1
|
Shi L, Zhang Z, Huang Y, Zheng Y. FOXCUT regulates the malignant phenotype of triple-negative breast Cancer via the miR-337-3p/ANP32E Axis. Genomics 2024; 116:110892. [PMID: 38944356 DOI: 10.1016/j.ygeno.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The lack of specific molecular targets and the rapid spread lead to a worse prognosis of triple-negative breast cancer (TNBC). Therefore, identifying new therapeutic and prognostic biomarkers helps to develop effective treatment strategies for TNBC. METHODS Through preliminary bioinformatics analysis, FOXCUT was found to be significantly overexpressed in breast cancer, especially in TNBC. Tissue samples were collected from 15 TNBC patients, and qRT-PCR was employed to validate the expression of FOXCUT in both TNBC patient tissues and TNBC cell lines. We also carried out the GSEA analysis and KEGG enrichment analysis of FOXCUT. Additionally, the effects of FOXCUT knockdown on TNBC cell malignant behaviors, and aerobic glycolysis were assessed by methods including CCK-8, Transwell, western blot, and Seahorse XF 96 analyses. Moreover, utilizing databases predicting interactions between ceRNAs, corresponding lncRNA-miRNA binding relationships, and miRNA-mRNA interactions were predicted. These predictions were subsequently validated through RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS FOXCUT exhibited high expression in both TNBC tissues and cell lines, fostering cell malignant behaviors and glycolysis. FOXCUT was found to sponge miR-337-3p, while miR-337-3p negatively regulated the expression of ANP32E. Consequently, FOXCUT ultimately facilitated the malignant phenotype of TNBC by upregulating ANP32E expression. CONCLUSION This study elucidated the role of FOXCUT in elevating aerobic glycolysis levels in TNBC and driving malignant cancer cell development via the miR-337-3p/ANP32E regulatory axis.
Collapse
Affiliation(s)
- Lei Shi
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Ziwen Zhang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yuan Huang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yabing Zheng
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Abohassan M, Khaleel AQ, Pallathadka H, Kumar A, Allela OQB, Hjazi A, Pramanik A, Mustafa YF, Hamzah HF, Mohammed BA. Circular RNA as a Biomarker for Diagnosis, Prognosis and Therapeutic Target in Acute and Chronic Lymphoid Leukemia. Cell Biochem Biophys 2024; 82:1979-1991. [PMID: 39136839 DOI: 10.1007/s12013-024-01404-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 10/02/2024]
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs that have received much attention in recent years. CircRNAs lack a 5' head and a 3' poly-A tail. The structure of this type of RNAs make them resistant to digestion by exonucleases. CircRNAs are expressed in different cells and have various functions. The function of circRNAs is done by sponging miRNAs, changing gene expression, and protein production. The expression of circRNAs changes in different types of cancers, which causes changes in cell growth, proliferation, differentiation, and apoptosis. Changes in the expression of circRNAs can cause the invasion and progression of tumors. Studies have shown that changes in the expression of circRNAs can be seen in acute lymphoid leukemia (ALL) and chronic lymphoid leukemia (CLL). The conducted studies aim to identify circRNAs whose expression has changed in these leukemias and their more precise function so that these circRNAs can be identified as biomarkers, prediction of patient prognosis, and treatment targets for ALL and CLL patients. In this study, we review the studies conducted on the role and function of circRNAs in ALL and CLL patients. The results of the studies show that there is a possibility of using circRNAs as biomarkers in the identification and treatment of patients in the future.
Collapse
MESH Headings
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Prognosis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- RNA/metabolism
- RNA/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
Collapse
Affiliation(s)
- Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Ivison of Research and Innovation Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
3
|
Yarahmadi G, Tavakoli Ataabadi S, Dashti Z, Dehghanian M. A review on expression and regulatory mechanisms of miR-337-3p in cancer. J Biomol Struct Dyn 2024:1-10. [PMID: 38500239 DOI: 10.1080/07391102.2024.2329294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A group of diseases generally referred to as cancer represents a serious threat to people's health all over the world and has a significant negative influence on every aspect of the lives of patients. The development of cancer is influenced by several environmental, genetic, and epigenetic factors. MicroRNAs (miRNAs), a class of non-coding RNAs, can alter the expression of genes involved in cell proliferation, migration, metastasis, and apoptosis, lead to the pathogenesis of cancer. Additionally, several effectors modify miRNAs directly, including methylation, circular RNAs, and long non-coding RNAs (lncRNAs). In this review, we have explained the role of mir-337-3p in the pathways related to the pathogenesis of different cancers. Studying the functional role of miR-337-3p is necessary for detecting novel molecules as tumor markers and discovering novel targets for cancer treatment.
Collapse
Affiliation(s)
- Ghafour Yarahmadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Tavakoli Ataabadi
- Department of Medical Genetics School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dashti
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Campus, Yazd, Iran
| | - Mehran Dehghanian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Wang H, Cai G, Yu F, Li D, Wang C, Ma D, Han X, Chen J, Wang C, He J. Changes in the small noncoding RNA transcriptome in osteosarcoma cells. J Orthop Surg Res 2023; 18:898. [PMID: 38001513 PMCID: PMC10675919 DOI: 10.1186/s13018-023-04362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Osteosarcoma has the highest incidence among bone malignant tumors and mainly occurs in adolescents and the elderly, but the pathological mechanism is still unclear, which makes early diagnosis and treatment very difficult. Bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the sources of osteosarcoma cells. Therefore, a full understanding of the gene expression differences between BMSCs and osteosarcoma cells is very important to explore the pathogenesis of osteosarcoma and facilitate the early diagnosis and treatment of osteosarcoma. Small noncoding RNAs (sncRNAs) are a class of RNAs that do not encode proteins but directly play biological functions at the RNA level. SncRNAs mainly include Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), repeat RNAs and microRNAs (miRNAs). METHODS In this study, we compared the expression of sncRNAs in BMSCs and osteosarcoma cells by high-throughput sequencing and qPCR and looked for differentially expressed sncRNAs. CCK-8, clone formation and transwell assay were used to detect the effect of sncRNA in MG63 cells. RESULTS We found that 66 piRNAs were significantly upregulated and 70 piRNAs were significantly downregulated in MG63 cells. As for snoRNAs, 71 snoRNAs were significantly upregulated and 117 snoRNAs were significantly downregulated in MG63 cells. As for snRNAs, 35 snRNAs were significantly upregulated and 17 snRNAs were significantly downregulated in MG63 cells. As for repeat RNAs, 6 repeat RNAs were significantly upregulated and 7 repeat RNAs were significantly downregulated in MG63 cells. As for miRNAs, 326 miRNAs were significantly upregulated and 281 miRNAs were significantly downregulated in MG63 cells. Overexpression of piRNA DQ596225, snoRNA ENST00000364830.2, snRNA ENST00000410533.1 and miRNA hsa-miR-369-5p inhibited the proliferation and migration of MG63 cells. CONCLUSIONS Our results provide a theoretical basis for the pathogenesis, early diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Guiquan Cai
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Fengbin Yu
- Department of Orthopaedics, The 72nd Group Army Hospital of PLA, Huzhou, 313000, Zhejiang, People's Republic of China
| | - De Li
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Ding Ma
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Xiuguo Han
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China.
| | - Jiye He
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
6
|
Kong S, Liu J, Zhang B, Lv F, Yu Y, Qin T. MicroRNA-337-3p impedes breast cancer progression by targeting cyclin-dependent kinase 1. Oncol Lett 2021; 23:15. [PMID: 34820014 PMCID: PMC8607341 DOI: 10.3892/ol.2021.13133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) function as key regulators in breast cancer (BC). The present study aimed to verify the function and molecular regulation of miR-337-3p in BC cells. Bioinformatics analysis was performed to screen key genes and miRNAs associated with BC. Reverse transcription-quantitative PCR and western blot analyses were performed to detect RNA and protein expression levels. Cell Counting Kit-8, BrdU and cell adhesion assays, and flow cytometric analysis were performed to assess the biological behaviors of BC cells. The dual-luciferase reporter, RNA pull-down assays, and Pearson's correlation analysis were performed to determine the association between miRNAs and mRNAs. Bioinformatics analysis revealed that miR-337-3p and cyclin-dependent kinase 1 (CDK1) acted as key regulators in BC. In addition, miR-337-3p was expressed at low levels in BC cells and tissues, which suppressed BC progression. CDK1 expression was upregulated in BC cells and tissues, which was associated with increased cell proliferation and adhesion, as well as decreased apoptosis in BC. Notably, miR-337-3p targeted CDK1 to inhibit BC cell progression. Taken together, the results of the present study suggest that miR-337-3p plays a tumor-suppressive role in BC by targeting CDK1.
Collapse
Affiliation(s)
- Shuxin Kong
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jianyang Liu
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Bin Zhang
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Feng Lv
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yang Yu
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Tao Qin
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
7
|
Zhang R, Wang W, Aimudula A, Lu S, Lu P, Aihaiti R, Bao Y. Quaking I-5 protein inhibits invasion and migration of kidney renal clear cell carcinoma via inhibiting epithelial-mesenchymal transition suppression through the regulation of microRNA 200c. Transl Androl Urol 2021; 10:3800-3814. [PMID: 34804823 PMCID: PMC8575590 DOI: 10.21037/tau-21-833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 11/06/2022] Open
Abstract
Background It has been demonstrated that quaking I-5 protein (QKI-5) plays crucial roles in the metastasis of various kinds of cancers. However, the function and mechanism of QKI-5 in kidney renal clear cell carcinoma (KIRC) metastasis remains unclear. Therefore, this study aimed to explore the mechanism of QKI-5 in the metastasis of KIRC. Methods The expression of QKI-5 was detected using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot in KIRC tissues and different cell lines. Immunohistochemical staining was used to detect the quantity of QKI-5 in primary and metastases of KIRC. Cell migration and invasion were measured using wound healing and transwell assays respectively. The quantity of epithelial mesenchymal transition marker proteins was detected using western blot and immunofluorescence staining. The interaction of QKI-5 via microRNA 200c (miR-200c) was confirmed using dual luciferase reporter assay. Results Although QKI-5 was significantly more likely to be downregulated in KIRC tissues than that in normal Kidney tissues, it was dramatically elevated in metastatic KIRC tumors. Upregulation of QKI-5 promoted cell migration and invasion and elevated the expression of epithelial-mesenchymal transition (EMT) marker proteins, including vimentin, snail and slug, while it was downregulated for E-cadherin. Furthermore, a dual luciferase reporter assay demonstrated that QKI-5 was a direct target of miR-200c, and that miR-200c could reverse the effect of QKI-5 on cell migration, invasion, and expression of EMT marker proteins. Conclusions Our results revealed that downregulation of QKI-5 by miR-200c attenuated KIRC migration and invasion via the EMT process, indicating that QKI-5 may be a potential therapeutic target and a key indicator of KIRC progression.
Collapse
Affiliation(s)
- Ruili Zhang
- Cancer Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenguang Wang
- Department of Urology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ainiwaer Aimudula
- Cancer Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Songmei Lu
- Cancer Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Pengfei Lu
- Cancer Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Remila Aihaiti
- Cancer Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yongxing Bao
- Cancer Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
8
|
MiR-337-3p suppresses migration and invasion of breast cancer cells by downregulating ESRP1. Acta Histochem 2021; 123:151777. [PMID: 34481218 DOI: 10.1016/j.acthis.2021.151777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/20/2023]
Abstract
Breast cancer (BC) is a common malignant tumor in women, and a considerable number of studies show that aberrant expression of miRNA is correlated with BC development. By analyzing TCGA-BRCA database through bioinformatics method, this study disclosed that miR-337-3p was significantly low in BC tissue and might be a cancer inhibitor in BC. To explore the effect and potential mechanism of miR-337-3p in BC, qRT-PCR was used in this study to indicate that the expression of miR-337-3p was downregulated in BC cells. Then, the effects of miR-337-3p on BC cells were detected by western blot, Cell Counting Kit-8 (CCK-8), wound healing and Transwell assays. After upregulating miR-337-3p expression, the cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) of BC cells were markedly inhibited while cell apoptosis remarkably increased. Besides, it was predicted and identified by bioinformatics analysis and dual-luciferase assay that ESRP1 was a target gene of miR-337-3p. Finally, the progression and EMT of BC cells were promoted after upregulating ESRP1 expression level. However, upregulating miR-337-3p as well as ESRP1 reduced the promotion on the malignant phenotype of BC cells. This result revealed that miR-337-3p could inhibit ESRP1 expression to perform its biological functions. In conclusion, it was illustrated in this study that miR-337-3p is a tumor-inhibitor of BC and plays its regulatory role via its downstream gene ESRP1.
Collapse
|
9
|
Liu Z, Ai L, Li R, Yang Y, Chen K, He C, Li Y. Analysis of miRNA expression profile in lung tissues of an intermittent hypoxia rat model. Respir Physiol Neurobiol 2021; 294:103741. [PMID: 34273552 DOI: 10.1016/j.resp.2021.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
We screened key miRNAs in an intermittent hypoxia rat model and explored the biological roles of downstream target genes and related regulatory pathways. We analyzed the expression profile of miRNAs in the lung tissues of rats in the 5 % (IH1), 7.5 % (IH2), 10 % (IH3), 12.5 % (IH4) oxygen concentration and negative control (NC) groups and identified common miRNAs. Multiple differentially expressed miRNAs were detected, and intersection of their expression profiles yielded 10 common miRNAs with 929 target genes mainly distributed in the nucleus. Molecular functions pertained mainly to the activation of transcription factors, while biological processes focused on cell interaction and signal transduction. Among signaling pathways, the top 5 included the LKB1 signaling, nectin adhesion, and S1P pathways. 8 of 10 common miRNAs had excellent diagnostic value for detecting intermittent hypoxia. The miRNAs binds to the target gene might play a key role in the pathophysiological process of OSA through the LKB1/AMPK and S1P/Akt/eNOS signaling pathways.
Collapse
Affiliation(s)
- Zhijuan Liu
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Yuan Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Keli Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Chunxia He
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China.
| |
Collapse
|
10
|
Xu X, Dong Y, Ma N, Kong W, Yu C, Gong L, Chen J, Ren J. MiR-337-3p lowers serum LDL-C level through targeting PCSK9 in hyperlipidemic mice. Metabolism 2021; 119:154768. [PMID: 33775647 DOI: 10.1016/j.metabol.2021.154768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reducing serum low-density lipoprotein cholesterol (LDL-C) in hyperlipemia is recognized as an effective strategy to minimize the risk of atherosclerotic cardiovascular disease (ASCVD). MiR-337-3p has already been discovered to play regulatory roles in tumor proliferation and metastasis, adipocyte browning and ischemic brain injury, etc. However, the association between miR-337-3p and LDL-C is unknown. METHODS Gene Expression Omnibus (GEO) dataset and two hyperlipidemic murine models were used to analyze the potential relationship between miR-337-3p and LDL-C. AAV-mediated liver-directed miRNA overexpression in high fat diet (HFD)-fed mouse model was used to examine the effect of miR-337-3p on LDL-C and WB/RT-PCR/ELISA/luciferase assays were used to investigate the underlying mechanism. RESULTS The expressions of miR-337-3p were obviously lower in multiple hyperlipidemic mouse models and had a negative correlation with serum LDL-C levels. After confirming the effect of miR-337-3p on the improvement of serum LDL-C in vivo, we discovered PCSK9 might be a possible target of miR-337-3p, which was further proved by in vitro experiments. MiR-337-3p could directly interact with both the PCSK9 3'UTR and promoter to inhibit PCSK9 translation and transcription. Furthermore, the result from DiI-LDL uptake assay under the knockdown of PCSK9 demonstrated that miR-337-3p promoting the absorption of LDL-C in HepG2 cells was dependent on PCSK9, and the result from LDLR-/- mouse model indicated that miR-337-3p regulating LDL-C was dependent on PCSK9/LDLR pathway. CONCLUSION We discovered a new function of miR-337-3p in regulating PCSK9 expression and LDL-C absorption, suggesting miR-337-3p might be a new therapeutic target for the development of antihyperlipidemic drug.
Collapse
Affiliation(s)
- Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yunxia Dong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ningning Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Weiwen Kong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chuwei Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Zhao M, He X, Yang J, Feng Y, Wang H, Shao Z, Xing L. Aberrant microRNA expression in B lymphocytes from patients with primary warm autoimmune haemolytic anaemia. Autoimmunity 2021; 54:264-274. [PMID: 34044675 DOI: 10.1080/08916934.2021.1931842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To screen and analyze the micro-Ribonucleic Acid (miRNA) expression profile in B lymphocytes from patients with autoimmune haemolytic anaemia (AIHA) using high-throughput sequencing. METHODS Twelve patients with warm autoimmune haemolytic anaemia (wAIHA) and twelve healthy controls (HCs) were enrolled. CD19+ B lymphocytes were isolated and purified using magnetic activated cell sorting (MACS). RNA was subsequently extracted from these cells and a small RNA library was created. The miRNA expression profile was analyzed using Beijing Genomics Institute Sequencing 500 (BGISEQ-500), and stem-loop real-time quantitative PCR (stem-loop qRT-PCR) was used to verify the sequencing results. Downstream target genes of the differentially expressed miRNAs were predicted using miRanda and TargetScan online software, and GO functional enrichment and pathway enrichment analyses were performed on these genes. RESULTS Compared with HCs, 178 upregulated and 143 downregulated miRNAs were identified in wAIHA patients, and stem-loop qRT-PCR of four randomly selected differentially expressed miRNAs verified the sequencing results. Ninety-five significantly enriched GO terms and eighty-five significantly enriched pathways were identified. Genes targeted by differentially expressed miRNAs were found to be mainly involved in the regulation of signal transduction, metabolic processes, immune reactions, and neoplastic disease development. CONCLUSION The expression of miRNAs in B lymphocytes from patients with primary wAIHA was deregulated, and this phenomenon may be involved in the pathogenesis of wAIHA.
Collapse
Affiliation(s)
- Manjun Zhao
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Xin He
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Jin Yang
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Yingying Feng
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Limin Xing
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
13
|
Zhong Y, Lin H, Li Q, Liu C, Shen J. CircRNA_100565 contributes to cisplatin resistance of NSCLC cells by regulating proliferation, apoptosis and autophagy via miR-337-3p/ADAM28 axis. Cancer Biomark 2021; 30:261-273. [PMID: 33682697 DOI: 10.3233/cbm-201705] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) have been revealed to involve in the chemoresistance of various cancers, including non-small cell lung cancer (NSCLC). Here, we further investigate the role of circRNA_100565 in NSCLC cisplatin (DDP) resistance. The expression of circRNA_100565 and microRNA (miR)-337-3p, and ADAM metallopeptidase domain 28 (ADAM28) mRNA was detected using quantitative real-time polymerase chain reaction. Cell viability and apoptosis were measured by cell counting kit-8 assay and flow cytometry, respectively. Western blot was used to detect the level of ADAM28 and autophagy-related protein. The interaction between miR-337-3p and circRNA_100565 or ADAM28 was confirmed by dual-luciferase reporter assay or pull-down assay. In vivo experiments were conducted via the murine xenograft model. We found CircRNA_100565 was up-regulated in NSCLC DDP-resistant tissues and cell lines, and its high expression was associated with shorter overall survival of NSCLC patients. CircRNA_100565 deletion mitigated DDP resistance, reflected by the suppression of proliferation and autophagy, the reduction of IC50 value, as well as enhancement of apoptosis in DDP-resistant NSCLC cells. MiR-377-3p was confirmed to directly bind to circRNA_100565 or ADAM28 3'-UTR. Moreover, circRNA_100565 indirectly regulated ADAM28 expression by sponging miR-377-3p in NSCLC cells. Additionally, circRNA_100565 deletion-induced sensitivity of NSCLC resistant cells to DDP could be remarkably attenuated by miR-377-3p inhibition or ADAM28 re-expression. Meanwhile, circRNA_100565 knockdown contributed to the anti-tumor effects of DDP on NSCLC in vivo.CONCLUSION: CircRNA_100565 was an independent prognostic factor for NSCLC patient survival, and enhanced the resistance of NSCLC cells to cisplatin by regulating cell proliferation, apoptosis and autophagy via miR-337-3p/ADAM28 axis, shedding light on the development of a novel therapeutic strategy to boost the effectiveness of NSCLC chemotherapy.
Collapse
Affiliation(s)
- Youqing Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hui Lin
- Department of Anesthesiology, the Hainan General Hospital, Haikou, Hainan, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chang Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinmei Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Lin S, Zhang X, Shi H, Wang F, Chen S, Wang M. Carbonyl Reductase 3-Antisense RNA 1 Negatively Regulates microRNA-337-3p Expression: Effects on Proliferation, Migration, and Invasion of Lung Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lung cancer, a malignant tumor, is associated with high morbidity and mortality worldwide. We studied the influence and mechanism of CBR3-AS1 on lung cancer cell proliferation, migration, and infiltration. The expression of CBR3-AS1 and miRNA-337-3p were higher and lower (P <
0.05), respectively, in lung cancer tissues than in paracancerous tissues. After inhibiting the expression of CBR3-AS1, the OD value of A549 cells, cloning formation numbers, migrating and invasive numbers, N-cadherin protein expression levels were lower. The G0-G1 cell cycle periods was longer.
The S cell cycle periods was shorter. The E-cadherin protein expression levels higher (P < 0.05 in all cases). CBR3-AS1 negatively regulated miRNA-337-3p expression in A549 cells (P < 0.05). After inhibiting the expression of CBR3-AS1 and miRNA-337-3p, the OD value of A549
cells was lower, cloning formation numbers, migrating and invasive numbers, N-cadherin protein expression levels were lower. The G0-G1 cell cycle periods was longer. The S cell cycle periods was shorter. The E-cadherin protein expression levels was higher (P < 0.05 in all cases).
CBR3-AS1 expression was increased in lung cancer tissues, and interference with CBR3-AS1 expression could inhibit the proliferation, migration, and infiltration of lung cancer A549 cells by negatively regulating miRNA-337-3p.
Collapse
Affiliation(s)
- Shining Lin
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, PR China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, PR China
| | - Huifang Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, PR China
| | - Fahui Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, PR China
| | - Shan Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, PR China
| | - Maoze Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, PR China
| |
Collapse
|
15
|
Liang Z, Xu J, Ma Z, Li G, Zhu W. MiR-187 suppresses non-small-cell lung cancer cell proliferation by targeting FGF9. Bioengineered 2020; 11:70-80. [PMID: 31884893 PMCID: PMC6961586 DOI: 10.1080/21655979.2019.1706287] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the main pathological type of lung cancer and has a low overall five-year survival rate. miR-187 has been reported to play major roles in various tumor types. In this study, we explored the impact of miR-187 on NSCLC. qRT-PCR results demonstrated that miR-187 expression is lower in NSCLC and cancer cells than normal tissues and normal lung cells. miR-187 expression levels are associated with tumor size, TNM stage and overall survival rate. MTS and colony formation assays showed that high miR-187 expression inhibits NSCLC cell proliferation and colony formation ability, and flow cytometry showed that miR-187 overexpression induces cell cycle arrest at the G0/G1 phase. A luciferase reporter assay showed that FGF9 is a target of miR-187. miR-187 overexpression reduces the expression of FGF9, cyclin D1 CDK4 and CDK6. Therefore, miR-187 may present a new NSCLC treatment target by regulates cyclins-related protein expression.
Collapse
Affiliation(s)
- Zhihua Liang
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| | - Jianhui Xu
- GuangZhou Chest Hospital, Guang zhou, China
| | - Zhancheng Ma
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| | - Guihua Li
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| | - Wanhong Zhu
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| |
Collapse
|
16
|
Du P, Zeng H, Xiao Y, Zhao Y, Zheng B, Deng Y, Liu J, Huang B, Zhang X, Yang K, Jiang Y, Ma X. Chronic stress promotes EMT-mediated metastasis through activation of STAT3 signaling pathway by miR-337-3p in breast cancer. Cell Death Dis 2020; 11:761. [PMID: 32934214 PMCID: PMC7492277 DOI: 10.1038/s41419-020-02981-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Chronic stress could induce cancer metastasis by constant activation of the sympathetic nervous system, while cellular mechanism remains obscure. The aim of this research is to explore the metastasis associated negative effect of chronic stress. The analysis of transcriptome sequencing implied that activation of STAT3 signaling pathway by downregulated miR-337-3p might be a potential mechanism to induce epithelial to mesenchymal transition (EMT) of cancer cell and promote metastasis under chronic stress. We also verified this biological process in further experiments. Downregulation of miR-337-3p could downregulate E-cadherin expression and upregulate vimentin expression in vitro and in vivo. STAT3, related signal pathways of which are involved in metastasis regulation, was directly targeted by miR-337-3p. In conclusion, the above results denoted that activation of miR-337-3p/STAT3 axis might be a potential pathway for the increasing metastasis of breast cancer under chronic stress.
Collapse
Affiliation(s)
- Peixin Du
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Hao Zeng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yinan Xiao
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yunuo Zhao
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Bo Zheng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yaotiao Deng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Boyan Huang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Xinyao Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Keyi Yang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China.
| | - Xuelei Ma
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China.
| |
Collapse
|
17
|
Wu W, Wu Z, Xia Y, Qin S, Li Y, Wu J, Liang J, Wang L, Zhu H, Fan L, Fu J, Xu W, Jin H, Li J. Downregulation of circ_0132266 in chronic lymphocytic leukemia promoted cell viability through miR-337-3p/PML axis. Aging (Albany NY) 2020; 11:3561-3573. [PMID: 31152142 PMCID: PMC6594798 DOI: 10.18632/aging.101997] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Circular RNAs (circRNAs) have recently been reported to play crucial roles in various regulatory processes and involved in cancer onset and progression. However, the potential mechanism of circRNAs in chronic lymphocytic leukemia (CLL) remains largely unknown. Here, we observed hsa_circ_0132266 (circ_0132266), a circRNA significantly decreased in the peripheral blood mononuclear cells (PBMCs) of CLL patients compared with healthy donors, could act as an endogenous sponge of hsa-miR-337-3p (miR-337-3p) and regulate its activity, which resulted in a downstream change of target-gene PML and a consequent influence on cell viability. Taken together, our data indicated the regulatory mechanism of circ_0132266 in CLL progression through circ_0132266/miR-337-3p/PML axis, suggesting that it may serve as a biomarker as well as an exploitable therapeutic target for CLL.
Collapse
Affiliation(s)
- Wei Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Zijuan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Shuchao Qin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jinhua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Huayuan Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jianxin Fu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| |
Collapse
|
18
|
Zhang J, Li Y, Qi J, Yu X, Ren H, Zhao X, Xin W, He S, Zheng X, Ma C, Zhang L, Wu B, Zhu D. Circ- calm4 Serves as an miR-337-3p Sponge to Regulate Myo10 (Myosin 10) and Promote Pulmonary Artery Smooth Muscle Proliferation. Hypertension 2020; 75:668-679. [PMID: 32008463 DOI: 10.1161/hypertensionaha.119.13715] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary artery smooth muscle cell proliferation is the pathological basis of pulmonary vascular remodeling in hypoxic pulmonary hypertension. Recent studies suggest that circular RNA (circRNA) can regulate various biological processes, including cell proliferation. Therefore, it is possible that circRNA may have important roles in pulmonary artery smooth muscle cell proliferation in hypoxic pulmonary hypertension. In the present study, we aimed to identify functional circRNAs and clarify their roles and mechanisms in pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. RNA sequencing identified 67 circRNAs that were differentially expressed in hypoxic lung tissues of mice. Screening by bioinformatics and quantitative polymerase chain reaction revealed significant elevation of a circRNA derived from alternative splicing of the calmodulin 4 gene (designated circ-calm4). Notably, this circRNA absorbed miR-337-3p. We further identified Myo10 (myosin 10) as a target protein of miR-337-3p. miR-337-3p bound to the 3'-untranslated region of Myo10 mRNA, thereby attenuating the translation of Myo10. Using loss-of-function and gain-of-function approaches, we found that circ-calm4 regulated cell proliferation by regulating the cell cycle. Additionally, we verified the functions of miR-337-3p and Myo10 in hypoxic pulmonary artery smooth muscle. Our results suggested that the circ-calm4/miR-337-3p/Myo10 signal transduction axis modulated the proliferation of pulmonary artery smooth muscle cells at the molecular level, thus establishing potential targets for the early diagnosis and treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Junting Zhang
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Yiying Li
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Jing Qi
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Xiufeng Yu
- Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Huanhuan Ren
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Xijuan Zhao
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Wei Xin
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Siyu He
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Xiaodong Zheng
- Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Cui Ma
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Lixin Zhang
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Bingxiang Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, China (B.W.)
| | - Daling Zhu
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China.,Key Laboratory of Cardiovascular Medicine Research, Ministry of Education (D.Z.), Harbin Medical University, China.,State Province Key Laboratories of Biomedicine-Pharmaceutics of China (D.Z.)
| |
Collapse
|
19
|
MiR-337-3p suppresses proliferation of epithelial ovarian cancer by targeting PIK3CA and PIK3CB. Cancer Lett 2019; 469:54-67. [PMID: 31629932 DOI: 10.1016/j.canlet.2019.10.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
Epithelial ovarian cancer (EOC) is responsible for nearly 140,000 deaths worldwide each year. MicroRNAs play critical roles in cancer development and progression. The function of microRNA miR-337-3p has been described in various cancers. However, the biological role of miR-337-3p and its molecular mechanisms underlying EOC initiation and progression have not been reported. Here, we reported that the expression of miR-337-3p is down-regulated in EOC tissues and low expression of miR-337-3p is correlated with advanced pathological grade for patients. Ectopic expression of miR-337-3p inhibited proliferation and induced apoptosis and cell cycle arrest in G0/G1 phase of EOC cells. PIK3CA and PIK3CB were revealed to be direct targets of miR-337-3p for reducing the activation of PI3K/AKT signaling pathway. PIK3CA and PIK3CB were discovered to affect cell proliferation of EOC cells in combination, and only when overexpressed simultaneously in miR-337-3p-expressing cells, could fully restore cell proliferation. In vivo investigation confirmed that miR-337-3p is a tumor suppressor that control expression of PIK3CA and PIK3CB encoded protein: p110α and p110β. Altogether, our results demonstrate that miR-337-3p is a tumor suppressor in EOC that inhibits the expression of PIK3CA and PIK3CB.
Collapse
|
20
|
Li J, Wang T, Jiang XF. Inhibition of miR-337-3p involved in the protection of CoCl 2 -induced injury in PC12 cells via activating JAK2/STAT3 signaling pathway. J Cell Biochem 2019; 120:19076-19086. [PMID: 31264277 DOI: 10.1002/jcb.29230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the possibility of microRNA (miR)-337-3p in the protection of hypoxia-induced injury in PC12 cells via modulating the JAK2/STAT3 signaling pathway. METHODS Dual-luciferase reporter assay analyzed the relationship between the miR-337-3p and JAK2. PC12 cells were divided into normal, CoCl2 , CoCl2 + NC, CoCl2 + inhibitors, CoCl2 + JAK2, and CoCl2 + mimics + JAK2 groups. Then, PC12 cell viability and apoptosis were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and Annexin-V-fluorescein isothiocyanate/propidium iodide methods. Quantitative real-time polymerase chain reaction and Western blot analysis were used to determine expressions. Besides, the intracellular reactive oxygen species (ROS) was examined by dichloro-dihydro-fluorescein diacetate (DCFH-DA) while the mitochondrial membrane potential (MMP) by using JC-1. RESULTS The negative targeting relationship between miR-337-3p and JAK2 was confirmed. When compared with the normal group, miR-337-3p was increased while JAK2 and STAT3 were decreased in CoCl2 -induced PC12 cells, with decreased cell viability. Moreover, either miR-337-3p inhibitor or JAK2 overexpression could partially reverse CoCl2 -induced decrease in PC12 cell viability. Besides, CoCl2 could also trigger PC12 cell apoptosis by increasing cleaved caspase 3 and Bax but decreasing Bcl-2 and Bcl-XL, which, however, were abolished with the transfection of miR-337-3p inhibitors or lentivirus transfection to activate JAK2. Compared with the CoCl2 group, the average of fluorescent signals of ROS in the CoCl2 + inhibitors group and the CoCl2 + JAK2 group was lower, while the activities of superoxide dismutase, catalase, glutathione peroxidase, and total anti-oxidative capacity were higher, together with an increase in MMP. CONCLUSION Inhibiting miR-337-3p could activate the JAK2/STAT3 signaling pathway to suppress CoCl 2 -induced cytotoxicity and apoptosis and ameliorate oxidative stress and MMP in PC12 cells.
Collapse
Affiliation(s)
- Juan Li
- Department of Child Rehabilitation, Affiliated Hospital of Jining Medical College, Jining, China
| | - Ting Wang
- Department of Child Rehabilitation, Affiliated Hospital of Jining Medical College, Jining, China
| | - Xiu-Fang Jiang
- Department of Child Rehabilitation, Affiliated Hospital of Jining Medical College, Jining, China
| |
Collapse
|
21
|
Tang D, Zhao L, Peng C, Ran K, Mu R, Ao Y. LncRNA CRNDE promotes hepatocellular carcinoma progression by upregulating SIX1 through modulating miR‐337‐3p. J Cell Biochem 2019; 120:16128-16142. [PMID: 31099050 DOI: 10.1002/jcb.28894] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Tang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Lijin Zhao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Cijun Peng
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Kaiqiong Ran
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Rui Mu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Yu Ao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| |
Collapse
|