1
|
Kubota H, Okuno R, Kenri T, Uchitani Y, Ariyoshi T, Yoshida I, Kobayashi K, Mitobe M, Suzuki J, Sadamasu K. Multiplex amplicon sequencing for the comprehensive genotyping of Mycoplasma pneumoniae. Microbiol Spectr 2025:e0271924. [PMID: 40401935 DOI: 10.1128/spectrum.02719-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/11/2025] [Indexed: 05/23/2025] Open
Abstract
Major genotyping methods used to characterize Mycoplasma pneumoniae strains are based on various experimental approaches that need to be implemented in parallel for each strain. In this study, we developed a comprehensive workflow based on amplicon sequencing using next-generation sequencing. This workflow comprised PCR amplification with seven tubes, collection into single tubes, shotgun sequencing, de novo assembly separating each target into individual contigs, and in silico genotyping. The results for p1, orf6, multilocus sequence types, 23S ribosomal RNA gene mutations conferring macrolide resistance, and single-nucleotide polymorphisms identifying the p1 type 1 lineage were obtained simultaneously. The genotyping accuracy was confirmed by comparing the sequences with the whole-genome sequences of 40 M. pneumoniae isolates collected in Tokyo, Japan. The workflow described not only enables high-throughput comprehensive data collection but also enables the detection of novel genotypes with single-nucleotide resolution. IMPORTANCE Genotyping plays a central role in the molecular epidemiology of pathogenic bacteria, and many methods have been developed to identify prevalent lineages, infection routes, and antimicrobial resistance. Whole-genome sequencing generally provides most of the genetic information targeted by classic PCR-based schemes and has contributed to the construction of a simplified workflow for many bacterial species. However, several issues concerning the Mycoplasma pneumoniae genome, such as the presence of repetitive elements of the p1 gene, prevent the collection of genotyping results from a single run of short-read shotgun sequencing. Herein, we describe a simplified workflow using amplicon sequencing that covers most of the major genotyping schemes for M. pneumoniae, including p1 genotyping. The workflow effectively characterized M. pneumoniae clinical isolates. This workflow could help advance research on the molecular epidemiology of M. pneumoniae and the detection of novel genotypes.
Collapse
Affiliation(s)
- Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Isao Yoshida
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| |
Collapse
|
2
|
Darazam IA, Rabiei MM, Gharehbagh FJ, Hatami F, Shahrokhi S, Akhgarzad A, Nazhand HA, Ebadi H, Zeininasab AH, Kazeminia N, Lotfollahi L, Shojaee S. Recent Macrolide Resistance Pattern of Mycoplasma Pneumonia in the World: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2025; 54:530-541. [PMID: 40330176 PMCID: PMC12051807 DOI: 10.18502/ijph.v54i3.18246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/18/2024] [Indexed: 05/08/2025]
Abstract
Background We aimed to systematically review and analyze the prevalence and pattern of resistance in Mycoplasma pneumoniae. Methods We searched authentic scientific sources and databases, and reference lists of relevant articles from Jan 1, 2017, to Jun 1, 2023. Results Most of the included studies were conducted in Asia (11470 patients). The overall pooled prevalence was 53% (41%-65%), I2=99.69%; P <0.001. While subgroups analyses revealed that the pooled prevalence for America (3 studies), Asia (29 studies), and Europe (3 studies) was 9% (5%-12%), 62% (52%-73%), and 6% (1%-12%), respectively. Twenty-one eligible studies for determining of A2063G and 16 for A2064G were analyzed. Global pooled prevalence was 67% (58%-76%), I2=99.65%; P<0.001, and 3% (2%-4%), I2=87.44%; P<0.001 for A2063G and A2064G, respectively. Pooled prevalence of A2063G for America, Asia and Europe was 10% (5%-16%), 77% (71%-83%) and 5% (2%-9%), respectively. Conclusion While the prevalence of macrolide-resistant M. pneumonia is quite low in America, it is a great dilemma in East Asia and the low prevalence in most countries could be underestimated. This study revealed an increasing trend in macrolide resistance. Indiscriminate and improper use of macrolides may be a warning in this regard.
Collapse
Affiliation(s)
- Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Rabiei
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Javandoust Gharehbagh
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firouze Hatami
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shahrokhi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akhgarzad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Allahverdi Nazhand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Ebadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Zeininasab
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Kazeminia
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
- Clinical Study and Pharmacovigilance Department, Food and Drug Administration, Tehran, Iran
| | - Legha Lotfollahi
- Department of Nephrology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Shojaee
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Smit PW, Eggink D, Paltansing S, Hooiveld M, van Gageldonk-Lafeber AB, Dunk D, Lekkerkerk S, Meijer A. Mycoplasma pneumoniae MLST detected in the upsurge of pneumonia during the 2023 to 2024 winter season in the Netherlands. Sci Rep 2025; 15:6985. [PMID: 40011487 PMCID: PMC11865550 DOI: 10.1038/s41598-025-88990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
During the winter 2023-2024, an upsurge of Mycoplasma pneumoniae (M.pneumoniae) was noted in the Netherlands. To investigate the distribution of M.pneumoniae sequence types from different patient populations and to explore genotypic macrolide resistance which is common in East Asia but not (yet) in Europe. M.pneumoniae positive throat/nasal samples from participatory respiratory surveillance, patients visiting general practitioners with an acute respiratory infection including community acquired pneumonia (CAP) and hospitalised patients with CAP were included, representing different disease severity. The M.pneumoniae were typed with multilocus sequence typing and the 23 S rRNA region was sequenced to determine macrolide resistance markers. In total, 153 M.pneumoniae were sequenced, six sequence types (STs) and only one bacterium with macrolide resistance marker were detected. No link between STs or bacterial load (PCR cycle threshold) and source population of M.pneumoniae was detected. In the Netherlands, the M.pneumoniae upsurge in 2023-2024 existed of multiple commonly found STs. No link between ST and severity of illness was detected. Macrolide resistance remained sporadic.
Collapse
Affiliation(s)
- Pieter W Smit
- Maasstad Hospital, Rotterdam, The Netherlands.
- Franciscus Gasthuis and Vlietland Hospital, Rotterdam, The Netherlands.
| | - Dirk Eggink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Sunita Paltansing
- Franciscus Gasthuis and Vlietland Hospital, Rotterdam, The Netherlands
| | | | | | - Djoo Dunk
- Maasstad Hospital, Rotterdam, The Netherlands
| | | | - Adam Meijer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
4
|
Zhang Y, Su C, Zhang Y, Ding S, Yan X, Zhang J, Tao Z. Epidemiological and clinical characteristics of hospitalized pediatric patients with Mycoplasma pneumoniae pneumonia before and after the COVID-19 pandemic in China: a retrospective multicenter study. BMC Infect Dis 2025; 25:18. [PMID: 39754040 PMCID: PMC11699690 DOI: 10.1186/s12879-024-10370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND In China many respiratory pathogens stayed low activities amid the COVID-19 pandemic due to strict measures and controls. We here aimed to study the epidemiological and clinical characteristics of pediatric inpatients with Mycoplasma pneumoniae pneumonia (MPP) after the mandatory COVID-19 restrictions were lifted, in comparison to those before the COVID-19 pandemic. METHODS We here included 4,296 pediatric patients with MPP, hospitalized by two medical centers in Jiangsu Province, China, from January 2015 to March 2024. Patients were divided into the pre-COVID (n = 1,662) and post-COVID (n = 2,634) groups. Their baseline characteristics, laboratory test results and radiological patterns were separately assessed and compared between the two groups to determine the substantial changes in the disease profile of MPP after the COVID-19 pandemic. RESULTS Epidemiological results suggested a higher annual incidence of MPP after the COVID-19 pandemic when the outbreak reached a peak in October, two months delayed in seasonality compared to that in the pre-COVID era. For pediatric patients with MPP, there was no difference in their median ages, gender ratios, and severe case percentages between the two groups, where most patients were younger than 14 years old. With significance, the post-COVID group had more occurrences of cough and expectoration and higher incidences of influenza A/B virus (IAV/IBV) co-infection than the pre-COVID group. Many hematological parameters and radiological features between the two groups displayed alteration, but comparatively there demonstrated no worsened severity in hospitalized children with MPP after COVID-19 pandemic. Concurrently, the post-COVID group was administered with fewer antibiotics but more corticosteroids for effective treatment than the pre-COVID group. CONCLUSION Through the COVID-19 pandemic, the epidemiological and clinical characteristics of pediatric patients with MPP differed, but there was no evident change in the disease severity. After the COVID-19 pandemic, the increased incidence of IAV/IBV co-infection may contribute to the differences in clinical symptoms and hematological profiles, while the adding usage of corticosteroids might treat more effectively.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Chenglei Su
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Yang Zhang
- Department of Emergency Medicine, Suining County People's Hospital, Xuzhou, Jiangsu, 221200, China
| | - Shuo Ding
- Department of Emergency Medicine, Fengxian County People's Hospital, Xuzhou, Jiangsu, 221700, China
| | - Xianliang Yan
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
- Department of Emergency Medicine, Suining County People's Hospital, Xuzhou, Jiangsu, 221200, China
| | - Jianguo Zhang
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Zhimin Tao
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Jing W, Zhang T, Min X, Li X, Jin K, Feng M, Sui G, Luo L, Cheng X. CHAMP: A Centrifugal Microfluidics-Based CRISPR/Cas12b-Combined Real-Time LAMP One-Pot Method for Mycoplasma pneumoniae Infection Diagnosis. ACS OMEGA 2024; 9:38989-38997. [PMID: 39310129 PMCID: PMC11411642 DOI: 10.1021/acsomega.4c05489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
The Mycoplasma pneumoniae outbreak poses health risks to community residents. However, it still has limitations for current clinical diagnostic methods (qPCR nucleic acid assay or IgM immunoassay), including specialized handling, expensive equipment, prolonged turnaround time, and false positives and negatives, highlighting the need to improve clinical diagnostic methods. Herein, we present a novel centrifugal microfluidics-based method for rapidly diagnosing M. pneumoniae infections (CHAMP system). This user-friendly method combines CRISPR/Cas12b and real-time loop-mediated isothermal amplification (LAMP) in a one-pot reaction, offering high sensitivity, specificity, and simplicity for methodology. By adding fully automated nucleic acid magnetic bead-extracted samples to a prepackaged centrifugal microfluidics chip, 48 samples can be automated tested simultaneously within 15 to 60 min at 60 °C. 427 clinical nasopharyngeal swab specimens were used for validation, demonstrating good positive and negative predictive values and good diagnostic sensitivity, specificity, and significant time savings. This method is particularly suitable for detecting low nucleic acid copies of M. pneumoniae samples.
Collapse
Affiliation(s)
- Wenwen Jing
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Tong Zhang
- Department
of Clinical Laboratory, Shanghai. East Hospital, School of Medicine, Tong Ji University, Shanghai 200120, P. R. China
| | - Xiangyang Min
- Department
of Clinical Laboratory Medicine, Yangpu
Hospital of Tongji University, Shanghai 200120, P. R. China
| | - Xin Li
- Shanghai
Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China
| | - Kai Jin
- Department
of Surgical Intensive Care Unit, Huadong
Hospital Affiliated to Fudan University, Shanghai 200040, P. R. China
| | - Meng Feng
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Guodong Sui
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Liulin Luo
- Department
of Clinical Laboratory Medicine, Yangpu
Hospital of Tongji University, Shanghai 200120, P. R. China
| | - Xunjia Cheng
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
6
|
Wang YS, Zhou YL, Bai GN, Li SX, Xu D, Chen LN, Chen X, Dong XY, Fu HM, Fu Z, Hao CL, Hong JG, Liu EM, Liu HM, Lu XX, Luo ZX, Tang LF, Tian M, Yin Y, Zhang XB, Zhang JH, Zhang HL, Zhao DY, Zhao SY, Zhu GH, Zou YX, Lu Q, Zhang YY, Chen ZM. Expert consensus on the diagnosis and treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. World J Pediatr 2024; 20:901-914. [PMID: 39143259 PMCID: PMC11422262 DOI: 10.1007/s12519-024-00831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Mycoplasma pneumoniae (M. pneumoniae) is a significant contributor to community-acquired pneumonia among children. Since 1968, when a strain of M. pneumoniae resistant to macrolide antibiotics was initially reported in Japan, macrolide-resistant M. pneumoniae (MRMP) has been documented in many countries worldwide, with varying incidence rates. MRMP infections lead to a poor response to macrolide antibiotics, frequently resulting in prolonged fever, extended antibiotic treatment, increased hospitalization, intensive care unit admissions, and a significantly higher proportion of patients receiving glucocorticoids or second-line antibiotics. Since 2000, the global incidence of MRMP has gradually increased, especially in East Asia, which has posed a serious challenge to the treatment of M. pneumoniae infections in children and attracted widespread attention from pediatricians. However, there is still no global consensus on the diagnosis and treatment of MRMP in children. METHODS We organized 29 Chinese experts majoring in pediatric pulmonology and epidemiology to write the world's first consensus on the diagnosis and treatment of pediatric MRMP pneumonia, based on evidence collection. The evidence searches and reviews were conducted using electronic databases, including PubMed, Embase, Web of Science, CNKI, Medline, and the Cochrane Library. We used variations in terms for "macrolide-resistant", "Mycoplasma pneumoniae", "MP", "M. pneumoniae", "pneumonia", "MRMP", "lower respiratory tract infection", "Mycoplasma pneumoniae infection", "children", and "pediatric". RESULTS Epidemiology, pathogenesis, clinical manifestations, early identification, laboratory examination, principles of antibiotic use, application of glucocorticoids and intravenous immunoglobulin, and precautions for bronchoscopy are highlighted. Early and rapid identification of gene mutations associated with MRMP is now available by polymerase chain reaction and fluorescent probe techniques in respiratory specimens. Although the resistance rate to macrolide remains high, it is fortunate that M. pneumoniae still maintains good in vitro sensitivity to second-line antibiotics such as tetracyclines and quinolones, making them an effective treatment option for patients with initial treatment failure caused by macrolide antibiotics. CONCLUSIONS This consensus, based on international and national scientific evidence, provides scientific guidance for the diagnosis and treatment of MRMP in children. Further studies on tetracycline and quinolone drugs in children are urgently needed to evaluate their effects on the growth and development. Additionally, developing an antibiotic rotation treatment strategy is necessary to reduce the prevalence of MRMP strains.
Collapse
Affiliation(s)
- Ying-Shuo Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yun-Lian Zhou
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guan-Nan Bai
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Shu-Xian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dan Xu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li-Na Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Chen
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xiao-Yan Dong
- Department of Pulmonology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong-Min Fu
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital, Kunming 650034, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chuang-Li Hao
- Department of Pulmonology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Jian-Guo Hong
- Department of Pediatrics, Shanghai General Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - En-Mei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Han-Min Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Xia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Zheng-Xiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lan-Fang Tang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Man Tian
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiao-Bo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jian-Hua Zhang
- Department of Pediatric Pulmonology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201102, China
| | - Hai-Lin Zhang
- Department of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - De-Yu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Shun-Ying Zhao
- National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Guo-Hong Zhu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ying-Xue Zou
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China
| | - Quan Lu
- Department of Pulmonology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China.
| | - Yuan-Yuan Zhang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Zhi-Min Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
7
|
Wu TH, Fang YP, Liu FC, Pan HH, Yang YY, Song CS, Lee CY. Macrolide-Resistant Mycoplasma pneumoniae Infections among Children before and during COVID-19 Pandemic, Taiwan, 2017-2023. Emerg Infect Dis 2024; 30:1692-1696. [PMID: 39043456 PMCID: PMC11286047 DOI: 10.3201/eid3008.231596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Before the COVID-19 pandemic, Mycoplasma pneumoniae infections emerged during spring to summer yearly in Taiwan, but infections were few during the pandemic. M. pneumoniae macrolide resistance soared to 85.7% in 2020 but declined to 0% during 2022-2023. Continued molecular surveillance is necessary to monitor trends in macrolide-resistant M. pneumoniae.
Collapse
|
8
|
Xu M, Li Y, Shi Y, Liu H, Tong X, Ma L, Gao J, Du Q, Du H, Liu D, Lu X, Yan Y. Molecular epidemiology of Mycoplasma pneumoniae pneumonia in children, Wuhan, 2020-2022. BMC Microbiol 2024; 24:23. [PMID: 38229068 DOI: 10.1186/s12866-024-03180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (M. pneumoniae) is an important pathogen of community-acquired pneumonia in children. The factors contributing to the severity of illness caused by M. pneumoniae infection are still under investigation. We aimed to evaluate the sensitivity of common M. pneumoniae detection methods, as well as to analyze the clinical manifestations, genotypes, macrolide resistance, respiratory microenvironment, and their relationship with the severity of illness in children with M. pneumoniae pneumonia in Wuhan. RESULTS Among 1,259 clinical samples, 461 samples were positive for M. pneumoniae via quantitative polymerase chain reaction (qPCR). Furthermore, we found that while serological testing is not highly sensitive in detecting M. pneumoniae infection, but it may serve as an indicator for predicting severe cases. We successfully identified the adhesin P1 (P1) genotypes of 127 samples based on metagenomic and Sanger sequencing, with P1-type 1 (113/127, 88.98%) being the dominant genotype. No significant difference in pathogenicity was observed among different genotypes. The macrolide resistance rate of M. pneumoniae isolates was 96% (48/50) and all mutations were A2063G in domain V of 23S rRNA gene. There was no significant difference between the upper respiratory microbiome of patients with mild and severe symptoms. CONCLUSIONS During the period of this study, the main circulating M. pneumoniae was P1-type 1, with a resistance rate of 96%. Key findings include the efficacy of qPCR in detecting M. pneumoniae, the potential of IgM titers exceeding 1:160 as indicators for illness severity, and the lack of a direct correlation between disease severity and genotypic characteristics or respiratory microenvironment. This study is the first to characterize the epidemic and genomic features of M. pneumoniae in Wuhan after the COVID-19 outbreak in 2020, which provides a scientific data basis for monitoring and infection prevention and control of M. pneumoniae in the post-pandemic era.
Collapse
Affiliation(s)
- Meng Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
- Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
| | - Ying Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
- Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China, 100 Hongkong Road, Jiangan District, Hubei
| | - Yue Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
| | - Xi Tong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
- Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
| | - Li Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
- Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
| | - Jie Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District
| | - Qing Du
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China, 100 Hongkong Road, Jiangan District, Hubei
| | - Hui Du
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China, 100 Hongkong Road, Jiangan District, Hubei
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District.
- Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District.
| | - Xiaoxia Lu
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China, 100 Hongkong Road, Jiangan District, Hubei.
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, Xiao Hong Shan No. 44, Wuchang District.
| |
Collapse
|
9
|
Recent Trend of Antimicrobial Susceptibility among Mycoplasma pneumoniae Isolated from Japanese Children. Microorganisms 2022; 10:microorganisms10122428. [PMID: 36557681 PMCID: PMC9787913 DOI: 10.3390/microorganisms10122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Macrolide-resistant Mycoplasma pneumoniae (MRMP) infections have become increasingly prevalent, especially in East Asia. Whereas MRMP strains have point mutations that are implicated in conferring resistance, monitoring the antibiotic susceptibility of M. pneumoniae and identifying mutations in the resistant strains is crucial for effective disease management. Therefore, we investigated antimicrobial susceptibilities among M. pneumoniae isolates obtained from Japanese children since 2011. To establish the current susceptibility trend, we analyzed the minimum inhibitory concentrations (MICs) of M. pneumoniae in recent years (2017−2020) in comparison with past data. Our observation of 122 M. pneumoniae strains suggested that 76 were macrolide-susceptible M. pneumoniae (MSMP) and 46 were macrolide-resistant. The MIC ranges (µg/mL) of clarithromycin (CAM), azithromycin (AZM), tosufloxacin (TFLX), and minocycline (MINO) to all M. pneumoniae isolates were 0.001−>128, 0.00012−>128, 0.25−0.5, and 0.125−4 µg/mL, respectively. None of the strains was resistant to TFLX or MINO. The MIC distributions of CAM and AZM to MSMP and MINO to all M. pneumoniae isolates were significantly lower, but that of TFLX was significantly higher than that reported in all previous data concordant with the amount of recent antimicrobial use. Therefore, continuation of appropriate antimicrobial use for M. pneumoniae infection is important.
Collapse
|
10
|
Recent Trends in the Epidemiology, Diagnosis, and Treatment of Macrolide-Resistant Mycoplasma pneumoniae. J Clin Med 2022; 11:jcm11071782. [PMID: 35407390 PMCID: PMC8999570 DOI: 10.3390/jcm11071782] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Among Mycoplasma pneumoniae (MP) is one of the major pathogens causing lower respiratory tract infection. Macrolide-resistant Mycoplasma pneumoniae (MRMP) isolates have been increasing and has become a global concern, especially in East Asian countries. This affects the treatment of MP infection; that is, some patients with MRMP infections fever cannot be controlled despite macrolide therapy. Therefore, alternative therapies, including secondary antimicrobials, including tetracyclines, fluoroquinolones, or systemic corticosteroids, were introduced. However, there are insufficient data on these alternative therapies. Thus, this article provides reviews of the recent trends in the epidemiology, diagnosis, and treatment of MRMP.
Collapse
|
11
|
Association of Tandem Repeat Number Variabilities in Subunit S of the Type I Restriction-Modification System with Macrolide Resistance in Mycoplasma pneumoniae. J Clin Med 2022; 11:jcm11030715. [PMID: 35160167 PMCID: PMC8836594 DOI: 10.3390/jcm11030715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Mycoplasma pneumoniae is one of the major pathogens responsible for pneumonia in children. Modern molecular genetics has advanced both the management and the epidemiologic study of this disease. Despite these advancements, macrolide resistance remains a global threat in the management of M. pneumoniae infection, for which the genetic background remains unrevealed. In this study, the result of whole genome analysis of 20 sequence type 3 (ST3) M. pneumoniae strains were examined to investigate the gene(s) associated with macrolide resistance. Overall, genetic similarities within M. pneumoniae, and especially ST3, were very high (over 99.99 %). Macrolide resistant ST3 strains shared 20 single nucleotide polymorphisms, of which one gene (mpn085) was found to be associated with resistance. BLAST comparison of M. pneumoniae revealed regular tandem repeat number variabilities between macrolide-susceptible and resistant strains for genes coding the Type I restriction-modification (R-M) system of subunit S (HsdS). Of the ten known HsdS genes, macrolide resistance was determined by the unique tandem repeat of mpn085 and mpn285. In conclusion, the use of whole genome sequencing (WGS) to target macrolide resistance in M. pneumoniae indicates that the determinant of macrolide resistance is variabilities in the tandem repeat numbers of the type I R-M system in subunit S.
Collapse
|
12
|
Pereyre S, Tardy F. Integrating the Human and Animal Sides of Mycoplasmas Resistance to Antimicrobials. Antibiotics (Basel) 2021; 10:1216. [PMID: 34680797 PMCID: PMC8532757 DOI: 10.3390/antibiotics10101216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023] Open
Abstract
Mycoplasma infections are frequent in humans, as well as in a broad range of animals. However, antimicrobial treatment options are limited, partly due to the lack of a cell wall in these peculiar bacteria. Both veterinary and human medicines are facing increasing resistance prevalence for the most commonly used drugs, despite different usage practices. To date, very few reviews have integrated knowledge on resistance to antimicrobials in humans and animals, the latest dating back to 2014. To fill this gap, we examined, in parallel, antimicrobial usage, resistance mechanisms and either phenotype or genotype-based methods for antimicrobial susceptibility testing, as well as epidemiology of resistance of the most clinically relevant human and animal mycoplasma species. This review unveiled common features and differences that need to be taken into consideration in a "One Health" perspective. Lastly, two examples of critical cases of multiple drug resistance are highlighted, namely, the human M. genitalium and the animal M. bovis species, both of which can lead to the threat of untreatable infections.
Collapse
Affiliation(s)
- Sabine Pereyre
- USC EA 3671, Mycoplasmal and Chlamydial Infections in Humans, Univ. Bordeaux, INRAE, F-33000 Bordeaux, France
- Bacteriology Department, National Reference Center for Bacterial Sexually Transmitted Infections, CHU Bordeaux, F-33000 Bordeaux, France
| | - Florence Tardy
- UMR Mycoplasmoses Animales, Anses, VetAgro Sup, Université de Lyon, F-69007 Lyon, France
| |
Collapse
|
13
|
Loconsole D, De Robertis AL, Sallustio A, Centrone F, Morcavallo C, Campanella S, Accogli M, Chironna M. Update on the Epidemiology of Macrolide-Resistant Mycoplasma pneumoniae in Europe: A Systematic Review. Infect Dis Rep 2021; 13:811-820. [PMID: 34562998 PMCID: PMC8482213 DOI: 10.3390/idr13030073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Macrolide-resistant Mycoplasma pneumoniae (MR-MP) infections cause upper and lower respiratory tract infections in both children and adults, and are characterized by a longer duration of symptoms. Here, we undertook a systematic review of studies on MR-MP in Europe. The review meets PRISMA guidelines. The PubMed, Scopus, and Science Direct databases were searched using suitable keywords to identify relevant studies published from 2010 to 2021; 21 studies were included. Overall, a low level of MR-MP spread was reported in Europe. MR-MP spread increased during epidemic waves registered in Europe, particularly in Italy and Scotland, where the highest MR-MP infection rates were registered during the 2010–2011 epidemic. By contrast, no MR-MP infections were reported in Finland and the Netherlands. Continued monitoring of MR-MP in Europe is needed to maintain the low rates of infection. Moreover, a coordinated and structured pan-European surveillance program adequate for public health surveillance is advisable, with the purpose of containing the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Daniela Loconsole
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Anna Lisa De Robertis
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Anna Sallustio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Francesca Centrone
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Caterina Morcavallo
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Silvia Campanella
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Marisa Accogli
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
- Correspondence: ; Tel.: +39-080-5478498; Fax: +39-080-5593887
| |
Collapse
|
14
|
Persistent high macrolide resistance rate and increase of macrolide-resistant ST14 strains among Mycoplasma pneumoniae in South Korea, 2019-2020. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:910-916. [PMID: 34475003 DOI: 10.1016/j.jmii.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/23/2021] [Accepted: 07/18/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Expansion of the single sequence type 3 (ST3) was associated with a high macrolide resistance rate among Mycoplasma pneumoniae in Korea during the 2014-2016 epidemic. This study investigates the macrolide resistance rate and genetic diversity of the subsequent epidemic of M. pneumoniae pneumonia in 2019-2020. METHODS The culture for M. pneumoniae was developed from 1228 respiratory samples collected from children with pneumonia in four hospitals in Korea between January 2019 and January 2020. Determination of macrolide resistance and multilocus sequence typing analysis were performed on M. pneumoniae isolates. eBURST analysis was applied to estimate the relationships among strains and to assign strains to a clonal complex. RESULTS M. pneumoniae was cultured in 93 (7.6%) of 1228 clinical samples. The overall macrolide resistance rate of M. pneumoniae strains was 78.5% (73/93). Of the nine STs identified, three were novel. The most common ST was ST3 (66 [71.0%]) followed by ST14 (18 [19.4%]) and ST7/ST15 (2 [2.2%] each). Three STs (ST3, ST14, and ST17) exhibited macrolide resistance. The macrolide resistance rates of ST3 and ST14 were 98.5% (65 of 66) and 38.9% (7 of 18), respectively. CONCLUSION Compared to the previous outbreak in 2014-2016, the overall macrolide resistance remained high; however, an increasing proportion of macrolide resistance was observed within ST14 strains in 2019-2020.
Collapse
|
15
|
Wang Y, Xu B, Wu X, Yin Q, Wang Y, Li J, Jiao W, Quan S, Sun L, Wang Y, Shen A. Increased Macrolide Resistance Rate of M3562 Mycoplasma pneumoniae Correlated With Macrolide Usage and Genotype Shifting. Front Cell Infect Microbiol 2021; 11:675466. [PMID: 34055671 PMCID: PMC8149950 DOI: 10.3389/fcimb.2021.675466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/09/2021] [Indexed: 11/20/2022] Open
Abstract
To characterize Mycoplasma pneumoniae (MP) strains and to clarify the continuous high rates of macrolide resistance, 1,524 oropharyngeal swabs collected from children in Beijing Children’s Hospital infected with MP during 2016-2019 were analyzed. Among the 1,524 samples, 1,386 harbored mutations associated with macrolide resistance; 1,049 samples were successfully classified into 11 genotypes using multiple locus variable-number tandem-repeat analysis (MLVA). The proportion of the predominant type, M4572, decreased from 84.49 to 70.77% over the time period examined, while that of M3562 increased from 11.63 to 24.67%. Notably, we also found that the frequency of macrolide resistance in M3562 drastically increased, from 60% in 2016 to 93.48% in 2019. Clinical data suggested that the frequency of resistant M3562 was higher in the macrolide usage group than in the nondrug usage group (90.73 vs 53.57%, P<0.0001), while the resistance rate of M4572 was not substantially affected by previous macrolide exposure. These findings validated that antimicrobial application and clonal expansion of resistant MP strains play important roles in the high rates of macrolide resistance.
Collapse
Affiliation(s)
- Yacui Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Baoping Xu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xirong Wu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qingqin Yin
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jieqiong Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Weiwei Jiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuting Quan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lin Sun
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yonghong Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Adong Shen
- Children's Hospital Affiliated to Zhengzhou University Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Esposito S, Argentiero A, Gramegna A, Principi N. Mycoplasma pneumoniae: a pathogen with unsolved therapeutic problems. Expert Opin Pharmacother 2021; 22:1193-1202. [PMID: 33544008 DOI: 10.1080/14656566.2021.1882420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Despite the amount of new information, the most effective approach for the diagnosis and treatment of Mycoplasma pneumoniae infections is not established. In this narrative review the pharmacological options for macrolide-resistant (ML) M. pneumoniae infections in children are discussed. AREAS COVERED Despite significant improvement in the diagnosis and in the definition of diseases potentially associated with this pathogen, not all the problems related to M. pneumoniae infection are solved. True epidemiology of M. pneumoniae diseases and the real role of this pathogen in extra-respiratory manifestations is still unestablished. This reflects on therapy. It is not known whether antibiotics are really needed in all the cases, independently of severity and localization. The choice of antibiotic therapy is debated as it is not known whether ML resistance has clinical relevance. Moreover, not precisely defined is the clinical importance of corticosteroids for improvement of severe cases, including those associated with ML-resistant strains. EXPERT OPINION Improvement in M. pneumoniae identification is mandatory to reduce antibiotics overuse , especially in the presence of ML-resistant strains. Priority for future studies includes the evaluation of the true benefit of therapeutic approaches including corticosteroids in patients with severe CAP and in those with extra-respiratory M. pneumoniae diseases.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Alberto Argentiero
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Andrea Gramegna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Nicola Principi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|