1
|
Agnello L, Masucci A, Tamburello M, Vassallo R, Massa D, Giglio RV, Midiri M, Gambino CM, Ciaccio M. The Role of Killer Ig-like Receptors in Diseases from A to Z. Int J Mol Sci 2025; 26:3242. [PMID: 40244151 PMCID: PMC11989319 DOI: 10.3390/ijms26073242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Killer Ig-like Receptors (KIRs) regulate immune responses, maintaining the balance between activation and inhibition of the immune system. KIRs are expressed on natural killer cells and some CD8 T cells and interact with HLA class I molecules, influencing various physiological and pathological processes. KIRs' polymorphism creates a variability in immune responses among individuals. KIRs are involved in autoimmune disorders, cancer, infections, neurological diseases, and other diseases. Specific combinations of KIRs and HLA are linked to several diseases' susceptibility, progression, and outcomes. In particular, the balance between inhibitory and activating KIRs can determine how the immune system responds to pathogens and tumors. An imbalance can lead to an excessive response, contributing to autoimmune diseases, or an inadequate response, allowing immune evasion by pathogens or cancer cells. The increasing number of studies on KIRs highlights their essential role as diagnostic and prognostic biomarkers and potential therapeutic targets. This review provides a comprehensive overview of the role of KIRs in all clinical conditions and diseases, listed alphabetically, where they are analyzed.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Davide Massa
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Rosaria Vincenza Giglio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Mauro Midiri
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
2
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Letafati A, Salahi Ardekani O, Karami H, Soleimani M. Ebola virus disease: A narrative review. Microb Pathog 2023:106213. [PMID: 37355146 DOI: 10.1016/j.micpath.2023.106213] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Ebola virus disease (EVD), which is also referred to as Ebola hemorrhagic fever, is a highly contagious and frequently lethal sickness caused by the Ebola virus. In 1976, the disease emerged in two simultaneous outbreaks in Sudan and the Democratic Republic of Congo. Subsequently, it has caused intermittent outbreaks in several African nations. The virus is primarily spread via direct contact with the bodily fluids of an infected individual or animal. EVD is distinguished by symptoms such as fever, fatigue, muscle pain, headache, and hemorrhage. The outbreak of EVD in West Africa in 2014-2016 emphasized the need for effective control and prevention measures. Despite advancements and the identification of new treatments for EVD, the primary approach to treatment continues to be centered around providing supportive care. Early detection and supportive care can enhance the likelihood of survival. This includes intravenous fluids, electrolyte replacement, and treatment of secondary infections. Experimental therapies, for instance, monoclonal antibodies and antiviral drugs, have shown promising results in animal studies and some clinical trials. Some African countries have implemented the use of vaccines developed for EVD, but their effectiveness and long-term safety are still being studied. This article provides an overview of the history, transmission, symptoms, diagnosis, treatment, epidemiology, and Ebola coinfection, as well as highlights the ongoing research efforts to develop effective treatments and vaccines to combat this deadly virus.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hassan Karami
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Soleimani
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
4
|
Roshan Zamir M, Ariafar A, Ghaderi A, Amirzargar A. The impact of killer cell immunoglobulin-like receptor (KIR) genes and human leukocyte antigen (HLA) class I ligands on predisposition or protection against prostate cancer. Immunobiology 2023; 228:152319. [PMID: 36599262 DOI: 10.1016/j.imbio.2022.152319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cell development largely depends on killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I ligands. In the current study, we investigated the role of KIR genes, HLA ligands, and KIR-HLA combinations in vulnerability or protection against prostate cancer (PC). To analyze the frequency of 16 KIR genes and 5 HLA ligands, polymerase chain reaction with sequence-specific primers (PCR-SSP) was conducted in 150 PC patients and 200 healthy controls (CNs). KIR2DL5 (p = 0.0346, OR = 0.606, CI = 0.3916-0.9336), KIR2DS5 (p = 0.0227, OR = 0.587, CI = 0.3793-0.9139), HLA-B Bw4Thr80 (p = 0.0401, OR = 0.3552, CI = 0.1466-0.9059), HLA Bw4 (p = 0.0190, OR = 0.4744, CI = 0.2656-0.8521), and T4 gene cluster (including KIR2DS5-2DL5-3DS1-2DS1 genes) (p = 0.0194, OR = 0.5575, CI = 0.3449-0.8938) had a lower frequency in the PC patients compared to the control group. Moreover, a lower frequency of the genotypes contacting activating KIR (aKIR) > inhibitory KIR (iKIR) (p = 0.0298, OR = 0.5291, CI = 0.3056-0.9174) and iKIR + HLA < aKIR + HLA (p = 0.0183, OR = 0.2197, CI = 0.0672-0.7001) in PC patients compared to the CNs implies a protective role for aKIR genes. In the case of KIR-HLA interactions, we detected a significant association between KIR3DS1+ + HLA-A Bw4+ (p = 0.0113, OR = 0.5093, CI = 0.3124-0.8416) and KIR3DL1- + HLA-A Bw4+ (p = 0.0306, OR = 0.1153, CI = 0.0106-0.6537) combinations and resistance to prostate cancer. In contrast, the presence of KIR3DL1 in the absence of HLA-A Bw4 (p = 0.0040, OR = 2.00, CI = 1.264-3.111), HLA Bw4 (p = 0.0296, OR = 2.066, CI = 1.094-3.906), and HLA-Bw4Thr80 (p = 0.0071, OR = 2.505, CI = 1.319-4.703) genes probably predisposes to prostate cancer. Carrying the CxT4 genotype in PC patients was positively associated with lower tumor grades (Gleason score ≤ 6) (p = 0.0331, OR = 3.290, and CI = 1.181-8.395). Altogether, our data suggest a protective role for aKIRs, HLA-B Bw4Thr80, and HLA Bw4 ligands as well as a predisposing role for certain KIR-HLA combinations in prostate cancer. The findings of this study offer new insight into the population's risk assessment for prostate cancer in men. Additionally, predicting immunotherapy response based on KIR-HLA combinations aids in implementing the most effective therapeutic approach in the early stages of the disease.
Collapse
Affiliation(s)
- Mina Roshan Zamir
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Ariafar
- Urology-Oncology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Dyal J, Kofman A, Kollie JZ, Fankhauser J, Orone R, Soka MJ, Glaybo U, Kiawu A, Freeman E, Giah G, Tony HD, Faikai M, Jawara M, Kamara K, Kamara S, Flowers B, Kromah ML, Desamu-Thorpe R, Graziano J, Brown S, Morales-Betoulle ME, Cannon DL, Su K, Linderman SL, Plucinski M, Rogier E, Bradbury RS, Secor WE, Bowden KE, Phillips C, Carrington MN, Park YH, Martin MP, Aguinaga MDP, Mushi R, Haberling DL, Ervin ED, Klena JD, Massaquoi M, Nyenswah T, Nichol ST, Chiriboga DE, Williams DE, Hinrichs SH, Ahmed R, Vonhm BT, Rollin PE, Purpura LJ, Choi MJ. Risk Factors for Ebola Virus Persistence in Semen of Survivors in Liberia. Clin Infect Dis 2023; 76:e849-e856. [PMID: 35639875 PMCID: PMC10169428 DOI: 10.1093/cid/ciac424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long-term persistence of Ebola virus (EBOV) in immunologically privileged sites has been implicated in recent outbreaks of Ebola virus disease (EVD) in Guinea and the Democratic Republic of Congo. This study was designed to understand how the acute course of EVD, convalescence, and host immune and genetic factors may play a role in prolonged viral persistence in semen. METHODS A cohort of 131 male EVD survivors in Liberia were enrolled in a case-case study. "Early clearers" were defined as those with 2 consecutive negative EBOV semen test results by real-time reverse-transcription polymerase chain reaction (rRT-PCR) ≥2 weeks apart within 1 year after discharge from the Ebola treatment unit or acute EVD. "Late clearers" had detectable EBOV RNA by rRT-PCR >1 year after discharge from the Ebola treatment unit or acute EVD. Retrospective histories of their EVD clinical course were collected by questionnaire, followed by complete physical examinations and blood work. RESULTS Compared with early clearers, late clearers were older (median, 42.5 years; P < .001) and experienced fewer severe clinical symptoms (median 2, P = .006). Late clearers had more lens opacifications (odds ratio, 3.9 [95% confidence interval, 1.1-13.3]; P = .03), after accounting for age, higher total serum immunoglobulin G3 (IgG3) titers (P = .005), and increased expression of the HLA-C*03:04 allele (0.14 [.02-.70]; P = .007). CONCLUSIONS Older age, decreased illness severity, elevated total serum IgG3 and HLA-C*03:04 allele expression may be risk factors for the persistence of EBOV in the semen of EVD survivors. EBOV persistence in semen may also be associated with its persistence in other immunologically protected sites, such as the eye.
Collapse
Affiliation(s)
- Jonathan Dyal
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Aaron Kofman
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Romeo Orone
- ELWA Hospital, Samaritan’s Purse, Monrovia, Liberia
| | - Moses J Soka
- ELWA Hospital, Samaritan’s Purse, Monrovia, Liberia
| | - Uriah Glaybo
- Men’s Health Screening Program, Monrovia, Liberia
| | - Armah Kiawu
- Men’s Health Screening Program, Monrovia, Liberia
| | - Edna Freeman
- Men’s Health Screening Program, Monrovia, Liberia
| | | | - Henry D Tony
- Men’s Health Screening Program, Monrovia, Liberia
| | | | - Mary Jawara
- Men’s Health Screening Program, Monrovia, Liberia
| | - Kuku Kamara
- Men’s Health Screening Program, Monrovia, Liberia
| | | | | | | | - Rodel Desamu-Thorpe
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James Graziano
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shelley Brown
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria E Morales-Betoulle
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Deborah L Cannon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Mateusz Plucinski
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard S Bradbury
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E Bowden
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christi Phillips
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary N Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Yeon-Hwa Park
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maria del Pilar Aguinaga
- Department of Internal Medicine, Meharry Sickle Cell Center, Meharry Medical College, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, Meharry Sickle Cell Center, Nashville, Tennessee, USA
| | - Robert Mushi
- Department of Internal Medicine, Meharry Sickle Cell Center, Meharry Medical College, Nashville, Tennessee, USA
| | - Dana L Haberling
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth D Ervin
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John D Klena
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Stuart T Nichol
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Chiriboga
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Desmond E Williams
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Steven H Hinrichs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Pierre E Rollin
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence J Purpura
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary J Choi
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
7
|
Overview of Memory NK Cells in Viral Infections: Possible Role in SARS-CoV-2 Infection. IMMUNO 2022. [DOI: 10.3390/immuno2010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NK cells have usually been defined as cells of the innate immune system, although they are also involved in adaptative responses. These cells belong to the innate lymphocyte cells (ILC) family. They remove unwanted cells, tumoral cells and pathogens. NK cells are essential for viral infection clearance and are involved in tolerogenic responses depending on the dynamic balance of the repertoire of activating and inhibitory receptors. NK plasticity is crucial for tissue function and vigilant immune responses. They directly eliminate virus-infected cells by recognising viral protein antigens using a non-MHC dependent mechanism, recognising viral glycan structures and antigens by NCR family receptors, inducing apoptosis by Fas-Fas ligand interaction, and killing cells by antibody-dependent cell cytotoxicity via the FcγIII receptor. Activating receptors are responsible for the clearance of virally infected cells, while inhibitory KIR receptor activation impairs NK responses and facilitates virus escape. Effective NK memory cells have been described and characterised by a low NKG2A and high NKG2C or NKG2D expression. NK cells have also been used in cell therapy. In SARS-CoV-2 infection, several contradicting reports about the role of NK cells have been published. A careful analysis of the current data and possible implications will be discussed.
Collapse
|
8
|
Saresella M, Trabattoni D, Marventano I, Piancone F, La Rosa F, Caronni A, Lax A, Bianchi L, Banfi P, Navarro J, Bolognesi E, Zanzottera M, Guerini FR, Clerici M. NK Cell Subpopulations and Receptor Expression in Recovering SARS-CoV-2 Infection. Mol Neurobiol 2021; 58:6111-6120. [PMID: 34453271 PMCID: PMC8397607 DOI: 10.1007/s12035-021-02517-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic of coronavirus disease (COVID-19). Whereas in most cases COVID-19 is asymptomatic or pauci-symptomatic, extremely severe clinical forms are observed. In this case, complex immune dysregulations and an excessive inflammatory response are reported and are the main cause of morbidity and mortality. Natural killer cells are key players in the control of viral infection, and their activity is regulated by a tight balance between activating and inhibitory receptors; an alteration of NK activity was suggested to be associated with the development of severe forms of COVID-19. In this study, we analyzed peripheral NK cell subpopulations and the expression of activating and inhibitory receptors in 30 patients suffering from neurological conditions who recovered from mild, moderate, or severe SARS-CoV-2 infection, comparing the results to those of 10 SARS-CoV-2-uninfected patients. Results showed that an expansion of NK subset with lower cytolytic activity and an augmented expression of the 2DL1 inhibitory receptor, particularly when in association with the C2 ligand (KIR2DL1-C2), characterized the immunological scenario of severe COVID-19 infection. An increase of NK expressing the ILT2 inhibitory receptor was instead seen in patients recovering from mild or moderate infection compared to controls. Results herein suggest that the KIR2DL1-C2 NK inhibitory complex is a risk factor toward the development of severe form of COVID-19. Our results confirm that a complex alteration of NK activity is present in COVID-19 infection and offer a molecular explanation for this observation.
Collapse
Affiliation(s)
- Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy.
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco,", University of Milan, Milan, Italy
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Antonio Caronni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Agata Lax
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Luca Bianchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Paolo Banfi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Elisabetta Bolognesi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Milena Zanzottera
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|