of STEC on bovine and pork carcasses and walls of trucks where they were transported, and we characterized virulence genes and serotypes of STEC strains. We compared the whole genomic sequencing of a STEC O157:H7 strain isolated from a bovine carcass in this work and a STEC O157:H7 strain isolated from a child with HUS, both isolated in 2019. We studied the relationship between these isolates and others collected in the database. The results show a 40% of STEC and two different serogroups were identified (O130 and O157). STEC O157:H7 were isolated from bovine carcasses and harbored stx2, eae, ehxA, katP, espP, stcE, ECSP_0242/1773/2687/2870/2872/3286/3620 and were classified as lineage I/II. In STEC non-O157 isolates, three isolates were isolated from bovine carcasses and harbored the serogroup O130 and one strain isolated from pork carcasses was O-non-typeable. All STEC non-O157 harbored sxt1 gene. The analysis from the whole genome showed that both STEC O157:H7 strains belonged to the hypervirulent clade 8, ST11, phylogroup E, carried the allele tir 255 T > A T, and they were not clonal. The analysis of information allows us to conclude that the STEC strains circulate in pork and bovine carcasses arriving in transport. This situation represents a risk for the consumers and the need to implement an integrated STEC control in the food chain.
Collapse
Affiliation(s)
- Rocío Colello
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina.
| | - Manuela Baigorri
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana González
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Claudia van der Ploeg
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Federico Sánchez Chopa
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Mónica Sparo
- Laboratorio de Microbiología Clínica, Hospital Ramón Santamarina, Tandil, Buenos Aires, Argentina
| | - Analía Etcheverría
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Nora Lía Padola
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| |
Collapse
|
4
|
Han Y, Liu M, Han Y, Shi N, Wang Q, Cui T, Yang L, Zhang X, Zhu L, Qian H, Jin H, Dong C. Genetic and phylogenetic characterization of Shiga toxin-producing Escherichia coli and enteropathogenic E. coli from livestock in Jiangsu by using whole-genome sequencing. J Appl Microbiol 2022; 132:3925-3936. [PMID: 35174586 DOI: 10.1111/jam.15494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 11/29/2022]
Abstract
AIMS There are knowledge gaps regarding STEC and EPEC strains in livestock in Jiangsu, China. This study aimed to evaluate the potential public health significance of STEC and EPEC strains isolated from livestock by determining the serotypes, virulence profiles, and genetic relationship with international STEC strains. METHODS AND RESULTS A total of 68 STEC and 37 EPEC strains were obtained from 231 fecal sheep samples and 70 fecal cattle samples. By using whole-genome sequencing (WGS) analysis, all STEC belonged to 15 O:H serotypes and the most prevalent serotypes were O6:H10 (19.1%), O155:H21 (14.7%), and O21:H25 (10.3%). The main Shiga toxin gene subtypes detected were stx1c (41.2%), stx1a (26.5%), stx2b (14.7%) and stx2k (14.7%). Only the STEC from cattle carried eae gene. Other adherence-associated or toxin-related genes, including lpfA (70.6%), iha (48.5%), subA (54.4%), and ehxA (33.8%), were found in STEC. All EPEC strains were bfpA-negative, and the predominant eae variants were eae-β1 (62.2%), eae-ζ (21.6%), and eae-θ (8.1%). The core-genome multi-locus sequence typing (cgMLST) analysis revealed nine scattered clusters in STEC and one dominant cluster in EPEC. The strains with the same serotypes, including O22:H8 and O43:H2 in the two towns, possessed a closely genomic distance. The core genome single nucleotide polymorphism (cgSNP) showed that part of STEC strains in this study were clustered with isolates possessing the same serotypes from the Netherlands, Sweden, and Xinjiang of China. Five serotypes of STEC isolates were associated with the clinical STEC strains from databases. CONCLUSION This study provided the diverse serotypes and the virulence genes profiles in STEC and EPEC strains. Local strains possessed widely diverse and scattered clusters by cgMLST. Closely genomic correlation with clinical isolates displayed that part of the STEC strains may threaten to public health. SIGNIFICANCE AND IMPACT OF THE STUDY Non-O157 STEC strains act as important pathogens for human infections. This study supports the increased surveillance work of non-O157 STEC rather than just O157 STEC in this region.
Collapse
Affiliation(s)
- Yue Han
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Minqi Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Ying Han
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Naiyang Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Qiang Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Tingting Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Liuqing Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Xuefeng Zhang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| | - Liguo Zhu
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| | - Huimin Qian
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| | - Hui Jin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Chen Dong
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| |
Collapse
|
5
|
Gutiérrez S, Díaz L, Reyes-Jara A, Yang X, Meng J, González-Escalona N, Toro M. Whole-Genome Phylogenetic Analysis Reveals a Wide Diversity of Non-O157 STEC Isolated From Ground Beef and Cattle Feces. Front Microbiol 2021; 11:622663. [PMID: 33584592 PMCID: PMC7874142 DOI: 10.3389/fmicb.2020.622663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes foodborne outbreaks that can lead to complications such as hemolytic uremic syndrome. Their main reservoir is cattle, and ground beef has been frequently associated with disease and outbreaks. In this study, we attempted to understand the genetic relationship among STEC isolated in Chile from different sources, their relationship to STEC from the rest of the world, and to identify molecular markers of Chilean STEC. We sequenced 62 STEC isolated in Chile using MiSeq Illumina. In silico typing was determined using tools of the Center Genomic Epidemiology, Denmark University (CGE/DTU). Genomes of our local STEC collection were compared with 113 STEC isolated worldwide through a core genome MLST (cgMLST) approach, and we also searched for distinct genes to be used as molecular markers of Chilean isolates. Genomes in our local collection were grouped based on serogroup and sequence type, and clusters were formed within local STEC. In the worldwide STEC analysis, Chilean STEC did not cluster with genomes of the rest of the world suggesting that they are not phylogenetically related to previously described STEC. The pangenome of our STEC collection was 11,650 genes, but we did not identify distinct molecular markers of local STEC. Our results showed that there may be local emerging STEC with unique features, nevertheless, no molecular markers were detected. Therefore, there might be elements such as a syntenic organization that might explain differential clustering detected between local and worldwide STEC.
Collapse
Affiliation(s)
- Sebastián Gutiérrez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Macul, Santiago, Chile
| | - Leonela Díaz
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Macul, Santiago, Chile
| | - Angélica Reyes-Jara
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Macul, Santiago, Chile
| | - Xun Yang
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States.,Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, College Park, MD, United States
| | - Narjol González-Escalona
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, United States
| | - Magaly Toro
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Macul, Santiago, Chile
| |
Collapse
|
6
|
Franz E, Rotariu O, Lopes BS, Bono JL, Laing C, Gannon V, Van Hoek AHAM, Friesema I, French NP, George T, Biggs PJ, Jaros P, Rivas M, Chinen I, Campos J, Mellor GE, Chandry PS, Perez-Reche F, Forbes KJ, Strachan NJ. Reply to Baba and Kanamori. Clin Infect Dis 2020; 71:1353-1355. [PMID: 31711208 DOI: 10.1093/cid/ciz1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eelco Franz
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Ovidiu Rotariu
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Bruno S Lopes
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - James L Bono
- United States (US) Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Chad Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Victor Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Angela H A M Van Hoek
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Ingrid Friesema
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Nigel P French
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Tessy George
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patricia Jaros
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Marta Rivas
- Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional del Laboratorios et Institutos de Salud "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Isabel Chinen
- Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional del Laboratorios et Institutos de Salud "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional del Laboratorios et Institutos de Salud "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Glen E Mellor
- The Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Werribee, Australia
| | - P Scott Chandry
- The Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Werribee, Australia
| | - Francisco Perez-Reche
- Institute of Complex Systems and Mathematical Biology, Scottish Universities Physics Alliance, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Ken J Forbes
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Norval Jc Strachan
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
7
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A. Springer Browne
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Hamid Irshad
- Animal Health Programme, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nigel P. French
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
8
|
Adator EH, Walker M, Narvaez-Bravo C, Zaheer R, Goji N, Cook SR, Tymensen L, Hannon SJ, Church D, Booker CW, Amoako K, Nadon CA, Read R, McAllister TA. Whole Genome Sequencing Differentiates Presumptive Extended Spectrum Beta-Lactamase Producing Escherichia coli along Segments of the One Health Continuum. Microorganisms 2020; 8:microorganisms8030448. [PMID: 32235751 PMCID: PMC7143971 DOI: 10.3390/microorganisms8030448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) has important implications for the continued use of antibiotics to control infectious diseases in both beef cattle and humans. AMR along the One Health continuum of the beef production system is largely unknown. Here, whole genomes of presumptive extended-spectrum β-lactamase E. coli (ESBL-EC) from cattle feces (n = 40), feedlot catch basins (n = 42), surrounding streams (n = 21), a beef processing plant (n = 4), municipal sewage (n = 30), and clinical patients (n = 25) are described. ESBL-EC were isolated from ceftriaxone selective plates and subcultured on ampicillin selective plates. Agreement of genotype-phenotype prediction of AMR ranged from 93.2% for ampicillin to 100% for neomycin, trimethoprim/sulfamethoxazole, and enrofloxacin resistance. Overall, β-lactam (100%; blaEC, blaTEM-1, blaSHV, blaOXA, blaCTX-M-), tetracycline (90.1%; tet(A), tet(B)) and folate synthesis (sul2) antimicrobial resistance genes (ARGs) were most prevalent. The ARGs tet(C), tet(M), tet(32),blaCTX-M-1, blaCTX-M-14, blaOXA-1, dfrA18, dfrA19, catB3, and catB4 were exclusive to human sources, while blaTEM-150, blaSHV-11–12,dfrA12, cmlA1, and cmlA5 were exclusive to beef cattle sources. Frequently encountered virulence factors across all sources included adhesion and type II and III secretion systems, while IncFIB(AP001918) and IncFII plasmids were also common. Specificity and prevalence of ARGs between cattle-sourced and human-sourced presumptive ESBL-EC likely reflect differences in antimicrobial use in cattle and humans. Comparative genomics revealed phylogenetically distinct clusters for isolates from human vs. cattle sources, implying that human infections caused by ESBL-EC in this region might not originate from beef production sources.
Collapse
Affiliation(s)
- Emelia H. Adator
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Matthew Walker
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (M.W.); (C.A.N.)
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
| | - Noriko Goji
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB T1J 3Z4, Canada; (N.G.); (K.A.)
| | - Shaun R. Cook
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Lisa Tymensen
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Sherry J. Hannon
- Feedlot Health Management Services Ltd., Okotoks, AB T1S 2A2, Canada; (S.J.H.); (D.C.); (C.W.B.)
| | - Deirdre Church
- Feedlot Health Management Services Ltd., Okotoks, AB T1S 2A2, Canada; (S.J.H.); (D.C.); (C.W.B.)
| | - Calvin W. Booker
- Feedlot Health Management Services Ltd., Okotoks, AB T1S 2A2, Canada; (S.J.H.); (D.C.); (C.W.B.)
| | - Kingsley Amoako
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB T1J 3Z4, Canada; (N.G.); (K.A.)
| | - Celine A. Nadon
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (M.W.); (C.A.N.)
| | - Ron Read
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada;
| | - Tim A. McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
- Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
- Correspondence:
| |
Collapse
|