1
|
Liu M, Zhuang X, Zhang H, Ji W, Yuan G. tRNA-derived small RNAs in digestive tract diseases: Progress and perspectives. Genes Dis 2025; 12:101326. [PMID: 40083327 PMCID: PMC11904584 DOI: 10.1016/j.gendis.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/16/2025] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs that are produced through the precise cleavage of tRNA molecules under specific conditions. tsRNA has multiple functions, including inhibiting translation, acting in association with classical small RNA effector mechanisms, or acting in conjunction with Argonaute proteins that affect cell proliferation, migration, cycle, and apoptosis. Recent studies have revealed the clinical potential of tsRNAs in numerous diseases. This article aims to provide a comprehensive and up-to-date review of the classification and biological function of tsRNAs in gastrointestinal diseases. Furthermore, this review explores the underlying mechanisms by which tsRNAs are believed to exert their effects in both tumor and non-tumor digestive tract diseases. Therefore, specific tsRNAs prove promising for disease diagnosis, prognosis prediction, and therapeutic interventions as novel biomarkers for digestive tract diseases.
Collapse
Affiliation(s)
- Mingrui Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- International Medical Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Rao J, Xia L, Li Q, Ma N, Li X, Li J, Zhu L, Zhao P, Zeng Y, Zhou S, Guo H, Lin S, Dong S, Lou S, Fan F, Wei J, Zhong JF, Gao L, Li SC, Zhang X. A 6-tsRNA signature for early detection, treatment response monitoring, and prognosis prediction in diffuse large B cell lymphoma. Blood Cancer J 2025; 15:79. [PMID: 40295511 PMCID: PMC12037784 DOI: 10.1038/s41408-025-01267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) presents considerable clinical challenges due to its aggressive nature and diverse clinical progression. New molecular biomarkers are urgently needed for outcome prediction. We analyzed blood samples from DLBCL patients and healthy individuals using short, non-coding RNA sequencing. A classifier based on six tsRNAs was developed through random forest and primary component analysis. This classifier, established using Cox proportional hazards modeling with repeated 10-fold cross-validation on an internal cohort of 100 samples analyzed using RT-qPCR, effectively identified high-risk patients with significantly lower overall survival compared to low-risk patients (Hazard ratio: 6.657, 95%CI 2.827-15.68, P = 0.0006). Validation in an external cohort of 160 samples using RT-qPCR confirmed the classifier's robust performance. High-risk status was strongly associated with disease histological subtype, stage, and International Prognostic Index scores. Integration of the classifier into the IPI model enhanced the precision and consistency of prognostic predictions. A dynamic study revealed that patients experiencing a 1.06-fold decrease after one therapy cycle (early molecular response) exhibited better treatment outcomes and prognosis. Furthermore, the 6-tsRNA signature accurately differentiated healthy individuals from DLBCL (AUC 0.882, 95%CI 0.826-0.939). These findings underscore the potential of the identified 6-tsRNA profile as a biomarker for monitoring treatment effectiveness and predicting DLBCL outcomes.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Biomarkers, Tumor/genetics
- Adult
- Aged, 80 and over
- Gene Expression Profiling
- Early Detection of Cancer
Collapse
Affiliation(s)
- Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Lin Xia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - NaYa Ma
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Jiali Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Lidan Zhu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Yunjing Zeng
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Sha Zhou
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Shijia Lin
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Song Dong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyi Fan
- Department of Hematology, General Hospital of Chengdu Military Region, Chengdu, Chongqing, China
| | - Jin Wei
- Department of Hematology, North Sichuan Medical College, Nanchong, China
| | - Jiang F Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, USA
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Shengwen Calvin Li
- CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC®), part of Rady Children's Heath, Orange, CA, USA.
- Department of Neurology, University of California-Irvine School of Medicine, Orange, CA, USA.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
3
|
Saad AAA, Zhang K, Deng Q, Zhou J, Ge L, Wang H. The functions and modifications of tRNA-derived small RNAs in cancer biology. Cancer Metastasis Rev 2025; 44:38. [PMID: 40072687 DOI: 10.1007/s10555-025-10254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Recent progress in noncoding RNA research has highlighted transfer RNA-derived small RNAs (tsRNAs) as key regulators of gene expression, linking them to numerous cellular functions. tsRNAs, which are produced by ribonucleases such as angiogenin and Dicer, are classified based on their size and cleavage positions. They play diverse regulatory roles at the transcriptional, post-transcriptional, and translational levels. Furthermore, tRNAs undergo various modifications that influence their biogenesis, stability, functionality, biochemical characteristics, and protein-binding affinity. tsRNAs, with their aberrant expression patterns and modifications, act as both oncogenes and tumor suppressors. This review explores the biogenetic pathways of tsRNAs and their complex roles in gene regulation. We then focus on the importance of RNA modifications in tsRNAs, evaluating their impact on the biogenesis and biological functions on tsRNAs. Furthermore, we summarize recent data indicating that tsRNAs exhibit varied expression profiles across different cancer types, highlighting their potential as innovative biomarkers and therapeutic targets. This discussion integrates both existing and new knowledge about tsRNAs, emphasizing their importance in cancer biology and clinical advancement.
Collapse
Affiliation(s)
- Abdulaziz Ahmed A Saad
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Nanbu People'S Hospital; Affiliated Cancer Hospital of Chengdu Medical College, School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Qianqian Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lichen Ge
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Shen X, Xu S, Zheng Z, Liang W, Guo J. The regulatory role of tRNA-derived small RNAs in the prognosis of gastric cancer. Cell Signal 2024; 125:111511. [PMID: 39551416 DOI: 10.1016/j.cellsig.2024.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In recent years, tRNA-derived small RNAs (tsRNAs) including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), with specific structure and enriched in body fluids, have been found to have specific biological functions. In this paper, the biogenesis, classification, subcellular localization, and biological functions of tsRNAs were summarized. It has been proved that tsRNAs affected tumor cells in proliferation, apoptosis, migration and invasion, and played roles in regulating the occurrence and development of various tumors. In gastric cancer (GC), the imbalance of tsRNAs, such as tRF-33-P4R8YP9LON4VDP, tRF-17-WS7K092, tRF-23-Q99P9P9NDD and others, was closely related to the clinicopathological characteristics of GC patients. Some tsRNAs, such as tRF-23-Q99P9P9NDD, tRF-31-U5YKFN8DYDZDD, and tRF-27-FDXXE6XRK45 promoted the proliferation, migration and invasion of GC cells. Other tsRNAs, such as tRF-41-YDLBRY73W0K5KKOVD, tRF-18-79MP9PO4, and tRF-Glu-TTC-027 inhibited the proliferation, migration and invasion of GC cells. The tsRNAs played roles in the occurrence of GC were through several signaling pathways, such as phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase (AKT), Wnt-β-Catenin, and mitogen-activated protein kinase (MAPK) pathways. These findings may provide new strategies for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xiaoban Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shiyi Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhinuo Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wei Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315211, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Lu J, Zhu P, Zhang X, Zeng L, Xu B, Zhou P. tRNA-derived fragments: Unveiling new roles and molecular mechanisms in cancer progression. Int J Cancer 2024; 155:1347-1360. [PMID: 38867475 DOI: 10.1002/ijc.35041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
tRNA-derived fragments (tRFs) are novel small noncoding RNAs (sncRNAs) that range from approximately 14 to 50 nt. They are generated by the cleavage of mature tRNAs or precursor tRNAs (pre-tRNAs) at specific sites. Based on their origin and length, tRFs can be classified into three categories: (1) tRF-1 s; (2) tRF-3 s, tRF-5 s, and internal tRFs (i-tRFs); and (3) tRNA halves. They play important roles in stress response, signal transduction, and gene expression processes. Recent studies have identified differential expression of tRFs in various tumors. Aberrantly expressed tRFs have critical clinical value and show promise as new biomarkers for tumor diagnosis and prognosis and as therapeutic targets. tRFs regulate the malignant progression of tumors via various mechanisms, primarily including modulation of noncoding RNA biogenesis, global chromatin organization, gene expression regulation, modulation of protein translation, regulation of epigenetic modification, and alternative splicing regulation. In conclusion, tRF-mediated regulatory pathways could present new avenues for tumor treatment, and tRFs could serve as promising therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Ping Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiufen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Linzi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bujie Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Madhry D, Kumari K, Meena V, Roy R, Verma B. Unravelling tRNA fragments in DENV pathogenesis: Insights from RNA sequencing. Sci Rep 2024; 14:18357. [PMID: 39112524 PMCID: PMC11306563 DOI: 10.1038/s41598-024-69391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Small non-coding RNAs (sncRNAs) derived from tRNAs are known as tRNA-derived small RNAs (tsRNAs). These tsRNAs are further categorized into tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), which play significant roles in the various molecular mechanisms underlying certain human diseases. However, the generation of tsRNAs and their potential roles during Dengue virus (DENV) infection is not yet known. Here, we performed small RNA sequencing to identify the generation and alterations in tsRNAs expression profiles of DENV-infected Huh7 cells. Upon DENV infection, tRNA fragmentation was found to be increased. We identified a significant number of differentially expressed tsRNAs during DENV infection. Interestingly, the 3'tRF population showed upregulation, while the i-tRF population exhibited downregulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to analyze the impact of differentially expressed tsRNAs on DENV pathogenesis. Our results suggest that differentially expressed tsRNAs are involved in transcriptional regulation via RNA polymerase II promoter and metabolic pathways. Overall, our study contributes significantly to our understanding of the roles played by tsRNAs in the complex dynamics of DENV infection.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kiran Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Varsha Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Riya Roy
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
7
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
8
|
Cabrelle C, Giorgi FM, Mercatelli D. Quantitative and qualitative detection of tRNAs, tRNA halves and tRFs in human cancer samples: Molecular grounds for biomarker development and clinical perspectives. Gene 2024; 898:148097. [PMID: 38128792 DOI: 10.1016/j.gene.2023.148097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs playing a central role during protein synthesis. Besides translation, growing evidence suggests that in many contexts, precursor or mature tRNAs can also be processed into smaller fragments playing many non-canonical regulatory roles in different biological pathways with oncogenic relevance. Depending on the source, these molecules can be classified as tRNA halves (also known as tiRNAs) or tRNA-derived fragments (tRFs), and furtherly divided into 5'-tRNA and 3'-tRNA halves, or tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, respectively. Unlike DNA and mRNA, high-throughput sequencing of tRNAs is challenging, because of technical limitations of currently developed sequencing methods. In recent years, different sequencing approaches have been proposed allowing the quantification and identification of an increasing number of tRNA fragments with critical functions in distinct physiological and pathophysiological processes. In the present review, we discussed pros and cons of recent advances in different sequencing methods, also introducing the expanding repertoire of bioinformatics tool and resources specifically focused on tRNA research and discussing current issues in the study of these small RNA molecules. Furthermore, we discussed the potential value of tRNA fragments as diagnostic and prognostic biomarkers for different types of cancers.
Collapse
Affiliation(s)
- Chiara Cabrelle
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | | | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
9
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
10
|
Chen W, Peng W, Wang R, Bai S, Cao M, Xiong S, Li Y, Yang Y, Liang J, Liu L, Yazdani HO, Zhao Y, Cheng B. Exosome-derived tRNA fragments tRF-GluCTC-0005 promotes pancreatic cancer liver metastasis by activating hepatic stellate cells. Cell Death Dis 2024; 15:102. [PMID: 38291031 PMCID: PMC10827722 DOI: 10.1038/s41419-024-06482-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Early metastasis is the primary factor in the very poor prognosis of pancreatic ductal adenocarcinoma (PDAC), with liver metastasis being the most common form of distant metastasis in PDAC. To investigate the mechanism of PDAC liver metastasis, we found that PDAC cells can promote the formation of pre-metastatic niches (PMNs) through exosomes to facilitate liver metastasis in the early stage. In our study, hepatic stellate cells (HSCs) were treated with PDAC-derived exosomes (PDAC-exo), and the activation of HSCs was detected. A novel transfer RNA-derived fragment, the tRF-GluCTC-0005 was obtained by small RNA sequencing from serum exosomes of PDAC patients. Bioinformatics analysis and RNA pull-down assays revealed the interaction between WDR1 and tRF-GluCTC-0005. A KPC transgenic mouse model and an AAV-mediated sh-WDR1 mouse model were used to detect the mechanism of liver metastasis in vivo. Finally, the dual luciferase reporter assay, protein mutation truncation assay, Co-IP assay, and flow cytometry assay were used to explore the molecular mechanism in HSCs activation and PMNs formation. We found that the tRF-GluCTC-0005 in exosomes binds to the 3' untranslated region of the mRNA of the WDRl in HSCs and increases mRNA stability. The N-terminals of WDR1 bind to the YAP protein directly, inhibit YAP phosphorylation, and promote the expression of YAP transcription factors. The tRF-GluCTC-0005 in PDAC-exo significantly recruits myeloid-derived suppressor cells (MDSCs) in the liver, creating a PMNs immunosuppressive microenvironment and further advancing liver metastasis from PDAC. Our results suggest that the key of PDAC liver metastasis is the activation of HSCs through upregulation of WDR1 by tRF-GluCTC-0005 in exosomes, which mediates the infiltration of MDSCs to form PMNs.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ronghua Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengdie Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingwen Liang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luyao Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hamza O Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Suleiman AA, Al-Chalabi R, Shaban SA. Integrative role of small non-coding RNAs in viral immune response: a systematic review. Mol Biol Rep 2024; 51:107. [PMID: 38227137 DOI: 10.1007/s11033-023-09141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Various viruses cause viral infection, and these viruses have different microscopic sizes, genetic material, and morphological forms. Due to a viral infection, the host body induces defense mechanisms that activate the innate and adaptive immune system. sncRNAs are involved in various biological processes and play an essential role in antiviral response in viruses including ZIKV, HCV, DENV, SARS-CoV, and West Nile virus, and regulate the complex interactions between the viruses and host cells. This review discusses the role of miRNAs, siRNAs, piRNAs, and tiRNAs in antiviral response. Cellular miRNAs bind with virus mRNA and perform their antiviral response in multiple viruses. However, the chemical modifications of miRNA necessary to avoid nuclease attack, which is then involved with intracellular processing, have proven challenging for therapeutic replacement of miRNAs. siRNAs have significant antiviral responses by targeting any gene of interest along the correct nucleotide of targeting mRNA. Due to this ability, siRNAs have valuable characteristics in antiviral response for therapeutic purposes. Additionally, the researchers noted the involvement of piRNAs and tiRNAs in the antiviral response, yet their findings were deemed insignificant.
Collapse
Affiliation(s)
| | | | - Semaa A Shaban
- Biology Department, College of Sciences, Tikrit University, Tikrit, Iraq
| |
Collapse
|
12
|
Du J, Huang T, Zheng Z, Fang S, Deng H, Liu K. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology. Cell Commun Signal 2023; 21:302. [PMID: 37904174 PMCID: PMC10614346 DOI: 10.1186/s12964-023-01341-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
tsRNAs are small non-coding RNAs originating from tRNA that play important roles in a variety of physiological activities such as RNA silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, as well as involvement in cellular differentiation, proliferation, and apoptosis. tsRNA-related abnormalities have a significant influence on the onset, development, and progression of numerous human diseases, including malignant tumors through affecting the cell cycle and specific signaling molecules. This review introduced origins together with tsRNAs classification, providing a summary for regulatory mechanism and physiological function while dysfunctional effect of tsRNAs in digestive system diseases, focusing on the clinical prospects of tsRNAs for diagnostic and prognostic biomarkers. Video Abstract.
Collapse
Affiliation(s)
- Juan Du
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tianyi Huang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Li X, Zhang Y, Li Y, Gu X, Ju S. A comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel diagnostic and prognostic biomarker for gastric cancer. Mol Carcinog 2023; 62:1504-1517. [PMID: 37314123 DOI: 10.1002/mc.23592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Gastric cancer (GC) is a common malignant digestive system tumor. Since the early symptoms of GC are usually vague and the positive rate of common biomarkers of GC is low, it is of urgent need to find new biomarkers with good sensitivity and specificity to screen and diagnose GC patients. The tRNA-derived small RNAs (tsRNAs) are emerging small noncoding RNAs that play an essential role in cancer progression. In this study, we explored whether novel tsRNAs have the potential to serve as biomarkers for GC. Three tsRNAs significantly upregulated in GC were screened by the tsRFun database. The expression level of tRF-29-R9J8909NF5JP was detected by real-time fluorescence quantitative polymerase chain reaction. Agarose gel electrophoresis and Sanger sequencing were used to verify the characteristics of tRF-29-R9J8909NF5JP. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of tRF-29-R9J8909NF5JP. The χ2 test was used to analyze the correlation between tRF-29-R9J8909NF5JP expression level and clinicopathological parameters. Kaplan-Meier survival curves were used to analyze the correlation between tRF-29-R9J8909NF5JP expression levels and survival time of GC patients. In this study, the expression level of tRF-29-R9J8909NF5JP was significantly increased in GC tissues. The expression level of tRF-29-R9J8909NF5JP was considerably higher in the serum of GC patients than in the serum of gastritis patients and in the serum of healthy donors, and the expression level of tRF-29-R9J8909NF5JP was significantly decreased in the serum of GC patients after surgery. In addition, the χ2 test showed that the expression level of tRF-29-R9J8909NF5JP in GC serum was correlated with differentiation grade, T-stage, lymph node metastasis, tumor node metastasis stage, and neurological/vascular invasion. The results of the survival curve showed that the high expression of serum tRF-29-R9J8909NF5JP was associated with a low survival rate. ROC analysis showed that serum tRF-29-R9J8909NF5JP had higher diagnostic efficiency than common GC biomarkers, and the diagnostic efficiency was further improved by combining them. At the end of the study, we predicted the downstream of tRF-29-R9J8909NF5JP. The expression level of tRF-29-R9J8909NF5JP in the serum of GC patients can effectively identify GC patients and has higher efficacy than conventional biomarkers. In addition, serum tRF-29-R9J8909NF5JP can monitor the postoperative condition of GC patients, suggesting that it has the potential to become a biomarker for GC.
Collapse
Affiliation(s)
- Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Gan L, Song H, Ding X. Transfer RNA-derived small RNAs (tsRNAs) in gastric cancer. Front Oncol 2023; 13:1184615. [PMID: 37503324 PMCID: PMC10369188 DOI: 10.3389/fonc.2023.1184615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are newly discovered noncoding RNAs (ncRNAs). According to the specific cleavage of nucleases at different sites of tRNAs, the produced tsRNAs are divided into tRNA-derived stress-inducible RNAs (tiRNAs) and tRNA-derived fragments (tRFs). tRFs and tiRNAs have essential biological functions, such as mRNA stability regulation, translation regulation and epigenetic regulation, and play significant roles in the occurrence and development of various tumors. Although the roles of tsRNAs in some tumors have been intensively studied, their roles in gastric cancer are still rarely reported. In this review, we focus on recent advances in the generation and classification of tsRNAs, their biological functions, and their roles in gastric cancer. Sixteen articles investigating dysregulated tsRNAs in gastric cancer are summarized. The roles of 17 tsRNAs are summarized, of which 9 were upregulated and 8 were downregulated compared with controls. Aberrant regulation of tsRNAs was closely related to the main clinicopathological factors of gastric cancer, such as lymph node metastasis, Tumor-Node-Metastasis (TNM) stage, tumor size, and vascular invasion. tsRNAs participate in the progression of gastric cancer by regulating the PTEN/PI3K/AKT, MAPK, Wnt, and p53 signaling pathways. The available literature suggests the potential of using tsRNAs as clinical biomarkers for gastric cancer diagnosis and prognosis and as therapeutic targets for gastric cancer treatment.
Collapse
Affiliation(s)
- Lu Gan
- Health Science Center, Ningbo University, Ningbo, China
| | - Haojun Song
- The Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- The Biobank of The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoyun Ding
- The Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Lee S, Kim J, Valdmanis PN, Kim HK. Emerging roles of tRNA-derived small RNAs in cancer biology. Exp Mol Med 2023; 55:1293-1304. [PMID: 37430089 PMCID: PMC10393972 DOI: 10.1038/s12276-023-01038-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 07/12/2023] Open
Abstract
Transfer RNAs (tRNAs) play an essential role in mRNA translation by delivering amino acids to growing polypeptide chains. Recent data demonstrate that tRNAs can be cleaved by ribonucleases, and the resultant cleavage products, tRNA-derived small RNAs (tsRNAs), have crucial roles in physiological and pathological conditions. They are classified into more than six types according to their size and cleavage positions. Since the initial discovery of the physiological functions of tsRNAs more than a decade ago, accumulating data have demonstrated that tsRNAs play critical roles in gene regulation and tumorigenesis. These tRNA-derived molecules have various regulatory functions at the transcriptional, post-transcriptional, and translational levels. More than a hundred types of modifications are found on tRNAs, affecting the biogenesis, stability, function, and biochemical properties of tsRNA. Both oncogenic and tumor suppressor functions have been reported for tsRNAs, which play important roles in the development and progression of various cancers. Abnormal expression patterns and modification of tsRNAs are associated with various diseases, including cancer and neurological disorders. In this review, we will describe the biogenesis, versatile gene regulation mechanisms, and modification-mediated regulation mechanisms of tsRNA as well as the expression patterns and potential therapeutic roles of tsRNAs in various cancers.
Collapse
Affiliation(s)
- Saebyeol Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jungeun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, 98115, USA
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Gao H, Zhang Q, Wu W, Gu J, Li J. The diagnostic and prognostic value of tsRNAs in gastric cancers: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:985-997. [PMID: 37649251 DOI: 10.1080/14737159.2023.2254237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common types of cancer worldwide. Recent studies have shown that tsRNAs play important roles in GC and that changes in the expression levels of tsRNAs can be used for GC diagnosis and treatment response prediction. RESEARCH DESIGN AND METHODS Hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the correlation between tsRNA expression and prognosis and other clinicopathologic features of GC patients. The sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and diagnostic odds ratio (DOR) were analyzed to evaluate the diagnostic value of tsRNAs. RESULTS The results showed that patients with tsRNA upregulation had a poor prognosis (HR = 2.48, 95% CI: 1.85-3.34), while patients with tsRNA downregulation had a favorable prognosis (HR = 0.55, 95% CI: 0.31-0.98). In addition, tsRNA expression was significantly correlated with various clinicopathological features in patients with GC. Finally, in diagnostic studies, GC-related tsRNAs could differentiate healthy controls (AUC = 0.81, DOR = 7.74) from patients with inflammation (AUC = 0.74, DOR = 4.44). CONCLUSIONS tsRNAs have potential clinical application in GC diagnosis and prognosis evaluation. It is necessary to further assess and verify the practicability and feasibility of additional specific tsRNAs as GC markers in the future.
Collapse
Affiliation(s)
- Hua Gao
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiankun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Weibing Wu
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Gu
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Li
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Tu M, Zuo Z, Chen C, Zhang X, Wang S, Chen C, Sun Y. Transfer RNA-derived small RNAs (tsRNAs) sequencing revealed a differential expression landscape of tsRNAs between glioblastoma and low-grade glioma. Gene X 2023; 855:147114. [PMID: 36526122 DOI: 10.1016/j.gene.2022.147114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are the most lethal brain cancer with a median survival rate of fewer than 15 months. Both clinical and biological features of GBMs are largely different from those of low-grade gliomas (LGs), but the reasons for this intratumoral heterogeneity are not entirely clear. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) were derived from tRNA precursors and mature tRNA, referring to the specific cleavage of tRNAs by dicer and angiogenin (ANG) in particular cells or tissues or under certain conditions such as stress and hypoxia. With the characteristics of wide expression and high stability, tsRNAs could be used as favorable biomarkers for diagnosis, treatment, and prognosis prediction of the tumor, viral infection, neurological as well as other systemic diseases. In this study, we have compared the differential expressed tsRNAs between GBMs and LGs, so as to investigate the possible pathogenic molecules and provide references for discovering novel nucleic acid drugs in future studies. METHODS Fresh tumor tissues of patients that were diagnosed as GBMs (4 cases) and LGs (5 cases) at the First Affiliated Hospital of Wenzhou Medical University from 2019.05 to 2021.01 were collected. The tsRNAs' levels were analyzed and compared through high-throughput sequencing, candidate tsRNAs were chosen according to the expression level, and the expression of the candidate tsRNAs was validated through qPCR. Finally, the potential targets were imputed using the Miranda and TargetScan databases, and possible biological functions of the differentially expressed (DE) tsRNAs' targets were enriched based on GO and KEGG databases. RESULTS A total of 4 GBMs and 5 LGs patients were enrolled in the current study. High-throughput sequencing showed that 186 tsRNAs were expressed in two groups, over them, 43 tsRNAs were unique to GBMs, and 24 tsRNAs were unique to LGs. A total of 9 tsRNAs were selected as candidate tsRNAs according to the tsRNA expression level, among which 6 tsRNAs were highly expressed in GBMs and 3 tsRNAs were low expressed in GBMs. qPCR verification further demonstrated that 5 tsRNAs were significantly up-regulated and 1 tsRNA was significantly down-regulated in GBMs: tRF-1-32-chrM.Lys-TTT (p=0.00118), tiRNA-1-33-Gly-GCC-1 (p=0.00203), tiRNA-1-33-Gly-CCC-1 (p=0.00460), tRF-1-31-His-GTG-1 (p=0.00819), tiRNA-1-33-Gly-GCC-2-M3 (p=0.01032), and tiRNA-1-34-Lys-CTT-1-M2 (p=0.03569). Enrichment analysis of the qPCR verified DE tsRNAs showed that the 5 up-regulated tsRNAs seemed to be associated with axon guidance, pluripotent stem cells regulation, nucleotide excision repair, Hippo signaling pathway, and cancer-related pathways, while the down-regulated tsRNA (tRF-1-32-chrM.Lys-TTT) was associated with oocyte meiosis and renin secretion. CONCLUSION The tsRNAs were differentially expressed in tumor tissues between GBMs and LGs, especially tRF-1-32-chrM.Lys-TTT, tiRNA-1-33-Gly-GCC-1, tiRNA-1-33-Gly-CCC-1, tRF-1-31-His-GTG-1, tiRNA-1-33-Gly-GCC-2-M3, and tiRNA-1-34-Lys-CTT-1-M2. These tsRNAs seemed to be associated with nucleotide excision repair, Hippo signaling, and cancer-related pathways. This may be the main reason for the differences in clinical characteristics between GBMs and LGs, which may provide a certain theoretical basis for further functional research and development of related nucleic acid drugs. CONCLUSION The tsRNAs were differentially expressed in tumor tissues between GBMs and LGs, especially tRF-1-32-chrM.Lys-TTT, tiRNA-1-33-Gly-GCC-1, tiRNA-1-33-Gly-CCC-1, tRF-1-31-His-GTG-1, tiRNA-1-33-Gly-GCC-2-M3, and tiRNA-1-34-Lys-CTT-1-M2. These tsRNAs seemed to be associated with nucleotide excision repair, Hippo signaling, and cancer-related pathways. This may be the main reason for the differences in clinical characteristics between GBMs and LGs, which may provide a certain theoretical basis for further functional research and development of related nucleic acid drugs.
Collapse
Affiliation(s)
- Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Ziyi Zuo
- The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Cuie Chen
- Department of Pediatrics, Yiwu Maternity and Children Hospital, No. C100 Xinke Road, Yiwu, Jinhua, Zhejiang, China
| | - Xixi Zhang
- Department of Pediatrics, The People' s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Shi Wang
- Department of Anesthesiology, Women' s Hospital School of Medicine Zhejiang University, No.1 Xueshi Road, Shangcheng district, Hangzhou, Zhejiang, China
| | - Changwei Chen
- Department of Pediatrics, The People' s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Yuanyuan Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
19
|
Comprehensive Evaluation of Serum tRF-17-WS7K092 as a Promising Biomarker for the Diagnosis of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8438726. [PMID: 36245992 PMCID: PMC9553536 DOI: 10.1155/2022/8438726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Background Gastric cancer (GC) is a malignant tumor of the gastrointestinal system. Since the early symptoms of GC are not obvious and lack efficient diagnostic markers, it is urgent to find new diagnostic markers with good sensitivity and specificity. tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs with good abundance in body fluids. We aim to find new tsRNAs as biomarkers for GC diagnosis. Methods High-throughput sequencing was used to identify differentially expressed tsRNAs in GC tissues, and quantitative real-time PCR was used to detect the expression level of tRF-17-WS7K092. Agarose gel electrophoresis and Sanger sequencing were performed to verify the characteristics of tRF-17-WS7K092. The diagnostic efficacy of tRF-17-WS7K092 was analyzed by the receiver operating characteristic curve. Results In this study, the expression levels of tRF-17-WS7K092 were significantly increased in GC tissues, cells, and serum. After GC surgery, the expression level of serum tRF-17-WS7K092 decreased, and its high expression was associated with low survival rates. In addition, the expression level of serum tRF-17-WS7K092 was correlated with the T stage, TNM stage, lymph node metastasis, and nerve/vascular invasion and could distinguish GC patients from gastritis patients and healthy donors as well. Conclusions The expression of serum tRF-17-WS7K092 was significantly increased in GC and decreased after GC surgery, suggesting that serum tRF-17-WS7K092 may serve as a promising biomarker for the diagnostic and prognostic monitoring of GC.
Collapse
|
20
|
Chu X, He C, Sang B, Yang C, Yin C, Ji M, Qian A, Tian Y. Transfer RNAs-derived small RNAs and their application potential in multiple diseases. Front Cell Dev Biol 2022; 10:954431. [PMID: 36072340 PMCID: PMC9441921 DOI: 10.3389/fcell.2022.954431] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The role of tRNAs is best known as adapter components of translational machinery. According to the central dogma of molecular biology, DNA is transcribed to RNA and in turn is translated into proteins, in which tRNA outstands by its role of the cellular courier. Recent studies have led to the revision of the canonical function of transfer RNAs (tRNAs), which indicates that tRNAs also serve as a source for short non-coding RNAs called tRNA-derived small RNAs (tsRNAs). tsRNAs play key roles in cellular processes by modulating complicated regulatory networks beyond translation and are widely involved in multiple diseases. Herein, the biogenesis and classification of tsRNAs were firstly clarified. tsRNAs are generated from pre-tRNAs or mature tRNAs and are classified into tRNA-derived fragments (tRFs) and tRNA halves (tiRNA). The tRFs include five types according to the incision loci: tRF-1, tRF-2, tRF-3, tRF-5 and i-tRF which contain 3′ tiRNA and 5′ tiRNA. The functions of tsRNAs and their regulation mechanisms involved in disease processes are systematically summarized as well. The mechanisms can elaborate on the specific regulation of tsRNAs. In conclusion, the current research suggests that tsRNAs are promising targets for modulating pathological processes, such as breast cancer, ischemic stroke, respiratory syncytial virus, osteoporosis and so on, and maintain vital clinical implications in diagnosis and therapeutics of various diseases.
Collapse
Affiliation(s)
- Xiaohua Chu
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chenyang He
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Sang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chong Yin
- Department of Clinical Laboratory, Academician (expert) Workstation, Lab of Epigenetics and RNA Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mili Ji
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| |
Collapse
|
21
|
Chen W, Lin Y, Jiang M, Wang Q, Shu Q. Identification of LARS as an essential gene for osteosarcoma proliferation through large-Scale CRISPR-Cas9 screening database and experimental verification. J Transl Med 2022; 20:355. [PMID: 35962451 PMCID: PMC9373537 DOI: 10.1186/s12967-022-03571-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Osteosarcoma is one of the most malignant tumors, and it occurs mostly in children and adolescents. Currently, surgery and chemotherapy are the main treatments. The recurrence rate is high and the prognosis is often poor. Finding an effective target gene therapy for osteosarcoma may effectively improve its prognosis. METHOD In this study, genes essential for the survival of osteosarcoma cells were identified by genome-wide screening of CRISPR-Cas9 based on the DepMap database. The expression of these essential genes in osteosarcoma patients' tissues and normal tissues was identified in the GSE19276 database. Functional pathway enrichment analysis, protein interaction network construction, and LASSO were performed to construct a prognostic risk model based on these essential genes. CCK8 assay was used to detect the effect of essential gene-LARS (Leucyl-TRNA Synthetase 1) on the proliferation of osteosarcoma. RESULTS In this study, 785 genes critical for osteosarcoma cell proliferation were identified from the DepMap. Among these 785 essential genes, 59 DEGs were identified in osteosarcoma tissues. In the functional enrichment analysis, these 59 essential genes were mainly enriched in cell cycle-related signaling pathways. Furthermore, we established a risk score module, including LARS and DNAJC17, screened from these 59 genes, and this module could divide osteosarcoma patients into the low-risk and high-risk groups. In addition, knockdown of LARS expression inhibited the proliferative ability of osteosarcoma cells. A significant correlation was found between LARS expression and Monocytic lineage, T cells, and Fibroblasts. CONCLUSION In conclusion, LARS was identified as an essential gene for survival in osteosarcoma based on the DepMap database. Knockdown of LARS expression significantly inhibited the proliferation of osteosarcoma cells, suggesting that it is involved in the formation and development of osteosarcoma. The results are useful as a foundation for further studies to elucidate a potential osteosarcoma diagnostic index and therapeutic targets.
Collapse
Affiliation(s)
- Wenhao Chen
- Department of Orthopedics, The Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Bingsheng Road, Hangzhou, 310052, Zhejiang Province, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Qingshui Wang
- College of Life Sciences, Fujian Normal University, 8 South Xuefu Road, Fuzhou, 350117, Fujian Province, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Bingsheng Road, Hangzhou, 310052, Zhejiang Province, China.
| |
Collapse
|
22
|
Zhu L, Sun L, Xu G, Song J, Hu B, Fang Z, Dan Y, Li N, Shao G. The diagnostic value of has_circ_0006423 in non-small cell lung cancer and its role as a tumor suppressor gene that sponges miR-492. Sci Rep 2022; 12:13722. [PMID: 35962012 PMCID: PMC9374755 DOI: 10.1038/s41598-022-17816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The diagnosis and treatment of non-small cell lung cancer (NSCLC) are not ideal. We identified NSCLC-related has_circ_0006423 in database. qRT-PCR was used to measure expression levels of hsa_circ_0006423 and miR-492 in the plasma and tissue samples, and 3 NSCLC cell lines, respectively. We analyzed the relationship between expression levels of hsa_circ_0006423 and clinicopathological factors and miR-492 expression in plasma and tissue samples. Assess the diagnostic value of hsa_circ_0006423 and miR-492 in NSCLC. Cell function vitro experiment to explore the effect of has_circ_0006423 on NSCLC. We found has_circ_0006423 is lower expressed in NSCLC and miR-492 is opposite, has_circ_0006423 and miR-492 has diagnostic value in NSCLC. In A549 and NCI-H1299 cells, hsa_circ_0006423 inhibited the proliferation, migration, and invasion of NSCLC cells by sponging miR-492 and accelerating NSCLC cell apoptosis. This effect may be due to the combination of has_circ_0006423 and miR-492 affecting the progression of NSCLC.
Collapse
Affiliation(s)
- Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Jie Song
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Bingchuan Hu
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Zhongjie Fang
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Yanggang Dan
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China. .,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China. .,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China. .,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China.
| |
Collapse
|
23
|
Kohansal M, Ghanbarisad A, Tabrizi R, Daraei A, Kashfi M, Tang H, Song C, Chen Y. tRNA-derived fragments in gastric cancer: Biomarkers and functions. J Cell Mol Med 2022; 26:4768-4780. [PMID: 35957621 PMCID: PMC9465185 DOI: 10.1111/jcmm.17511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
tRNA‐derived fragments (tRFs), non‐coding RNAs that regulate protein expression after transcription, have recently been identified as potential biomarkers. We identified differentially expressed tRFs in gastric cancer (GC) and the biological properties of tRFs in predicting the malignancy status of GCs as possible biomarkers. Until 15 February 2022, two independent reviewers did a thorough search in electronic databases of Scopus, EMBASE and PubMed. The QUADAS scale was used for quality assessment of the included studies. Ten articles investigating the clinical significance of tRFs, including 928 patients, were analysed. In 10 GC studies, seven tRFs were considerably upregulated and five tRFs were significantly downregulated when compared to controls. Risk of bias was rated low for index test, and flow as well as timing domains in relation to the review question. The applicability of the index test, flow and timing and patient selection for 10 studies was deemed low. In this study, we review the advances in the study of tRFs in GC and describe their functions in gene expression regulation, such as suppression of translation, cell differentiation, proliferation and the related signal transduction pathways associated with them. Our findings may offer researchers new ideas for cancer treatment as well as potential biomarkers for further research in GC.
Collapse
Affiliation(s)
- Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.,Department of biology, Payame Noor University, Tehran, Iran
| | - Ali Ghanbarisad
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Kashfi
- Departmen of Microbiology, School of Medicine, Shahid Beheshti Univercity of Medical Sciences, Tehran, Iran
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Zhou Y, Tao D, Shao Z, Wang X, Xu J, Li Y, Li K. Expression profiles of exosomal tRNA-derived fragments and their biological functions in lipomas. Front Cell Dev Biol 2022; 10:942133. [PMID: 36035989 PMCID: PMC9399354 DOI: 10.3389/fcell.2022.942133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence that exosomes derived from the lipoma tissue (Exo-LT) have a stronger capacity to promote the proliferation and migration of adipose-derived stem cells (ADSCs) than those from the adipose tissue (Exo-AT). But the Exo-LT do not have a significant effect on the adipogenic differentiation of the ADSCs. Recently, certain exosomal tRNA-derived fragments (tRFs) have been shown to play a crucial role in the pathogenesis of certain tumors. Therefore, it is necessary to identify the differently expressed tRFs in Exo-LT to further elucidate their molecular functions in lipomas. High-throughput sequencing was performed to examine the tRFs and mRNAs from the all samples belonging to the Exo-LT and Exo-AT groups. Target prediction and bioinformatics analysis were performed to explore their downstream mRNAs and biological functions. In total, 456 differently expressed tRFs and tiRNAs were identified in the Exo-LT group, 12 of which were up-regulated and 12 were down-regulated, respectively. Notably, tRF-1001 was most obviously down-regulated and tRF-3004a was most obviously up-regulated in the Exo-LT group. Moreover, among the target genes of tRF-1001 and tRF-3004a, both JAG2 and VSIG4 were significantly down-regulated in the Exo-LT group, while WNT5A, COL1A1, and PPARGC1A were highly expressed in both the Exo-LT and Exo-AT groups. The significant down-regulation of JAG2 and VSIG4 in the Exo-LT group could be due to the fact that Exo-LT had a stronger capacity to promote the proliferation and migration of ADSCs compared to the Exo-AT. The high expression of WNT5A, COL1A1, and PPARGC1A in both the Exo-LT and Exo-AT groups could be due to the similar ability of Exo-LT and Exo-AT to promote the adipogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Daixi Tao
- Department of Changsha Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Zifei Shao
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jinhao Xu
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yiyang Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Kun Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- *Correspondence: Kun Li,
| |
Collapse
|
25
|
Gu X, Zhang Y, Qin X, Ma S, Huang Y, Ju S. Transfer RNA-derived small RNA: an emerging small non-coding RNA with key roles in cancer. Exp Hematol Oncol 2022; 11:35. [PMID: 35658952 PMCID: PMC9164556 DOI: 10.1186/s40164-022-00290-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
Transfer RNAs (tRNAs) promote protein translation by binding to the corresponding amino acids and transporting them to the ribosome, which is essential in protein translation. tRNA-derived small RNAs (tsRNAs) are derived fragments of tRNAs that are cleaved explicitly under certain conditions. An increasing amount of research has demonstrated that tsRNAs have biological functions rather than just being degradation products. tsRNAs can exert functions such as regulating gene expression to influence cancer progression. Their dysregulation is closely associated with various cancers and can serve as diagnostic and prognostic biomarkers for cancer. This review summarizes the generation, classification, and biological functions of tsRNAs, and highlights the roles of tsRNAs in different cancers and their applications as tumor markers.
Collapse
Affiliation(s)
- Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyue Qin
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuo Ma
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, China. .,Department of Medical Oncology, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.
| |
Collapse
|
26
|
tiRNAs: Insights into Their Biogenesis, Functions, and Future Applications in Livestock Research. Noncoding RNA 2022; 8:ncrna8030037. [PMID: 35736634 PMCID: PMC9231384 DOI: 10.3390/ncrna8030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) belong to a group of transfer ribonucleic acid (tRNA)-derived fragments that have recently gained interest as molecules with specific biological functions. Their involvement in the regulation of physiological processes and pathological phenotypes suggests molecular roles similar to those of miRNAs. tsRNA biogenesis under specific physiological conditions will offer new perspectives in understanding diseases, and may provide new sources for biological marker design to determine and monitor the health status of farm animals. In this review, we focus on the latest discoveries about tsRNAs and give special attention to molecules initially thought to be mainly associated with tRNA-derived stress-induced RNAs (tiRNAs). We present an outline of their biological functions, offer a collection of useful databases, and discuss future research perspectives and applications in livestock basic and applied research.
Collapse
|
27
|
Fu BF, Xu CY. Transfer RNA-Derived Small RNAs: Novel Regulators and Biomarkers of Cancers. Front Oncol 2022; 12:843598. [PMID: 35574338 PMCID: PMC9096126 DOI: 10.3389/fonc.2022.843598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are conventional non-coding RNAs (ncRNAs) with a length between18 and 40 nucleotides (nt) playing a crucial role in treating various human diseases including tumours. Nowadays, with the use of high-throughput sequencing technologies, it has been proven that certain tsRNAs are dysregulated in multiple tumour tissues as well as in the blood serum of cancer patients. Meanwhile, data retrieved from the literature show that tsRNAs are correlated with the regulation of the hallmarks of cancer, modification of tumour microenvironment, and modulation of drug resistance. On the other side, the emerging role of tsRNAs as biomarkers for cancer diagnosis and prognosis is promising. In this review, we focus on the specific characteristics and biological functions of tsRNAs with a focus on their impact on various tumours and discuss the possibility of tsRNAs as novel potential biomarkers for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Bi-Fei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao-Yang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
28
|
Weng Q, Wang Y, Xie Y, Yu X, Zhang S, Ge J, Li Z, Ye G, Guo J. Extracellular vesicles-associated tRNA-derived fragments (tRFs): biogenesis, biological functions, and their role as potential biomarkers in human diseases. J Mol Med (Berl) 2022; 100:679-695. [PMID: 35322869 PMCID: PMC9110440 DOI: 10.1007/s00109-022-02189-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Traditionally, transfer RNAs (tRNAs) specifically decoded messenger RNA (mRNA) and participated in protein translation. tRNA-derived fragments (tRFs), also known as tRNA-derived small RNAs (tsRNAs), are generated by the specific cleavage of pre- and mature tRNAs and are a class of newly defined functional small non-coding RNAs (sncRNAs). Following the different cleavage positions of precursor or mature tRNA, tRFs are classified into seven types, 5′-tRNA half, 3′-tRNA half, tRF-1, 5′U-tRF, 3′-tRF, 5′-tRF, and i-tRF. It has been demonstrated that tRFs have a diverse range of biological functions in cellular processes, which include inhibiting protein translation, modulating stress response, regulating gene expression, and involvement in cell cycles and epigenetic inheritance. Emerging evidences have indicated that tRFs in extracellular vesicles (EVs) seem to act as regulatory molecules in various cellular processes and play essential roles in cell-to-cell communication. Furthermore, the dysregulation of EV-associated tRFs has been associated with the occurrence and progression of a variety of cancers and they can serve as novel potential biomarkers for cancer diagnosis. In this review, the biogenesis and classification of tRFs are summarized, and the biological functions of EV-associated tRFs and their roles as potential biomarkers in human diseases are discussed.
Collapse
Affiliation(s)
- Qiuyan Weng
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Yao Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Shuangshuang Zhang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Jiaxin Ge
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Zhe Li
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China. .,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China. .,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China. .,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
29
|
Xiao L, Wang J, Ju S, Cui M, Jing R. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J Med Genet 2022; 59:623-631. [PMID: 35145038 DOI: 10.1136/jmedgenet-2021-108327] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Most small non-coding RNAs (sncRNAs) with regulatory functions are encoded by majority sequences in the human genome, and the emergence of high-throughput sequencing technology has greatly expanded our understanding of sncRNAs. sncRNAs are composed of a variety of RNAs, including tRNA-derived small RNA (tsRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), PIWI-interacting RNA (piRNA), etc. While for some, sncRNAs' implication in several pathologies is now well established, the potential involvement of tsRNA, snoRNA, snRNA and piRNA in human diseases is only beginning to emerge. Recently, accumulating pieces of evidence demonstrate that tsRNA, snoRNA, snRNA and piRNA play an important role in many biological processes, and their dysregulation is closely related to the progression of cancer. Abnormal expression of tsRNA, snoRNA, snRNA and piRNA participates in the occurrence and development of tumours through different mechanisms, such as transcriptional inhibition and post-transcriptional regulation. In this review, we describe the research progress in the classification, biogenesis and biological function of tsRNA, snoRNA, snRNA and piRNA. Moreover, we emphasised their dysregulation and mechanism of action in cancer and discussed their potential as diagnostic and prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Jie Wang
- Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
30
|
Hu Y, Cai A, Xu J, Feng W, Wu A, Liu R, Cai W, Chen L, Wang F. An emerging role of the 5' termini of mature tRNAs in human diseases: Current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166314. [PMID: 34863896 DOI: 10.1016/j.bbadis.2021.166314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The fundamental biological roles of a class of small noncoding RNAs (sncRNAs), derived from mature tRNAs or pre-tRNAs, in human diseases have received increasing attention in recent years. These ncRNAs are called tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs). tRFs mainly include tRF-1, tRF-5, tRF-3 and tRNA halves (tiRNAs or tRHs), which are produced by enzyme-specific cleavage of tRNAs. Here, we classify tRF-5 and 5' tiRNAs into the same category: 5'-tRFs and review the biological functions and regulatory mechanisms of 5'-tRFs in cancer and other diseases (metabolic diseases, neurodegenerative diseases, pathological stress injury and virus infection) to provide a new theoretical basis for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuhao Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Aiting Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jing Xu
- Department of Laboratory Medicine, School of public health, Nantong University, Jiangsu, China
| | - Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Anqi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Ruoyu Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Weihua Cai
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China
| | - Lin Chen
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China.
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
31
|
Wang Y, Weng Q, Ge J, Zhang X, Guo J, Ye G. tRNA-derived small RNAs: mechanisms and potential roles in cancers. Genes Dis 2022; 9:1431-1442. [PMID: 36157501 PMCID: PMC9485285 DOI: 10.1016/j.gendis.2021.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 11/02/2022] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. Mature or pre-tRNAs may be cleaved to produce tRNA-derived small RNAs (tsRNAs). tsRNAs, divided into tRNA-derived stress-induced RNA (tiRNAs) and tRNA-derived fragments (tRFs), play versatile roles in a number of fundamental biological processes. tsRNAs not only play regulatory roles in gene silencing, RNA stability, reverse transcription, and translation, but are also closely related to cell proliferation, migration, cell cycle, and apoptosis. Their abnormal expression is associated with the occurrence and development of various human diseases, especially cancer. This paper reviews the classification, biogenesis, and mechanism of action of tsRNAs, and the research progress to date on tsRNAs in cancers. These findings provide new opportunities for diagnostic biomarkers and treatment targets of several types of cancers including gastric cancer, colorectal cancer, hepatocellular carcinomas, pancreatic cancer, breast cancer, prostate cancer, renal cell carcinoma, ovarian cancer, lung cancer, bladder cancer, thyroid cancer, oral cancer, and leukemia.
Collapse
|
32
|
Circulating MicroRNAs as Cancer Biomarkers in Liquid Biopsies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:23-73. [DOI: 10.1007/978-3-031-08356-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Gao L, Xu L, Wang X. A Systematic Review of tRNA-Derived Small non-Coding RNAs as Diagnostic and Prognostic Markers in Cancer. Technol Cancer Res Treat 2022; 21:15330338211072989. [PMID: 35506562 DOI: 10.1177/15330338211072989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives: tRNA-derived small non-coding RNAs (tsncRNAs) are one of mysterious small non-coding RNAs. Dysregulated tsncRNAs can led to all kinds of cancers. Recently, tsncRNAs were postulated to be potentially useful biomarkers for tumor diagnosis and prognosis. However, there were no systematic reviews of prognostic and diagnostic tsncRNAs in neoplasms. The study aimed to decipher the relationships between tsncRNAs expression, diagnostic and prognostic outcome in tumors. Methods: This study systematically searched Google Scholar, MEDLINE, Scopus, PubMed, Embase, ScienceDirect, Ovid-Medline, Chinese National Knowledge Infrastructure, WanFang and SinoMed databases for relevant articles published before September 21, 2020. Results: The study is registered in PROSPERO (CRD42020213863). Fourteen relevant studies were included in the meta-analysis: 12 on diagnosis and 5 on prognosis. The pooled add ratio, 95% confidence intervals (Cl) and hazard ratios (HR) of the studies were used to investigate the clinical parameters and overall survival (OS) of cancer patients. The area under the curve (AUC), sensitivity, and specificity was 0.79, 72%, and 73% in tumors, respectively. Though abnormally expressed tsncRNAs were associated with poor and unfavorable impacts on the OS time of cancer patients, the oncogenic tsncRNA may be a favorable impact on overall survival (OS: HR = 0.67, 95% Cl: 0.48-0.94, P = 0.02), and tumor-suppressor tsncRNA might have an unfavorable impact on overall survival (OS: HR = 1.41, 95% Cl: 0.84-2.37, P = 0.19). Conclusion: These results strongly suggested that tsncRNAs were potential novel prognostic and diagnostic indicators in tumors.
Collapse
Affiliation(s)
| | - Lin Xu
- 71220Jiujiang University, China
| | | |
Collapse
|
34
|
Zhu L, Wang Z, Sun L, Zheng D, Hu B, Li N, Shao G. Hsa_circ_0000437 upregulates and promotes disease progression in rheumatic valvular heart disease. J Clin Lab Anal 2021; 36:e24197. [PMID: 34952991 PMCID: PMC8842158 DOI: 10.1002/jcla.24197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background Currently, the diagnosis and outcome of rheumatic valvular heart disease (RVHD) are less than ideal, and there are no accurate biomarkers. Circular RNA (circRNA) might participate in the occurrence and development of RVHD. Materials and methods We use circRNA microarray to filter out the target has_circ_0000437. qRT‐PCR was used to measure the expression levels of hsa_circ_0000437 in RVHD plasma samples. We assessed the diagnostic value of hsa_circ_0000437 in RVHD. Cell function in vitro experiment was to explore the effect of has_circ_0000437 on RVHD. Results Has_circ_0000437 is highly expressed in RVHD (p < 0.001). has_circ_0000437 has the diagnostic value in RVHD. In RVHD, hsa_circ_0000437 can promote cell proliferation and migration but inhibits its apoptosis. This may be due to the combination of has_circ_0000437 and target miRNA in the cytoplasm that affects the progress of RVHD. Conclusions Has_circ_0000437 can promote the process of RVHD and may be a potential for the diagnosis and treatment of RVHD.
Collapse
Affiliation(s)
- Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhifang Wang
- Medical School of Ningbo University, Ningbo, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Dawei Zheng
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Bingchuan Hu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
35
|
Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 2021; 13:24. [PMID: 34934044 PMCID: PMC8692627 DOI: 10.1038/s41419-021-04472-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.
Collapse
Affiliation(s)
- Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China.
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Chunlei Guo
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, 300071, Tianjin, PR China
| |
Collapse
|
36
|
BMPR2 promoter methylation and its expression in valvular heart disease complicated with pulmonary artery hypertension. Aging (Albany NY) 2021; 13:24580-24604. [PMID: 34793329 PMCID: PMC8660616 DOI: 10.18632/aging.203690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
Valvular heart disease (VHD) is a common heart disease that affects blood flow. It usually requires heart surgery. Valvular heart disease complicated with pulmonary artery hypertension (VHD-PAH) may be lethal due to heart failure that results from increased heart burden. It is important for these patients to seek early treatment in order to minimize the heart damage. However, there is no reliable diagnosis method in VHD. In this study, we found DNA methylation was increased at the promoter of BMPR2 gene in the VHD patients compared with the healthy controls. This finding was confirmed by an independent cohort study of VHD patients and healthy controls. In addition, BMPR2 mRNA levels were reduced in the plasma of the VHD patients. There is strong correlation between BMPR2 promoter DNA methylation and the severity of VHD. Indeed, we found that both BMPR2 promoter DNA methylation and BMPR2 mRNA levels in the plasma are good biomarkers of VHD by themselves, with the respective AUC value of 0.879 and 0.725, respectively. When they were used in combination, the diagnostic value was even better, with the AUC value of 0.93. Consistent with the results in the VHD patients, we observed decreased BMPR2 and increased fibrosis in the lung of a PAH model mouse. BMPR2 was also decreased in the hearts of the PAH mice, whereas BMP4 was increased. Furthermore, BMPR2 was reduced in the heart valve tissue samples of human VHD patients after valve replacement with moderate/severe PAH compared with those with mild PAH. There was also increased apoptosis in the hearts of the PAH mice. BMPR2 promoter DNA methylation and its expression appear to be good biomarkers for VHD. Our results also suggest that DNA methylation may cause PAH through deregulation of BMP signaling and increased apoptosis.
Collapse
|
37
|
Yuan Y, Li J, He Z, Fan X, Mao X, Yang M, Yang D. tRNA-derived fragments as New Hallmarks of Aging and Age-related Diseases. Aging Dis 2021; 12:1304-1322. [PMID: 34341710 PMCID: PMC8279533 DOI: 10.14336/ad.2021.0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
tRNA-derived fragments (tRFs), which are non-coding RNAs produced via tRNA cleavage with lengths of 14 to 50 nucleotides, originate from precursor tRNAs or mature tRNAs and exist in a wide range of organisms. tRFs are produced not by random fracture of tRNAs but by specific mechanisms. Considerable evidence shows that tRFs are detectable in model organisms of different ages and are associated with age-related diseases in humans, such as cancer and neurodegenerative diseases. In this literature review, the origin and classification of tRFs and the regulatory mechanisms of tRFs in aging and age-related diseases are summarized. We also describe the available tRF databases and research techniques and lay a foundation for the exploration of tRFs as biomarkers for the diagnosis and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Ya Yuan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiamei Li
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhi He
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaolan Fan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xueping Mao
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
38
|
Zhu L, Li Z, Yu X, Ruan Y, Shen Y, Shao Y, Zhang X, Ye G, Guo J. The tRNA-derived fragment 5026a inhibits the proliferation of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Stem Cell Res Ther 2021; 12:418. [PMID: 34294122 PMCID: PMC8296675 DOI: 10.1186/s13287-021-02497-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions. However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was first used to detect tRF-5026a expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were assessed by measuring tRF-5026a using qRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor, cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-5026a on tumor growth was tested using subcutaneous tumor models in nude mice. Results tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed that upregulation of tRF-5026a effectively inhibited tumor growth. Conclusions tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02497-1.
Collapse
Affiliation(s)
- Linwen Zhu
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315041, China
| | - Zhe Li
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Yijing Shen
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Yongfu Shao
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China
| | - Xinjun Zhang
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China. .,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
39
|
Yao L, Xie Y. Down-regulation of hsa_circ_0006470 predicts tumor invasion: A new biomarker of gastric cancer. J Clin Lab Anal 2021; 35:e23879. [PMID: 34165822 PMCID: PMC8373341 DOI: 10.1002/jcla.23879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Gastric cancer (GC) is a common cancer. Circular RNAs (circRNAs) regulate the pathogenesis of GC. This study aims to explore its potential as a GC biomarker. Methods The expression of hsa_circ_0006470 in GC tissues and GC cell lines was measured by quantitative reverse transcription‐polymerase chain reaction. The diagnostic value of hsa_circ_0006470 was estimated by the receiver operating characteristic (ROC) curve. Results Compared with adjacent normal tissues, the expression of hsa_circ_0006470 in GC tissues was significantly lower. The expression levels of hsa_circ_0006470 in different TNM stages and different invasion degrees were significantly different. The area under the ROC curve was 0.783, with sensitivity and specificity 0.725 and 0.750, respectively. Conclusions Hsa_circ_0006470 has a high value as a diagnostic biomarker for GC.
Collapse
Affiliation(s)
- Lipeng Yao
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yaoyao Xie
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
40
|
Li J, Zhu L, Cheng J, Peng Y. Transfer RNA-derived small RNA: A rising star in oncology. Semin Cancer Biol 2021; 75:29-37. [PMID: 34029740 DOI: 10.1016/j.semcancer.2021.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
Transfer RNAs (tRNAs) participate in protein synthesis through delivering amino acids to the ribosome. Nevertheless, recent studies revealed that tRNAs can undergo cleavage by endoribonucleases to generate a heterogeneous class of small RNAs, designated as tRNA-derived small RNAs (tsRNAs). Accumulating evidence demonstrates that tsRNAs play an important role in many biological processes, and their dysregulation is associated with the progression of diseases including cancer. Abnormally expressed tsRNAs contribute to tumor initiation and development through distinct mechanisms, such as transcriptional regulation and RNA interference. In this review, we briefly summarize the current knowledge regarding classification, biogenesis and biological function of tsRNAs. Moreover, we highlight the dysregulation and critical roles of tsRNAs in cancer and discuss their potentials as diagnostic and prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Lei Zhu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Jian Cheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
41
|
Gu X, Ma S, Liang B, Ju S. Serum hsa_tsr016141 as a Kind of tRNA-Derived Fragments Is a Novel Biomarker in Gastric Cancer. Front Oncol 2021; 11:679366. [PMID: 34055648 PMCID: PMC8155501 DOI: 10.3389/fonc.2021.679366] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors globally and the third leading cause of cancer-related death. Currently, the sensitivity and specificity of diagnostic markers for GC are low, so it is urgent to find new biomarkers with higher sensitivity and specificity. tRNA-derived small RNAs are a kind of small non-coding RNAs derived from tRNAs. It is abundant in cancer cells and body fluids. Our goal is to find the differentially expressed tRNA-derived small RNAs in GC to explore their potential as a GC biomarker. Methods Quantitative real-time PCR was used to detect the expression level of hsa_tsr016141. The molecular characteristics of hsa_tsr016141 were verified by agarose gel electrophoresis, Sanger sequencing, Actinomycin D Assay, and Nuclear and Cytoplasmic RNA Separation Assay. The diagnostic efficiency of hsa_tsr016141 was analyzed through receiver operating characteristic. Results The expression level of hsa_tsr016141 in GC tissues and serum was significantly increased. The serum expression level showed a gradient change between GC patients, gastritis patients, and healthy donors and was positively correlated with the degree of lymph node metastasis and tumor grade. ROC analysis showed that the serum expression level of hsa_tsr016141 could significantly distinguish GC patients from healthy donors or gastritis patients. Besides, the expression level of hsa_tsr016141 in GC patients decreased significantly after the operation (P<0.0001). Conclusions Serum hsa_tsr016141 has good stability and specificity and can be used for dynamic monitoring of GC patients, suggesting that serum hsa_tsr016141 can be a novel biomarker for GC diagnosis and postoperative monitoring.
Collapse
Affiliation(s)
- Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Bo Liang
- Department of Medical Ultrasonics, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
42
|
Li J, Jin L, Gao Y, Gao P, Ma L, Zhu B, Yin X, Sui S, Chen S, Jiang Z, Zhu C. Low expression of tRF-Pro-CGG predicts poor prognosis in pancreatic ductal adenocarcinoma. J Clin Lab Anal 2021; 35:e23742. [PMID: 33675071 PMCID: PMC8128309 DOI: 10.1002/jcla.23742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS tRFs (tRNA-derived RNA fragments) have been reported to facilitate cancer progression in multiple cancers. However, their role in pancreatic ductal adenocarcinoma (PDAC) remains to be determined. In this study, we mainly investigated the expression of tRF-Pro-CGG in pancreatic ductal adenocarcinoma and evaluated its relationship with the clinicopathology and survival time of patients. METHODS 37 cases of pancreatic ductal adenocarcinoma, and 15 cases of normal pancreatic tissues were collected which were resected by surgery from January 2017 to June 2020 from the Department of Hepatobiliary and Pancreatic surgery of Changzhou second people's Hospital. The expression of tRF-Pro-CGG in paraffin-embedded tissues was detected by fluorescence in situ hybridization (FISH). The clinical data including age, sex, tumor location, tumor diameter, tumor clinical stage (TNM stage), depth of invasion, regional lymph node metastasis, serum CA199, and serum CEA were collected and analyzed retrospectively, whether the expression tRF-Pro-CGG was correlation with the pathological parameters and clinical outcomes of patients. RESULTS The expression level of tRF-Pro-CGG was significantly downregulated in PDAC and associated with an advanced TNM stage (P=0.000) and the N stage (P=0.000) of patients. More importantly, low tRF-Pro-CGG expression predicted poor survival in PDAC patients (P=0.003). CONCLUSIONS TRF-Pro-CGG is under-expressed in PDAC and is associated with short clinical survival and poor prognosis. tRF-Pro-CGG is an independent prognostic factor, which highlights its role as a potential biomarker for PDAC progression and therapy.
Collapse
Affiliation(s)
- Jun Li
- Dalian Medical UniversityDalianChina
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Lei Jin
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Yuan Gao
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Peng Gao
- Dalian Medical UniversityDalianChina
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Le Ma
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Bei Zhu
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Xu Yin
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Shizhen Sui
- Dalian Medical UniversityDalianChina
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Shuai Chen
- Dalian Medical UniversityDalianChina
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | | | - Chunfu Zhu
- Department of General SurgeryThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
43
|
Mo D, He F, Zheng J, Chen H, Tang L, Yan F. tRNA-Derived Fragment tRF-17-79MP9PP Attenuates Cell Invasion and Migration via THBS1/TGF-β1/Smad3 Axis in Breast Cancer. Front Oncol 2021; 11:656078. [PMID: 33912465 PMCID: PMC8072113 DOI: 10.3389/fonc.2021.656078] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
tRNA derivatives have been identified as a new kind of potential biomarker for cancer. Previous studies have identified that there were 30 differentially expressed tRNAs derivatives in breast cancer tissue with the high-throughput sequencing technique. This study aimed to investigate the possible biological function and mechanism of tRNA derivatives in breast cancer cells. One such tRF, a 5'-tRF fragment of tRF-17-79MP9PP (tRF-17) was screened in this study, which is processed from the mature tRNA-Val-AAC and tRNA-Val-CAC. tRF-17 with significantly low expression in breast cancer tissues and serum. The level of tRF-17 differentiated breast cancer from healthy controls with sensitivity of 70.4% and specificity of 68.4%. Overexpression of tRF-17 suppressed cells malignant activity. THBS1 (Thrombospondin-1) as a downstream target of tRF-17, and reduction of THBS1 expression also partially recovered the effects of tRF-17 inhibition on breast cancer cell viability, invasion and migration. Besides, THBS1, TGF-β1, Smad3, p-Smad3 and epithelial-to-mesenchymal transition related genes N-cadherin, MMP3, MMP9 were markedly down-regulated in tRF-17 overexpressing cells. Moreover, tRF-17 attenuated the THBS1-mediated TGF-β1/Smad3 signaling pathway in breast cancer cells. In general, the tRF-17/THBS1/TGF-β1/smad3 axis elucidates the molecular mechanism of breast cancer cells invasion and migration and could lead to a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Dongping Mo
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fang He
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Junyu Zheng
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Huanhuan Chen
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li Tang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
44
|
Shen Y, Xie Y, Yu X, Zhang S, Wen Q, Ye G, Guo J. Clinical diagnostic values of transfer RNA-derived fragment tRF-19-3L7L73JD and its effects on the growth of gastric cancer cells. J Cancer 2021; 12:3230-3238. [PMID: 33976732 PMCID: PMC8100793 DOI: 10.7150/jca.51567] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background and aim: Medicine has made great progress, but gastric cancer is still one of the most common malignant tumors worldwide. tRNA-derived fragments (tRFs), a type of small non-coding RNA, have been found to play important roles in cancers. Due to an abundance of modifications, tRFs have the potential to serve as cancer biomarkers. However, the relationship between tRFs and gastric cancer is still largely unclear. We have identified a new tRF, tRF-19-3L7L73JD, found to be expressed at a lower level in gastric cancer patients than healthy controls. Our study aims to explore the diagnostic value of tRF-19-3L7L73JD screening in gastric cancer and to investigate its effects on the growth of gastric cancer cells. Methods: Using quantitative reverse transcription-polymerase chain reaction, we identified tRF-3L7L73JD as differentially expressed in plasma from gastric cancer patients compared to healthy controls. We measured tRF-3L7L73JD levels in plasma from 40 gastric cancer patients and healthy controls. Furthermore, we tested another cohort containing 89 gastric cancer patients and 98 healthy controls to validate our findings. Next, we analyzed the relationship between levels of tRF-19-3L7L73JD in plasma and clinicopathological data of gastric cancer patients, and then evaluated the effects of tRF-19-3L7L73JD on gastric cancer cell growth. Cell proliferation was measured by the Cell Counting Kit‐8 and clone formation experiments after transfer with tRF-19-3L7L73JD mimics. The changes in cell migration ability were explored through the scratch and Transwell experiments. Finally, we explored changes in apoptosis and cell cycle by flow cytometry. Results: tRF-19-3L7L73JD showed lower expression in the tested gastric cancer patients. In the validation cohort tRF-19-3L7L73JD was also expressed at low levels in the pre-operative plasma group compared with healthy plasma and post-operative plasma groups. Additionally, a comparison of gastric cancer cell lines with normal gastric epithelial cell lines produced the same result. We found that tRF-19-3L7L73JD expression in patients was related to tumor size. The area under the curve (AUC) was 0.6230, with sensitivity and specificity of 0.4045 and 0.7959, respectively. Cellular function studies revealed that tRF-19-3L7L73JD inhibited cell proliferation and migration, induced apoptosis, and arrested cells at G0/G1 phases, suggesting it may suppress the development of gastric cancer. Conclusion: The results suggest that tRF-19-3L7L73JD may be useful as a biomarker of gastric cancer.
Collapse
Affiliation(s)
- Yijing Shen
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.,Ningbo No. 1 Hospital Affiliated to Ningbo University School of Medicine
| | - Shuangshuang Zhang
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Qiuyan Wen
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo 315020, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.,Institute of Digestive Diseases of Ningbo University, Ningbo 315020, China
| |
Collapse
|
45
|
Tong L, Zhang W, Qu B, Zhang F, Wu Z, Shi J, Chen X, Song Y, Wang Z. The tRNA-Derived Fragment-3017A Promotes Metastasis by Inhibiting NELL2 in Human Gastric Cancer. Front Oncol 2021; 10:570916. [PMID: 33665159 PMCID: PMC7921707 DOI: 10.3389/fonc.2020.570916] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new classification of small non-coding RNAs (sncRNAs) derived from the specific cleavage of precursors and mature tRNAs. Accumulating recent evidence has shown that tRFs are frequently abnormal in several cancers. Nevertheless, the role of tRFs in gastric cancer and its mechanism remain unclear. In this study, we found abnormal expression of tRF-3017A (derived from tRNA-Val-TAC) in gastric cancer tissues and cell lines and confirmed its effect on promoting the invasion and migration of gastric cancer cells through functional experiments in vitro. Analysis of clinicopathologic data showed patients with higher tRF-3017A were associated with significantly higher lymph node metastasis. Mechanistic investigation implies that tRF-3017A regulates the tumor suppressor gene NELL2 through forming the RNA-induced silencing complex (RISC) with Argonaute (AGO) proteins. In this study, we found that higher tRF-3017A were associated with significantly higher lymph node metastasis in gastric cancer patients and the tRF-3017A may play a role in promoting the migration and invasion of gastric cancer cells by silencing tumor suppressor NELL2.
Collapse
Affiliation(s)
- Linhao Tong
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weixu Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowan Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Wu Y, Yang X, Jiang G, Zhang H, Ge L, Chen F, Li J, Liu H, Wang H. 5'-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med 2021; 13:20. [PMID: 33563322 PMCID: PMC7874477 DOI: 10.1186/s13073-021-00833-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND tRNA-derived small RNAs (tDRs), which are widely distributed in human tissues including blood and urine, play an important role in the progression of cancer. However, the expression of tDRs in colorectal cancer (CRC) plasma and their potential diagnostic values have not been systematically explored. METHODS The expression profiles of tDRs in plasma of CRC and health controls (HCs) are investigated by small RNA sequencing. The level and diagnostic value of 5'-tRF-GlyGCC are evaluated by quantitative PCR in plasma samples from 105 CRC patients and 90 HCs. The mechanisms responsible for biogenesis of 5'-tRF-GlyGCC are checked by in vitro and in vivo models. RESULTS 5'-tRF-GlyGCC is dramatically increased in plasma of CRC patients compared to that of HCs. The area under curve (AUC) for 5'-tRF-GlyGCC in CRC group is 0.882. The combination of carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA199) with 5'-tRF-GlyGCC improves the AUC to 0.926. Consistently, the expression levels of 5'-tRF-GlyGCC in CRC cells and xenograft tissues are significantly greater than that in their corresponding controls. Blood cells co-cultured with CRC cells or mice xenografted with CRC tumors show increased levels of 5'-tRF-GlyGCC. In addition, we find that the increased expression of 5'-tRF-GlyGCC is dependent on the upregulation of AlkB homolog 3 (ALKBH3), a tRNA demethylase which can promote tRNA cleaving to generate tDRs. CONCLUSIONS The level of 5'-tRF-GlyGCC in plasma is a promising diagnostic biomarker for CRC diagnosis.
Collapse
MESH Headings
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/blood
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/genetics
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Colorectal Neoplasms/blood
- Colorectal Neoplasms/diagnosis
- Colorectal Neoplasms/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred BALB C
- RNA, Transfer/blood
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yingmin Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Haisheng Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Lichen Ge
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Feng Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jiexin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
47
|
Zong T, Yang Y, Zhao H, Li L, Liu M, Fu X, Tang G, Zhou H, Aung LHH, Li P, Wang J, Wang Z, Yu T. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif 2021; 54:e12977. [PMID: 33507586 PMCID: PMC7941233 DOI: 10.1111/cpr.12977] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
tsRNAs are small fragments of RNAs with specific lengths that are generated by particular ribonucleases, such as dicer and angiogenin (ANG), clipping on the rings of transfer RNAs (tRNAs) in specific cells and tissues under specific conditions. Depending on where the splicing site is, tsRNAs can be segmented into two main types, tRNA‐derived stress‐induced RNAs (tiRNAs) and tRNA‐derived fragments (tRFs). Many studies have shown that tsRNAs are functional molecules, not the random degradative products of tRNAs. Notably, due to their regulatory mechanism in regulating mRNA stability, transcription, ribosomal RNA (rRNA) synthesis and RNA reverse transcription, tsRNAs are significantly involved in the cell function, such as cell proliferation, migration, cycle and apoptosis, as well as the occurrence and development of a variety of diseases. In addition, tsRNAs may represent a new generation of clinical biomarkers or therapeutic targets because of their stable structures, high conservation and widely distribution, particularly in the peripheral tissues, bodily fluids and exosomes. In this review, we describe the generation, function and mechanism of tsRNAs and illustrate the current research progress of tsRNAs in various diseases, highlight their potentials as biomarkers and therapeutic targets in clinical application. Although our understanding of tsRNAs is still in infancy, the application prospects shown in this field deserve further exploration.
Collapse
Affiliation(s)
- Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Vascular surgery, Qingdao Hiser Medical Center, Qingdao, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Zhou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Yu X, Xie Y, Zhang S, Song X, Xiao B, Yan Z. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Am J Cancer Res 2021; 11:461-469. [PMID: 33391486 PMCID: PMC7681095 DOI: 10.7150/thno.51963] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new category of regulatory noncoding RNAs with distinct biological functions in cancers and stress-induced diseases. Herein, we first summarize the classification and biogenesis of tRFs. tRFs are produced from pre-tRNAs or mature tRNAs. Based on the incision loci, tRFs are classified into several types: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. Some tRFs participate in posttranscriptional regulation through microRNA-like actions or by displacing RNA binding proteins and regulating protein translation by promoting ribosome biogenesis or interfering with translation initiation. Other tRFs prevent cell apoptosis by binding to cytochrome c or promoting virus replication. More importantly, the dysregulation of tRFs has important clinical implications. They are potential diagnostic and prognostic biomarkers of gastric cancer, liver cancer, breast cancer, prostate cancer, and chronic lymphocytic leukemia. tRFs may become new therapeutic targets for the treatment of diseases such as hepatocellular carcinoma and respiratory syncytial virus infection. Finally, we point out the existing problems and future research directions associated with tRFs. In conclusion, the current progress in the research of tRFs reveals that they have important clinical implications and may constitute novel molecular therapeutic targets for modulating pathological processes.
Collapse
|
49
|
Shen Y, Yu X, Ruan Y, Li Z, Xie Y, Yan Z, Guo J. Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor. Int J Med Sci 2021; 18:1570-1579. [PMID: 33746573 PMCID: PMC7976566 DOI: 10.7150/ijms.53220] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/17/2021] [Indexed: 12/14/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) have been found to play important roles in the occurrence and development of cancers. However, the tsRNA profile in gastric cancer is unknown. In this study, we aimed to identify the global tsRNA profile in plasma from gastric cancer patients and elucidate the role of tRF-33-P4R8YP9LON4VDP in gastric cancer. Differentially expressed tsRNAs in the plasma of gastric cancer patients and healthy controls were investigated using RNA sequencing. The expression levels of tRF-33-P4R8YP9LON4VDP in the plasma of gastric cancer patients, healthy controls and gastric cancer cell lines were first detected by quantitative reverse transcription-polymerase chain reaction. The effects of tRF-33-P4R8YP9LON4VDP overexpression or downregulation in gastric cancer cells on proliferation, migration, apoptosis, and cell cycle were analyzed using the Cell Counting Kit-8, scratch assay, Transwell assay, and flow cytometry, respectively. There were 21 upregulated and 46 downregulated tsRNAs found in plasma from gastric cancer patients. The significantly upregulated tsRNAs included tRF-18-S3M83004, tRF-31-PNR8YP9LON4VD, tRF-19-3L7L73JD, tRF-33-P4R8YP9LON4VDP, tRF-31-PER8YP9LON4VD, tRF-18-MBQ4NKDJ, and tRF-31-PIR8YP9LON4VD. The significantly downregulated tsRNAs included tRF-41-YDLBRY73W0K5KKOVD, tRF-18-07QSNHD2, tRF-28-86J8WPMN1E0J, tRF-29-86V8WPMN1EJ3, tRF-31-6978WPRLXN4VE, tRF-30-MIF91SS2P46I, tRF-26-MI7O3B1NR8E, tRF-30-RRJ89O9NF5W8, tRF-26-XIP2801MK8E, and tRF-35-V0J8O9YEKPRS93, In vitro studies showed that tRF-33-P4R8YP9LON4VDP inhibited proliferation of gastric cancer cells. In conclusion, tsRNAs such as tRF-33-P4R8YP9LON4VDP could serve as a novel diagnostic biomarker and target for gastric cancer therapeutics.
Collapse
Affiliation(s)
- Yijing Shen
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.,Ningbo No. 1 Hospital Affiliated to Ningbo University School of Medicine
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhilong Yan
- Ningbo No. 1 Hospital Affiliated to Ningbo University School of Medicine
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
50
|
Shan S, Wang Y, Zhu C. A comprehensive expression profile of tRNA-derived fragments in papillary thyroid cancer. J Clin Lab Anal 2020; 35:e23664. [PMID: 33332661 PMCID: PMC7957983 DOI: 10.1002/jcla.23664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background The incidence of thyroid cancer has been on a rise. Papillary thyroid cancer (PTC) is the most common type of malignant thyroid tumor and accounts for approximately 85% of thyroid cancer cases. Although the genetic background of PTC has been studied extensively, relatively little is known about the role of small noncoding RNAs (sncRNAs) in PTC. tRNA‐derived fragments (tRFs) represent a newly discovered class of sncRNAs that exist in many species and play key roles in various biological processes. Methods In this study, we used high‐throughput next‐generation sequencing technology to analyze the expression of tRFs in samples from PTC tissues and normal tissues. We selected four tRFs to perform qPCR to determine the expression levels of these molecules and make bioinformatic predictions. Results We identified 53 unique tRFs and transfer RNA halves (tsRNAs). The 10 most upregulated tRFs and tsRNAs were tRF‐39‐I6D3887S1RMH5MI2, tRF‐21‐2E489B3RB, tRF‐18‐JMRPFQDY, tRF‐17‐202L2YF, tRF‐17‐VBY9PYJ, tRF‐18‐YRRHQFD2, tRF‐21‐WE884U1DD, tRF‐41‐EX2Z10I9BZBZOS4YB, tRF‐39‐HPDEXK7S1RNS9MI2, and tRF‐20‐1SS2P46I. The 10 most downregulated tRFs and tsRNAs were tRF‐31‐HQ9M739P8WQ0B, tRF‐43‐5YXENDBP1IUUK7VZV, tRF‐38‐RZYQHQ9M739P8WD8, tRF‐25‐9M739P8WQ0, tRF‐33‐V6Z3M8ZLSSXUD6, tRF‐27‐MY73H3RXPLM, tRF‐26‐DBNIB9I1KQ0, tRF‐38‐Z9HMI8W47W1R7HX, tRF‐40‐Z6V6Z3M8ZLSSXUOL, and tRF‐39‐YQHQ9M739P8WQ0EB. qPCR verification of cell lines and tissue samples yielded results consistent with the sequencing analysis. As tRF‐39 expression showed the maximum difference between PTC cells and normal cells, we chose this tRF to predict targets and perform functional tRF and tsRNA enrichment analysis. Conclusion In this study, we provided a comprehensive catalog of tRFs involved in PTC and assessed the abnormal expression of these fragments. Through qPCR verification, tRF‐39‐0VL8K87SIRMM12E2 was found to be the most significantly upregulated tRF. Further tRF and enrichment analysis revealed that tRF‐39 was mostly enriched in the “metabolic pathways.” These preliminary findings can be used as the basis for further research studies based on the functional role of tRFs in patients with PTC.
Collapse
Affiliation(s)
- Shiting Shan
- Nanjing Medical University, Nanjing, China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuting Wang
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.,Dalian Medical University, Dalian, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|