1
|
Spatio-temporal distribution and hotspots of Plasmodium knowlesi infections in Sarawak, Malaysian Borneo. Sci Rep 2022; 12:17284. [PMID: 36241678 PMCID: PMC9568661 DOI: 10.1038/s41598-022-21439-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023] Open
Abstract
Plasmodium knowlesi infections in Malaysia are a new threat to public health and to the national efforts on malaria elimination. In the Kapit division of Sarawak, Malaysian Borneo, two divergent P. knowlesi subpopulations (termed Cluster 1 and Cluster 2) infect humans and are associated with long-tailed macaque and pig-tailed macaque hosts, respectively. It has been suggested that forest-associated activities and environmental modifications trigger the increasing number of knowlesi malaria cases. Since there is a steady increase of P. knowlesi infections over the past decades in Sarawak, particularly in the Kapit division, we aimed to identify hotspots of knowlesi malaria cases and their association with forest activities at a geographical scale using the Geographic Information System (GIS) tool. A total of 1064 P. knowlesi infections from 2014 to 2019 in the Kapit and Song districts of the Kapit division were studied. Overall demographic data showed that males and those aged between 18 and 64 years old were the most frequently infected (64%), and 35% of infections involved farming activities. Thirty-nine percent of Cluster 1 infections were mainly related to farming surrounding residential areas while 40% of Cluster 2 infections were associated with activities in the deep forest. Average Nearest Neighbour (ANN) analysis showed that humans infected with both P. knowlesi subpopulations exhibited a clustering distribution pattern of infection. The Kernel Density Analysis (KDA) indicated that the hotspot of infections surrounding Kapit and Song towns were classified as high-risk areas for zoonotic malaria transmission. This study provides useful information for staff of the Sarawak State Vector-Borne Disease Control Programme in their efforts to control and prevent zoonotic malaria.
Collapse
|
2
|
Lee WC, Cheong FW, Amir A, Lai MY, Tan JH, Phang WK, Shahari S, Lau YL. Plasmodium knowlesi: the game changer for malaria eradication. Malar J 2022; 21:140. [PMID: 35505339 PMCID: PMC9066973 DOI: 10.1186/s12936-022-04131-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite that has gained increasing medical interest over the past two decades. This zoonotic parasitic infection is prevalent in Southeast Asia and causes many cases with fulminant pathology. Despite several biogeographical restrictions that limit its distribution, knowlesi malaria cases have been reported in different parts of the world due to travelling and tourism activities. Here, breakthroughs and key information generated from recent (over the past five years, but not limited to) studies conducted on P. knowlesi were reviewed, and the knowledge gap in various research aspects that need to be filled was discussed. Besides, challenges and strategies required to control and eradicate human malaria with this emerging and potentially fatal zoonosis were described.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amirah Amir
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jia Hui Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shahhaziq Shahari
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Lempang MEP, Dewayanti FK, Syahrani L, Permana DH, Malaka R, Asih PBS, Syafruddin D. Primate malaria: An emerging challenge of zoonotic malaria in Indonesia. One Health 2022; 14:100389. [PMID: 35686151 PMCID: PMC9171520 DOI: 10.1016/j.onehlt.2022.100389] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022] Open
Abstract
The emergence of zoonotic malaria in different parts of the world, including Indonesia poses a challenge to the current malaria control and elimination program that target global malaria elimination at 2030. The reported cases in human include Plasmodium knowlesi, P. cynomolgi and P. inui, in South and Southeast Asian region and P. brazilianum and P. simium in Latin America. All are naturally found in the Old and New-world monkeys, macaques spp. This review focuses on the currently available data that may represent primate malaria as an emerging challenge of zoonotic malaria in Indonesia, the distribution of non-human primates and the malaria parasites it carries, changes in land use and deforestation that impact the habitat and intensifies interaction between the non-human primate and the human which facilitate spill-over of the pathogens. Although available data in Indonesia is very limited, a growing body of evidence indicate that the challenge of zoonotic malaria is immense and alerts to the need to conduct mitigation efforts through multidisciplinary approach involving environmental management, non-human primates conservation, disease management and vector control.
Collapse
Affiliation(s)
| | - Farahana Kresno Dewayanti
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Lepa Syahrani
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Dendi Hadi Permana
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Ratmawati Malaka
- Faculty of Animal Husbandry, Hasanuddin University, Makassar, Indonesia
| | - Puji Budi Setia Asih
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Corresponding author at: Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia.
| |
Collapse
|
4
|
Ruiz Cuenca P, Key S, Lindblade KA, Vythilingam I, Drakeley C, Fornace K. Is there evidence of sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A systematic literature review. Malar J 2022; 21:89. [PMID: 35300703 PMCID: PMC8929260 DOI: 10.1186/s12936-022-04110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background The zoonotic malaria parasite Plasmodium knowlesi has emerged across Southeast Asia and is now the main cause of malaria in humans in Malaysia. A critical priority for P. knowlesi surveillance and control is understanding whether transmission is entirely zoonotic or is also occurring through human-mosquito-human transmission. Methods A systematic literature review was performed to evaluate existing evidence which refutes or supports the occurrence of sustained human-mosquito-human transmission of P. knowlesi. Possible evidence categories and study types which would support or refute non-zoonotic transmission were identified and ranked. A literature search was conducted on Medline, EMBASE and Web of Science using a broad search strategy to identify any possible published literature. Results were synthesized using the Synthesis Without Meta-analysis (SWiM) framework, using vote counting to combine the evidence within specific categories. Results Of an initial 7,299 studies screened, 131 studies were included within this review: 87 studies of P. knowlesi prevalence in humans, 14 studies in non-human primates, 13 studies in mosquitoes, and 29 studies with direct evidence refuting or supporting non-zoonotic transmission. Overall, the evidence showed that human-mosquito-human transmission is biologically possible, but there is limited evidence of widespread occurrence in endemic areas. Specific areas of research were identified that require further attention, notably quantitative analyses of potential transmission dynamics, epidemiological and entomological surveys, and ecological studies into the sylvatic cycle of the disease. Conclusion There are key questions about P. knowlesi that remain within the areas of research that require more attention. These questions have significant implications for malaria elimination and eradication programs. This paper considers limited but varied research and provides a methodological framework for assessing the likelihood of different transmission patterns for emerging zoonotic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04110-z.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster University Medical School, Lancaster, UK. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kim A Lindblade
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Peterson MS, Joyner CJ, Brady JA, Wood JS, Cabrera-Mora M, Saney CL, Fonseca LL, Cheng WT, Jiang J, Lapp SA, Soderberg SR, Nural MV, Humphrey JC, Hankus A, Machiah D, Karpuzoglu E, DeBarry JD, Tirouvanziam R, Kissinger JC, Moreno A, Gumber S, Voit EO, Gutiérrez JB, Cordy RJ, Galinski MR. Clinical recovery of Macaca fascicularis infected with Plasmodium knowlesi. Malar J 2021; 20:486. [PMID: 34969401 PMCID: PMC8719393 DOI: 10.1186/s12936-021-03925-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. METHODS Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. RESULTS As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. CONCLUSIONS Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3-5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.
Collapse
Affiliation(s)
- Mariko S Peterson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Chester J Joyner
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jessica A Brady
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jennifer S Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Monica Cabrera-Mora
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Celia L Saney
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wayne T Cheng
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jianlin Jiang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Stacey A Lapp
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Stephanie R Soderberg
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | - Mustafa V Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jay C Humphrey
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Allison Hankus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- The MITRE Corporation, Atlanta, GA, USA
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Ebru Karpuzoglu
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jeremy D DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for Topical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Jessica C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Alberto Moreno
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
- Pathology, Drug Safety, and DMPK, Boehringer Ingelheim Animal Health USA, Inc., Athens, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Juan B Gutiérrez
- Department of Mathematics, University of Georgia, Athens, GA, USA
- Department of Mathematics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Regina Joice Cordy
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Mary R Galinski
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Hu TH, Rosli N, Mohamad DSA, Kadir KA, Ching ZH, Chai YH, Ideris NN, Ting LSC, Dihom AA, Kong SL, Wong EKY, Sia JEH, Ti T, Chai IPF, Tang WY, Hii KC, Divis PCS, Davis TME, Daneshvar C, Singh B. A comparison of the clinical, laboratory and epidemiological features of two divergent subpopulations of Plasmodium knowlesi. Sci Rep 2021; 11:20117. [PMID: 34635723 PMCID: PMC8505493 DOI: 10.1038/s41598-021-99644-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Plasmodium knowlesi, a simian malaria parasite responsible for all recent indigenous cases of malaria in Malaysia, infects humans throughout Southeast Asia. There are two genetically distinct subpopulations of Plasmodium knowlesi in Malaysian Borneo, one associated with long-tailed macaques (termed cluster 1) and the other with pig-tailed macaques (cluster 2). A prospective study was conducted to determine whether there were any between-subpopulation differences in clinical and laboratory features, as well as in epidemiological characteristics. Over 2 years, 420 adults admitted to Kapit Hospital, Malaysian Borneo with knowlesi malaria were studied. Infections with each subpopulation resulted in mostly uncomplicated malaria. Severe disease was observed in 35/298 (11.7%) of single cluster 1 and 8/115 (7.0%) of single cluster 2 infections (p = 0.208). There was no clinically significant difference in outcome between the two subpopulations. Cluster 1 infections were more likely to be associated with peri-domestic activities while cluster 2 were associated with interior forest activities consistent with the preferred habitats of the respective macaque hosts. Infections with both P. knowlesi subpopulations cause a wide spectrum of disease including potentially life-threatening complications, with no implications for differential patient management.
Collapse
Affiliation(s)
- Ting Huey Hu
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Nawal Rosli
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Dayang S A Mohamad
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Khamisah A Kadir
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | | | | | | | | | | | | | | | | | - Tiana Ti
- Kapit Hospital, Kapit, Sarawak, Malaysia
| | | | | | | | - Paul C S Divis
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Timothy M E Davis
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.,University of Western Australia, Medical School, Fremantle, WA, Australia
| | - Cyrus Daneshvar
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.,Department of Respiratory Medicine, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.
| |
Collapse
|
7
|
Molecular epidemiology and population genomics of Plasmodium knowlesi. ADVANCES IN PARASITOLOGY 2021; 113:191-223. [PMID: 34620383 DOI: 10.1016/bs.apar.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular epidemiology has been central to uncovering P. knowlesi as an important cause of human malaria in Southeast Asia, and to understanding the complex nature of this zoonosis. Species-specific parasite detection and characterization of sequences were vital to show that P. knowlesi was distinct from the human parasite species that had been presumed to cause all malaria. With established sensitive and specific molecular detection tools, surveys subsequently indicated the distribution of P. knowlesi infections in humans, wild primate reservoir host species, and mosquito vector species. The importance of studying P. knowlesi genetic polymorphism was indicated initially by analysing a few nuclear gene loci as well as the mitochondrial genome, and subsequently by multi-locus microsatellite analyses and whole-genome sequencing. Different human infections generally have unrelated P. knowlesi genotypes, acquired from the diverse local parasite reservoirs in macaques. However, individual human infections are usually less genetically complex than those of wild macaques which experience more frequent superinfection with different P. knowlesi genotypes. Multi-locus analyses have revealed deep population subdivisions within P. knowlesi, which are structured both geographically and in relation to different macaque reservoir host species. Simplified genotypic discrimination assays now enable efficient large-scale surveillance of the sympatric P. knowlesi subpopulations within Malaysian Borneo. The whole-genome sequence analyses have also identified loci under recent positive natural selection in the P. knowlesi genome, with evidence that different loci are affected in different populations. These provide a foundation to understand recent adaptation of the zoonotic parasite populations, and to track and interpret future changes as they emerge.
Collapse
|
8
|
Ooi CH, Phang WK, Kent Liew JW, Lau YL. Spatial and Temporal Patterns of Plasmodium knowlesi Malaria in Sarawak from 2008 to 2017. Am J Trop Med Hyg 2021; 104:1814-1819. [PMID: 33755585 PMCID: PMC8103491 DOI: 10.4269/ajtmh.20-1304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Zoonotic knowlesi malaria has replaced human malaria as the most prevalent malaria disease in Malaysia. The persistence of knowlesi malaria in high-risk transmission areas or hotspots can be discouraging to existing malaria elimination efforts. In this study, retrospective data of laboratory-confirmed knowlesi malaria cases were obtained from the Sarawak Health Department to investigate the spatiotemporal patterns and clustering of knowlesi malaria in the state of Sarawak from 2008 to 2017. Purely spatial, purely temporal, and spatiotemporal analyses were performed using SaTScan software to define clustering of knowlesi malaria incidence. Purely spatial and spatiotemporal analyses indicated most likely clusters of knowlesi malaria in the northern region of Sarawak, along the Sarawak-Kalimantan border, and the inner central region of Sarawak between 2008 and 2017. Temporal cluster was detected between September 2016 and December 2017. This study provides evidence of the existence of statistically significant Plasmodium knowlesi malaria clusters in Sarawak, Malaysia. The analysis approach applied in this study showed potential in establishing surveillance and risk management system for knowlesi malaria control as Malaysia approaches human malaria elimination.
Collapse
Affiliation(s)
- Choo Huck Ooi
- Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Kuching, Malaysia;,Address correspondence to Choo Huck Ooi, Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Diplomatik Rd., Off Bako Rd., Kuching 93050, Malaysia, E-mail: or Yee Ling Lau, Department of Parasitology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Malaysia, E-mail:
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Address correspondence to Choo Huck Ooi, Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Diplomatik Rd., Off Bako Rd., Kuching 93050, Malaysia, E-mail: or Yee Ling Lau, Department of Parasitology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Malaysia, E-mail:
| |
Collapse
|
9
|
Scott J. Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health. Trop Med Infect Dis 2020; 5:E175. [PMID: 33233871 PMCID: PMC7709578 DOI: 10.3390/tropicalmed5040175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Zoonotic malaria, Plasmodium knowlesi, threatens the global progression of malaria elimination. Southeast Asian regions are fronting increased zoonotic malaria rates despite the control measures currently implemented-conventional measures to control human-malaria neglect P. knowlesi's residual transmission between the natural macaque host and vector. Initiatives to control P. knowlesi should adopt themes of the One Health approach, which details that the management of an infectious disease agent should be scrutinized at the human-animal-ecosystem interface. This review describes factors that have conceivably permitted the emergence and increased transmission rates of P. knowlesi to humans, from the understanding of genetic exchange events between subpopulations of P. knowlesi to the downstream effects of environmental disruption and simian and vector behavioral adaptations. These factors are considered to advise an integrative control strategy that aligns with the One Health approach. It is proposed that surveillance systems address the geographical distribution and transmission clusters of P. knowlesi and enforce ecological regulations that limit forest conversion and promote ecosystem regeneration. Furthermore, combining individual protective measures, mosquito-based feeding trapping tools and biocontrol strategies in synergy with current control methods may reduce mosquito population density or transmission capacity.
Collapse
Affiliation(s)
- Jessica Scott
- College of Public Health and Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| |
Collapse
|