1
|
Jean SS, Ko WC, Liu IM, Hsieh PC, Hsueh PR. Geographic differences in susceptibility profiles of potential non-class B carbapenemase-producing Enterobacterales isolates against ceftazidime-avibactam, meropenem-vaborbactam, colistin, amikacin, gentamicin, and tigecycline: Data from the Antimicrobial Testing Leadership and Surveillance, 2018-2022. Int J Antimicrob Agents 2024; 64:107363. [PMID: 39455015 DOI: 10.1016/j.ijantimicag.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
To evaluate the susceptibility profiles of regional meropenem-resistant potential non-class B carbapenemase-producing Enterobacterales (CPE) isolates (without confirmation by phenotypic tests) against important antibiotics, we extracted data from the 2018-2022 Antimicrobial Testing Leadership and Surveillance. This data included susceptibility information of meropenem-resistant potential non-class B CPE isolates against indicated antibiotics - amikacin, gentamicin, ceftazidime-avibactam, colistin, meropenem-vaborbactam, and tigecycline - from sepsis patients hospitalized in intensive care units across six major regions. Carbapenemase-encoding genes of the tested CPE isolates, determined by multiplex PCR and Sanger sequencing, were also analyzed. Susceptibility breakpoints recommended by Clinical and Laboratory Standards Institute 2024 and US FDA criteria (for tigecycline only) against Enterobacterales were employed. A total of 1500 potential non-class B CPE isolates (89% of which were Klebsiella pneumoniae) were tested globally. Resistance rates to amikacin and gentamicin against the evaluated isolates were statistically higher in Africa/the Middle East, Europe, and India compared to other regions. A similar pattern was observed in the susceptibility of these potential CPE isolates to ceftazidime-avibactam and meropenem-vaborbactam. High colistin resistance rates were noted in Asia, Latin America, and Europe (29%-35%). Furthermore, the proportions of potential CPE isolates carrying genes encoding blaOXA variants were notably higher among the tested CPE isolates in India, Europe, and Africa/the Middle East regions (99.2%, 53.3%, and 96.7%, respectively) compared to other regions. Trends in resistance to important antibiotics among potential non-class B CPE isolates warrant close monitoring.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan; Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Somda NS, Nyarkoh R, Kotey FCN, Tetteh-Quarcoo PB, Donkor ES. A systematic review and meta-analysis of carbapenem-resistant Enterobacteriaceae in West Africa. BMC Med Genomics 2024; 17:267. [PMID: 39533268 PMCID: PMC11555847 DOI: 10.1186/s12920-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In Africa, the problem of carbapenem-resistant Enterobacteriaceae (CRE) is aggravated by many factors. This systematic review attempted to describe the current status of the molecular epidemiology of carbapenem resistance in West Africa (WA). METHODS Articles published from 16 West African countries on the molecular epidemiology of carbapenem resistance were reviewed. An extensive literature search was carried out in PubMed, Scopus, Web of Science, and African Journals Online (AJOL) using specific keywords. The meta-analysis and forest plots of major pathogens and carbapenem resistance genes were done using the Open Meta-Analyst, Task Order # 2 software. The data were analysed in binary random model effects by the DerSimonian-Laird method at a 95% confidence interval. RESULTS Of the 431 articles found in our initial search, 60 (13.92%) were considered suitable for inclusion. Only seven of the 16 West African countries formed part of the analysis, Nigeria (23/60), Ghana (19/60), Burkina Faso (7/60), Senegal (6/60), Benin (2/60), Mali (2/60), and Togo (1/60). Also, 80% (48/60) of the studies used clinical samples, 16.67% (10/60) used environmental samples, and 3.33% (2/60) used animal samples. The average prevalence was highest in Acinetobacter baumannii (18.6%; 95% CI = 14.0-24.6, I2 = 97.9%, p < 0.001), followed by Pseudomonas aeruginosa (6.5%; 95% CI = 3.1-13.4, I2 = 96.52%, p < 0.001), Klebsiella pneumoniae (5.8%; 95% CI = 4.2-7.9, I2 = 98.06%, p < 0.001) and Escherichia coli (4.1%; 95% CI = 2.2-7.7, I2 = 96.68%, p < 0.001). The average prevalence of the blaNDM gene was 10.6% (95% CI = 7.9-14.3, I2 = 98.2%, p < 0.001), followed by 3.9% (95% CI: 1.8-8.3, I2 = 96.73%, p < 0.001) for blaVIM and 3.1% (95% CI: 1.7-5.8, I2 = 91.69%, p < 0.001) for blaOXA-48. CONCLUSION In West Africa, K. pneumoniae, E. coli, A. baumannii, and P. aeruginosa are the main CRE with blaNDM, blaVIM, and blaOXA-48 being the predominant carbapenem resistance genes. In view of these results, ongoing CRE surveillance combined with antimicrobial stewardship improved, laboratory detection methods, and adherence to infection control practices will be needed to control the spread of CRE.
Collapse
Affiliation(s)
- Namwin Siourimè Somda
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Rabbi Nyarkoh
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Patience B Tetteh-Quarcoo
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
3
|
Mills RO, Dadzie I, Le-Viet T, Baker DJ, Addy HPK, Akwetey SA, Donkoh IE, Quansah E, Semanshia PS, Morgan J, Mensah A, Adade NE, Ampah EO, Owusu E, Mwintige P, Amoako EO, Spadar A, Holt KE, Foster-Nyarko E. Genomic diversity and antimicrobial resistance in clinical Klebsiella pneumoniae isolates from tertiary hospitals in Southern Ghana. J Antimicrob Chemother 2024; 79:1529-1539. [PMID: 38751093 PMCID: PMC11215549 DOI: 10.1093/jac/dkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVES Comprehensive data on the genomic epidemiology of hospital-associated Klebsiella pneumoniae in Ghana are scarce. This study investigated the genomic diversity, antimicrobial resistance patterns, and clonal relationships of 103 clinical K. pneumoniae isolates from five tertiary hospitals in Southern Ghana-predominantly from paediatric patients aged under 5 years (67/103; 65%), with the majority collected from urine (32/103; 31%) and blood (25/103; 24%) cultures. METHODS We generated hybrid Nanopore-Illumina assemblies and employed Pathogenwatch for genotyping via Kaptive [capsular (K) locus and lipopolysaccharide (O) antigens] and Kleborate (antimicrobial resistance and hypervirulence) and determined clonal relationships using core-genome MLST (cgMLST). RESULTS Of 44 distinct STs detected, ST133 was the most common, comprising 23% of isolates (n = 23/103). KL116 (28/103; 27%) and O1 (66/103; 64%) were the most prevalent K-locus and O-antigen types. Single-linkage clustering highlighted the global spread of MDR clones such as ST15, ST307, ST17, ST11, ST101 and ST48, with minimal allele differences (1-5) from publicly available genomes worldwide. Conversely, 17 isolates constituted novel clonal groups and lacked close relatives among publicly available genomes, displaying unique genetic diversity within our study population. A significant proportion of isolates (88/103; 85%) carried resistance genes for ≥3 antibiotic classes, with the blaCTX-M-15 gene present in 78% (n = 80/103). Carbapenem resistance, predominantly due to blaOXA-181 and blaNDM-1 genes, was found in 10% (n = 10/103) of the isolates. CONCLUSIONS Our findings reveal a complex genomic landscape of K. pneumoniae in Southern Ghana, underscoring the critical need for ongoing genomic surveillance to manage the substantial burden of antimicrobial resistance.
Collapse
Affiliation(s)
- Richael O Mills
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Dadzie
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Thanh Le-Viet
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David J Baker
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Humphrey P K Addy
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel A Akwetey
- Department of Clinical Microbiology, University of Development Studies, Tamale, Ghana
| | - Irene E Donkoh
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Quansah
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Prince S Semanshia
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jennifer Morgan
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Abraham Mensah
- Department of Microbiology and Immunology, University of Cape Coast, Cape Coast, Ghana
| | - Nana E Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Emmanuel O Ampah
- Microbiology Department, Greater Accra Regional Hospital, Ridge, Accra, Ghana
| | - Emmanuel Owusu
- Microbiology Department, Greater Accra Regional Hospital, Ridge, Accra, Ghana
| | - Philimon Mwintige
- Microbiology Laboratory, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Eric O Amoako
- Public Health Laboratory, Effia Nkwanta Regional Hospital, Sekondi-Takoradi, Ghana
| | - Anton Spadar
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ebenezer Foster-Nyarko
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
4
|
Kedišaletše M, Phumuzile D, Angela D, Andrew W, Mae NF. Epidemiology, risk factors, and clinical outcomes of carbapenem-resistant Enterobacterales in Africa: A systematic review. J Glob Antimicrob Resist 2023; 35:297-306. [PMID: 37879456 DOI: 10.1016/j.jgar.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES Carbapenem-resistant Enterobacterales (CRE) commonly cause hospital-acquired infections and hospital outbreaks worldwide, with an alarming increase in Africa, necessitating review of regional CRE epidemiological trends. METHODS A systematic review was conducted using PRISMA guidelines, searching PubMed, Scopus and Web of Science databases for studies describing CRE distribution, risk factors for CRE acquisition and clinical outcome of CRE infections in Africa. RESULTS One-hundred and sixty-nine studies were included, with the majority from North Africa (92/169, 54.4%). Most studies (136/169; 80.4%) focused only on infection, with a total of 15666 CRE isolates (97.4% clinical infection, 2.6% colonisation). The leading bacterial species included Klebsiella (72.2%), Escherichia coli (13.5%), and Enterobacter (8.3%). The most frequently detected carbapenemases were NDM (43.1%) and OXA-48-like (42.9%). Sequence types were reported in 44 studies, with ST101 and ST147 most commonly reported in K. pneumoniae, and ST410, ST167 and ST38 in E. coli. Previous antibiotic use, prior hospitalisation, surgical procedures, indwelling devices, intensive care unit admission and prolonged hospital stay, were the most frequent factors associated with CRE infection/colonisation. Crude mortality for CRE infection was 37%. CONCLUSION Although K. pneumoniae and E. coli remain the most frequent CRE in Africa, observed sequence types are not the commonly reported global 'high-risk' clones. The distribution of species and carbapenemases differs across African regions, while risk factors for CRE colonisation/infection, and patient outcomes are similar to those reported globally. There are limited data on CREs from parts of Africa, highlighting the need to strengthen epidemiologic surveillance programmes in the region.
Collapse
Affiliation(s)
- Moloto Kedišaletše
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Dube Phumuzile
- Synthetic Biology Center, NextGeneration Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Dramowski Angela
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Whitelaw Andrew
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Newton-Foot Mae
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
5
|
Magobo RE, Ismail H, Lowe M, Strasheim W, Mogokotleng R, Perovic O, Kwenda S, Ismail A, Makua M, Bore A, Phayane R, Naidoo H, Dennis T, Ngobese M, Wijnant W, Govender NP. Outbreak of NDM-1- and OXA-181-Producing Klebsiella pneumoniae Bloodstream Infections in a Neonatal Unit, South Africa. Emerg Infect Dis 2023; 29:1531-1539. [PMID: 37486166 PMCID: PMC10370860 DOI: 10.3201/eid2908.230484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
After an increase in carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections and associated deaths in the neonatal unit of a South Africa hospital, we conducted an outbreak investigation during October 2019-February 2020 and cross-sectional follow-up during March 2020-May 2021. We used genomic and epidemiologic data to reconstruct transmission networks of outbreak-related clones. We documented 31 cases of culture-confirmed CRKP infection and 14 deaths. Two outbreak-related clones (blaNDM-1 sequence type [ST] 152 [n = 16] and blaOXA-181 ST307 [n = 6]) cocirculated. The major clone blaNDM-1 ST152 accounted for 9/14 (64%) deaths. Transmission network analysis identified possible index cases of blaOXA-181 ST307 in October 2019 and blaNDM-1 ST152 in November 2019. During the follow-up period, 11 new cases of CRKP infection were diagnosed; we did not perform genomic analysis. Sustained infection prevention and control measures, adequate staffing, adhering to bed occupancy limits, and antimicrobial stewardship are key interventions to control such outbreaks.
Collapse
|
6
|
Franz R, Hahn A, Hagen RM, Rohde H, Eberhardt KA, Ehrhardt S, Baum J, Claussen L, Feldt T, Hinz R, Barthel D, Bindt C, Tagbor H, Nguah SB, Koffi M, Köller T, Warnke P, Pankok F, Taudien S, Frickmann H, Schoppen S. Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Pathogens 2023; 12:999. [PMID: 37623959 PMCID: PMC10459482 DOI: 10.3390/pathogens12080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and blaCTX-M, blaIMP, blaGES, blaVIM, blaOXA-58-like, blaNDM, blaOXA-23-like, blaOXA-48-like and blaKPC occurring in descending order of frequency. The beta-lactamase genes blaOXA-40/24-like, blaNMC_A/IMI, blaBIC, blaSME, blaGIM and blaDIM were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns.
Collapse
Affiliation(s)
- Roman Franz
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, 10115 Berlin, Germany
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (A.H.); (T.K.); (P.W.)
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany;
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center, 20359 Hamburg, Germany;
- Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, 20539 Hamburg, Germany
| | - Stephan Ehrhardt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA 21205, USA;
| | - Jana Baum
- Clinical Research Unit, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany;
| | - Lisa Claussen
- Department of Anaesthesiology and Intensive Care, Asklepios Klinik Altona, 22763 Hamburg, Germany;
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rebecca Hinz
- Department of Clinical Microbiology, Synlab MVZ Hamburg GmbH, 22083 Hamburg, Germany;
| | - Dana Barthel
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Medical Center, 20251 Hamburg, Germany; (D.B.); (C.B.)
| | - Carola Bindt
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Medical Center, 20251 Hamburg, Germany; (D.B.); (C.B.)
| | - Harry Tagbor
- School of Medicine, Department of Community Health, University of Health and Allied Sciences, Ho PMB 31, Ghana;
| | - Samuel Blay Nguah
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi AK-385-1973, Ghana;
| | - Mathurin Koffi
- Université Jean Lorougnon GUEDE, UFR Environnement-Santé, Laboratoire des Interactions Hôte-Microorganismes-Environnement et Evolution (LIHME), Daloa BP 150, Côte d’Ivoire;
| | - Thomas Köller
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (A.H.); (T.K.); (P.W.)
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (A.H.); (T.K.); (P.W.)
| | - Frederik Pankok
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.P.); (S.T.)
| | - Stefan Taudien
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.P.); (S.T.)
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (A.H.); (T.K.); (P.W.)
| | - Stefanie Schoppen
- Department of Health and Social Science, Hochschule Fresenius, 20148 Hamburg, Germany
| |
Collapse
|
7
|
Hu Y, Yang Y, Feng Y, Fang Q, Wang C, Zhao F, McNally A, Zong Z. Prevalence and clonal diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal infections: A systematic review of 128 articles across 30 countries. PLoS Med 2023; 20:e1004233. [PMID: 37339120 DOI: 10.1371/journal.pmed.1004233] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/04/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is the most common pathogen causing neonatal infections, leading to high mortality worldwide. Along with increasing antimicrobial use in neonates, carbapenem-resistant K. pneumoniae (CRKP) has emerged as a severe challenge for infection control and treatment. However, no comprehensive systematic review is available to describe the global epidemiology of neonatal CRKP infections. We therefore performed a systematic review of available data worldwide and combined a genome-based analysis to address the prevalence, clonal diversity, and carbapenem resistance genes of CRKP causing neonatal infections. METHODS AND FINDINGS We performed a systematic review of studies reporting population-based neonatal infections caused by CRKP in combination with a genome-based analysis of all publicly available CRKP genomes with neonatal origins. We searched multiple databases (PubMed, Web of Science, Embase, Ovid MEDLINE, Cochrane, bioRxiv, and medRxiv) to identify studies that have reported data of neonatal CRKP infections up to June 30, 2022. We included studies addressing the prevalence of CRKP infections and colonization in neonates but excluded studies lacking the numbers of neonates, the geographical location, or independent data on Klebsiella or CRKP isolates. We used narrative synthesis for pooling data with JMP statistical software. We identified 8,558 articles and excluding those that did not meet inclusion criteria. We included 128 studies, none of which were preprints, comprising 127,583 neonates in 30 countries including 21 low- and middle-income countries (LMICs) for analysis. We found that bloodstream infection is the most common infection type in reported data. We estimated that the pooled global prevalence of CRKP infections in hospitalized neonates was 0.3% (95% confidence interval [CI], 0.2% to 0.3%). Based on 21 studies reporting patient outcomes, we found that the pooled mortality of neonatal CRKP infections was 22.9% (95% CI, 13.0% to 32.9%). A total of 535 neonatal CRKP genomes were identified from GenBank including Sequence Read Archive, of which 204 were not linked to any publications. We incorporated the 204 genomes with a literature review for understanding the species distribution, clonal diversity, and carbapenemase types. We identified 146 sequence types (STs) for neonatal CRKP strains and found that ST17, ST11, and ST15 were the 3 most common lineages. In particular, ST17 CRKP has been seen in neonates in 8 countries across 4 continents. The vast majority (75.3%) of the 1,592 neonatal CRKP strains available for analyzing carbapenemase have genes encoding metallo-β-lactamases and NDM (New Delhi metallo-β-lactamase) appeared to be the most common carbapenemase (64.3%). The main limitation of this study is the absence or scarcity of data from North America, South America, and Oceania. CONCLUSIONS CRKP contributes to a considerable number of neonatal infections and leads to significant neonatal mortality. Neonatal CRKP strains are highly diverse, while ST17 is globally prevalent and merits early detection for treatment and prevention. The dominance of blaNDM carbapenemase genes imposes challenges on therapeutic options in neonates and supports the continued inhibitor-related drug discovery.
Collapse
Affiliation(s)
- Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongqiang Yang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Chengcheng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Feifei Zhao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Jin X, Liu S, Zhang Z, Liu T, Li N, Liang Y, Zheng J, Peng N. Enrofloxacin-induced transfer of multiple-antibiotic resistance genes and emergence of novel resistant bacteria in red swamp crayfish guts and pond sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130261. [PMID: 36356515 DOI: 10.1016/j.jhazmat.2022.130261] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.
Collapse
Affiliation(s)
- Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Sizhen Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Tong Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Na Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Runge College of Bioengineering, Mianzhu, 618200 Deyang, Sichuan, PR China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
9
|
Mahazu S, Prah I, Ota Y, Hayashi T, Nukui Y, Suzuki M, Hoshino Y, Akeda Y, Suzuki T, Ishino T, Ablordey A, Saito R. Klebsiella Species and Enterobacter cloacae Isolates Harboring blaOXA-181 and blaOXA-48: Resistome, Fitness Cost, and Plasmid Stability. Microbiol Spectr 2022; 10:e0332022. [PMID: 36453894 PMCID: PMC9769605 DOI: 10.1128/spectrum.03320-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
IncX3 and IncL plasmids have been named as catalysts advancing dissemination of blaOXA-181 and blaOXA-48 genes. However, their impact on the performance of host cells is vastly understudied. Genetic characteristics of blaOXA-48- and blaOXA-181-containing Klebsiella pneumoniae (EFN299), Klebsiella quasipneumoniae (EFN262), and Enterobacter cloacae (EFN743) isolated from clinical samples in a Ghanaian hospital were investigated by whole-genome sequencing. Transfer of plasmids by conjugation and electroporation, plasmid stability, fitness cost, and genetic context of blaOXA-48, blaOXA-181, and blaDHA-1 were assessed. blaOXA-181 was carried on two IncX3 plasmids, an intact 51.5-kb IncX3 plasmid (p262-OXA-181) and a 45.3-kb IncX3 plasmid (p743-OXA-181) without replication protein sequence. The fluoroquinolone-resistant gene qnrS1 region was also excised, and unlike in p262-OXA-181, the blaOXA-181 drug-resistant region was not found on a composite transposon. blaOXA-48 was carried on a 74.6-kb conjugative IncL plasmid with unknown ~10.9-kb sequence insertion. This IncL plasmid proved to be highly transferable, with a conjugation efficiency of 1.8 × 10-2. blaDHA-1 was present on an untypeable 22.2 kb genetic structure. Plasmid stability test revealed plasmid loss rate between 4.3% and 12.4%. The results also demonstrated that carriage of IncX3-blaOXA-181 or IncL-blaOXA-48 plasmids was not associated with any fitness defect, but rather an enhanced competitive ability of host cells. This study underscores the significant contribution of IncX3 and IncL plasmids in the dissemination of resistance genes and their efficient transfer calls for regular monitoring to control the expansion of resistant strains. IMPORTANCE The growing rate of antibiotic resistance is an important global health threat. This threat is exacerbated by the lack of safe and potent alternatives to carbapenems in addition to the slow developmental process of newer and effective antibiotics. Infections by carbapenem-resistant Gram-negative bacteria are becoming almost untreatable, leading to poor clinical outcomes and high mortality rates. OXA-48-like carbapenemases are one of the most widespread carbapenemases accounting for resistance among Enterobacteriaecae. We characterized OXA-48- and OXA-181-producing Enterobacteriaecae to gain insights into the genetic basis and mechanism of resistance to carbapenems. Findings from the study showed that the genes encoding these enzymes were carried on highly transmissible plasmids, one of which had sequences absent in other similar plasmids. This implies that mobile genetic elements are important players in the dissemination of resistance genes. Further characterization of this plasmid is warranted to determine the role of this sequence in the spread of resistance genes.
Collapse
Affiliation(s)
- Samiratu Mahazu
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Ota
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Prevention, Tokyo Medical and Dental University Hospital, Tokyo, Japan
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ryoichi Saito
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Infection Control and Prevention, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Acolatse JEE, Portal EAR, Boostrom I, Akafity G, Dakroah MP, Chalker VJ, Sands K, Spiller OB. Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. Antimicrob Resist Infect Control 2022; 11:49. [PMID: 35296353 PMCID: PMC8925048 DOI: 10.1186/s13756-022-01090-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. Methods The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum β-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. Results We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying blaNDM-1 observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards.
Conclusion Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple blaNDM carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), blaVIM-5 or blaDIM-1 showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01090-2.
Collapse
|
11
|
Comparison of Two Distinct Subpopulations of Klebsiella pneumoniae ST16 Co-Occurring in a Single Patient. Microbiol Spectr 2022; 10:e0262421. [PMID: 35467408 PMCID: PMC9241866 DOI: 10.1128/spectrum.02624-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The higher resistance rate to ceftazidime-avibactam (CZA) is mainly related to carbapenem resistance, especially New Delhi metallo-β-lactamase (NDM). The CZA-susceptible Klebsiella pneumoniae (K191663) and the later CZA-resistant isolates (K191724, K191725, K191773) co-producing NDM-4 and OXA-181 were obtained from the same hospitalized patient returning from Vietnam. Our study aims to elucidate the diversity of K. pneumoniae ST16 through comparative analysis of whole-genome sequencing (WGS) data and identify the potential evolution of plasmids by sequencing longitudinal clinical isolates during antibiotic treatment. Firstly, multilocus sequence typing analysis and phylogenic analysis suggested that these strains belong to the two lineages of K. pneumoniae ST16. Surprisingly, the CZA-resistant strains were closely related to K. pneumoniae ST16 described in South Korea, instead of the blaNDM-4- or blaOXA-181-carrying ST16 reported in Vietnam. Secondly, blaNDM-4, blaTEM-1B, and rmtB co-existed on a self-conjugative IncFII(Yp)-like plasmid, which played a significant role in CZA resistance. It could transfer into the recipient Escherichia coli J53 at high frequency, indicating the risk of mobile carbapenemases. In addition, the loss of 12-kbp fragment occurred in blaNDM-4-positive isolate (K191773), which was likely caused by insertion sequence-mediated homologous recombination. Last but not least, as a repressor of acrAB operon system, acrR was truncated by a frameshift mutation in K191663. Thus, our study provided baseline information for monitoring the occurrence and development of bacterial resistance. IMPORTANCE As a leading health care-acquired infection pathogen, Klebsiella pneumoniae is threatening a large number of inpatients due to its diverse antibiotic resistance and virulence factors. Heretofore, with a growing number of reports about the coexistence of several carbapenemases in carbapenem-resistant K. pneumoniae (CRKP), epidemiologic surveillance has been strengthened. Nevertheless, the nosocomial outbreaks by CRKP ST16 are gradually increasing worldwide. Our study provides a deeper insight into the diversification of clinical isolates of CRKP ST16 in China. In addition, the comparison analysis of resistant plasmids may reveal the transmission of carbapenemase-encoding genes. Furthermore, our study also highlights the importance of longitudinal specimen collection and continuous monitoring during the treatment, which play a crucial role in understanding the development of antibiotic resistance and the evolution of resistance plasmids.
Collapse
|
12
|
Bloodstream Infections at Two Neonatal Intensive Care Units in Ghana: Multidrug Resistant Enterobacterales Undermine the Usefulness of Standard Antibiotic Regimes. Pediatr Infect Dis J 2021; 40:1115-1121. [PMID: 34561387 DOI: 10.1097/inf.0000000000003284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bloodstream infections (BSIs) are a major cause of morbidity and mortality in hospitalized neonates. Data on antibiotic resistance in neonatal BSIs and their impact on clinical outcomes in Africa are limited. METHODS We conducted a prospective cohort study at 2 tertiary level neonatal intensive care units (NICUs) in Ghana. All neonates admitted to the NICUs were included from October 2017 to September 2019. We monitored BSI rates and analyzed the effect of BSI and antibiotic resistance on mortality and duration of hospitalization. RESULTS Of 5433 neonates included, 3514 had at least one blood culture performed and 355 had growth of a total of 368 pathogenic microorganisms. Overall incidence of BSI was 1.0 (0.9-1.1) per 100 person days. The predominant organisms were Klebsiella pneumoniae 49.7% (183/368) and Streptococcus spp. 10.6% (39/368). In addition, 512 coagulase negative Staphylococci were isolated but considered probable contaminants. Among K. pneumoniae, resistance to gentamicin and amikacin was 91.8% and 16.4%, respectively, while carbapenem resistance was 4.4%. All-cause mortality among enrolled neonates was 19.7% (1066/5416). The mortality rate was significantly higher in neonates with BSI compared with culture-negative neonates in univariate analysis (27.9%, n = 99/355 vs. 16.5%, n = 520/3148; hazard ratio 1.4, 95% confidence interval 1.07-1.70) but not in multivariate analysis. CONCLUSION The diversity of etiologic agents and the high-risk of antibiotic resistance suggest that standard empirical treatment is unlikely to improve the outcome of BSIs in low and middle income. Such improvements will depend on access to reliable clinical microbiologic services.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Neonatal bloodstream infections (BSI) are a major contributor to morbidity and mortality within neonatal intensive care units. BSI, including central line-associated BSI, have decreased over the past 15 years but remain common in extremely preterm infants. The purpose of this review is to highlight recent advances in the causes, diagnosis, management, and prevention of neonatal BSI. RECENT FINDINGS Continued quality improvement efforts and bundles have reduced BSI incidence, and novel approaches are highlighted. An update of emerging pathogens as well as traditional pathogens with novel antimicrobial resistance, which are an increasingly common cause of neonatal BSI, is included. Finally, current and future investigations into serum or noninvasive biomarkers for neonatal BSI are reviewed. SUMMARY Neonatal BSIs continue to decrease due to enhanced infection control and prevention techniques. However, many challenges remain, including emerging bacterial and fungal resistance and the continued need for novel diagnostics that hasten time to pathogen identification and effective treatment. This review of the past 18 months highlights the rapid changes in this area. Ongoing efforts to reduce the morbidity and mortality caused by neonatal BSI must remain a priority.
Collapse
Affiliation(s)
| | - Joseph B Cantey
- Department of Pediatrics, Division of Neonatology
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
14
|
Prah I, Ayibieke A, Mahazu S, Sassa CT, Hayashi T, Yamaoka S, Suzuki T, Iwanaga S, Ablordey A, Saito R. Emergence of oxacillinase-181 carbapenemase-producing diarrheagenic Escherichia coli in Ghana. Emerg Microbes Infect 2021; 10:865-873. [PMID: 33879019 PMCID: PMC8110189 DOI: 10.1080/22221751.2021.1920342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence and spread of carbapenemase-producing bacteria are serious threats to public health. We characterized two OXA-181-producing Escherichia coli isolates from pediatric patients with diarrhea from Ghana. blaOXA-181 was localized on the self-conjugative IncX3-containing plasmid in the E. coli ST410 isolate, belonging to an emerging lineage, and an IncFIC(FII)-containing plasmid in E. coli ST940. The blaOXA-181-qnrS1 region was found on the IS26 composite transposon, which contained a 366-bp deletion in the region encoding the Rep A protein for the IncX3-containing plasmid. The IncFIC(FII) plasmid was novel and integrated with an approximately 39-kb IncX1 plasmid through conjugal transfer. Both plasmids clustered close to plasmids from Switzerland. To the best of our knowledge, this is the first report describing the presence of an IncX3 plasmid containing blaOXA-181 in strains closely related to the B4/H24RxC clade in Africa, suggesting its emergence and the need to strengthen antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Isaac Prah
- Department of Molecular Microbiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Alafate Ayibieke
- Department of Molecular Microbiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Environmental Parasitology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Tani Sassa
- Department of Clinical Laboratory, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anthony Ablordey
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ryoichi Saito
- Department of Molecular Microbiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
15
|
Resistance Status of Bacteria from a Health Facility in Ghana: A Retrospective Study. J Pathog 2021; 2021:6648247. [PMID: 33747569 PMCID: PMC7952191 DOI: 10.1155/2021/6648247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background Regardless of the global concerted effort to control the development and spread of antimicrobial resistance, increasing cases are continually documented at many medical centres. This situation is reinforced by inadequate information on the trend of resistance resulting from lack of regular antimicrobial resistance surveillance. The present study sought to detect the number of multidrug-resistant (MDR), extended drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates at a health facility in Ghana from January 2018 to July 2020. Method A total of 800 data on antimicrobial testing results were extracted from the records of the health facility. The extracted data were explored for the detection of MDR, XDR, and PDR. The study further determined the use of antibiotics using the multiple-drug resistance index (MDRI). Results Except for Staphylococcus and Neisseria spp., all bacterial isolates showed extremely high (100%) proportion of MDR. Although only Staphylococcus spp. (38 (4.8%)) was observed to be XDR, the rest of the bacteria showed the potential to attain the status of XDR or PDR. MDRI indicated high use of antibiotics in the health facility. Conclusion The high antimicrobial resistance observed by the study underscores the need for prompt and effective antibiotic resistance control strategies.
Collapse
|
16
|
Transmission and Antibiotic Resistance of Achromobacter in Cystic Fibrosis. J Clin Microbiol 2021; 59:JCM.02911-20. [PMID: 33472899 PMCID: PMC8092725 DOI: 10.1128/jcm.02911-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Achromobacter species are increasingly being detected in patients with cystic fibrosis (CF), and this emerging pathogen is associated with antibiotic resistance and more-severe disease outcomes. Nonetheless, little is known about the extent of transmission and antibiotic resistance development in Achromobacter infections. We sequenced the genomes of 101 Achromobacter clinical isolates (identified as Achromobacter xylosoxidans based on matrix-assister laser desorption ionization-time of flight [MALDI-TOF] or API N20 typing) collected from 51 patients with CF-the largest longitudinal data set to date. We performed phylogenetic analysis on the genomes and combined this with epidemiological and antibiotic resistance data to identify patient-to-patient transmission and the development of antibiotic resistance. We confirmed that the MALDI-TOF or API N20 method was not sufficient for Achromobacter species-level typing and that the population of Achromobacter isolates was composed of five different species, among which A. xylosoxidans accounted for 52% of infections. Most patients were infected by unique Achromobacter clone types; nonetheless, suspected patient-to-patient transmission cases identified by shared clone types were observed in 35% (n = 18) of patients. In 15 of 16 cases, the suspected transmissions were further supported by genome- or clinic visit-based epidemiological analysis. Finally, we found that resistance developed over time. We show that whole-genome sequencing (WGS) is essential for Achromobacter species typing and identification of patient-to-patient transmission, which was revealed for Achromobacter ruhlandii, A. xylosoxidans, and, for the first time, Achromobacter insuavis Furthermore, we show that the development of antibiotic resistance is associated with chronic Achromobacter infections. Our findings emphasize that transmission and antibiotic resistance should be considered in future treatment strategies.
Collapse
|
17
|
High Prevalence of Carbapenemase-Producing Acinetobacter baumannii in Wound Infections, Ghana, 2017/2018. Microorganisms 2021; 9:microorganisms9030537. [PMID: 33807838 PMCID: PMC7998214 DOI: 10.3390/microorganisms9030537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/01/2023] Open
Abstract
Three years after a prospective study on wound infections in a rural hospital in Ghana revealed no emergence of carbapenem-resistant bacteria we initiated a new study to assess the prevalence of multidrug-resistant pathogens. Three hundred and one samples of patients with wound infections were analysed for the presence of resistant bacteria in the period August 2017 till March 2018. Carbapenem-resistant Acinetobacter (A.) baumannii were further characterized by resistance gene sequencing, PCR-based bacterial strain typing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST “Oxford scheme”). A. baumanni was detected in wound infections of 45 patients (15%); 22 isolates were carbapenem-resistant. Carbapenemases NDM-1 and/or OXA-23 were detected in all isolates; two isolates harboured additionally OXA-420. PFGE and MLST analyses confirmed the presence of one A. baumannii strain in 17 patients that was assigned to the worldwide spread sequence type ST231 and carried NDM-1 and OXA-23. Furthermore, two new A. baumannii STs (ST2145 and ST2146) were detected in two and three patients, respectively. Within three years the prevalence of carbapenem-resistant A. baumannii increased dramatically in the hospital. The early detection of multidrug-resistant bacteria and prevention of their further spread are only possible if continuous surveillance and molecular typing will be implemented.
Collapse
|