1
|
Du S, Liu J, Ning Y, Yin M, Xu M, Liu Z, Liu K. The piR-31115-PIWIL4 complex promotes the migration of the triple-negative breast cancer cell lineMDA-MB-231 by suppressing HSP90AA1 degradation. Gene 2025; 942:149255. [PMID: 39842649 DOI: 10.1016/j.gene.2025.149255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND P-element-induced wimpy testis (PIWI) proteins bind to PIWI-interactingRNAs (piRNAs) to form the piRNA/PIWI complex, which affects protein regulation. PIWIL4, a member of the PIWI family, has been demonstrated in recent studies to promote the migration of triple-negative breast cancer (TNBC) cell line MDA-MB-231. However, the molecular mechanisms underlying cell migration remain obscure. METHODS RNA immunoprecipitation and real-time PCR assays were conducted to detect piRNAs binding to PIWIL4. piRNA mimics and inhibitors were employed to modify piRNA expression in MDA-MB-231 cells. Cell migration assays were carried out using transwell inserts. Co-immunoprecipitation (co-IP) combined with mass spectrometry (MS) was performed to identify the proteins that interacted with PIWIL4 under the regulation of piRNA. Western blotting (WB) was utilised to detect the regulatory relationship between the piRNA/PIWIL4 complexes and the mutually-binding proteins. RESULTS RNA Immunoprecipitation (RIP) results revealed that PIWIL4 bound to piR-31115 in the MDA-MB-231 cells. Transwell assays demonstrated that piR-31115 promoted the migration of MDA-MB-231 cells via PIWIL4. Co-IP coupled with MS results showed that piR-31115 promoted the binding of PIWIL4 to HSP90AA1 in MDA-MB-231 cells, and this interaction protected HSP90AA1 from degradation. Knockdown of HSP90AA1 in MDA-MB-231 cells attenuated the promoting effects of piR-31115/PIWIL4 on cell migration. CONCLUSIONS Our findings cast light on a novel molecular pathway through which piR-31115 promotes the migration of MDA-MB-231 TNBC cells by regulating the interaction between PIWIL4 and HSP90AA1.
Collapse
Affiliation(s)
- Shanmei Du
- College of Medical Technology, Zibo Vocational Institute, Zibo, Shandong Province 255300, China
| | - Jiaqi Liu
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, Shandong Province 255036, China
| | - Yanfeng Ning
- Department of Critical Care Medicine, Shandong Public Health Clinical Center, Shandong University, Shandong 250013, China
| | - Mengmei Yin
- School of Medicine, Sehan University, Chonnam 58447, Republic of Korea
| | - Miao Xu
- Laboratory Medicine, The Third People's Hospital of Zhoucun District, Zibo, Shandong 255300, China
| | - Zhong Liu
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong Province 255036, China.
| | - Kui Liu
- College of Medical Technology, Zibo Vocational Institute, Zibo, Shandong Province 255300, China; Center of Translational Medicine, Zibo Central Hospital, Zibo, Shandong Province 255036, China.
| |
Collapse
|
2
|
Yue K, Zhang T, Wang H, Wang B, Mu Y, Li H. MAGI2-AS3 hypermethylated in promoter region promotes migration and invasion of head and neck squamous cell carcinoma via miRNA-31-5p/AR axis. Transl Oncol 2025; 52:102223. [PMID: 39644822 PMCID: PMC11667182 DOI: 10.1016/j.tranon.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024] Open
Abstract
Molecular regulatory mechanism of MAGI2-AS3 in HNSCC is not yet mature.In this study, we analyzed the methylation level of MAGI2-AS3 promoter and its downstream miR-31-5p/AR axis by bioinformatics methods. qRT-PCR was used to detect the mRNA expression level of each gene, and western blot was used to detect the expression level of AR proteins in tissues and cells. CCK-8, colony formation, wound healing, and cellular invasion assays were used to detect the HNSCC cell proliferation, migration, and invasion. Dual luciferase and RIP assays were performed to validate the binding relationship between genes. The effect of MAGI2-AS3 on HNSCC progression was verified in nude mice in vivo. The low expression of MAGI2-AS3 in HNSCC was caused by hypermethylation of MAGI2-AS3, which could regulate the target of miR-31-5p by sponge adsorption of miR-31-5p, and miR-31-5p could inhibit the expression of AR by directly targeting AR. Thus, MAGI2-AS3 could inhibit the proliferation, migration, and invasion of HNSCC through the miR-31-5p/AR axis. This provided a theoretical basis that MAGI2-AS3 was a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Kai Yue
- Department of Oncology, Nanyang Central Hospital, Nanyang 473005, China
| | - Ting Zhang
- Department of Oncology, Nanyang Central Hospital, Nanyang 473005, China
| | - Huanhuan Wang
- Department of Oncology, Nanyang Central Hospital, Nanyang 473005, China
| | - Bo Wang
- Department of Oncology, Nanyang Central Hospital, Nanyang 473005, China
| | - Yalin Mu
- Department of Oncology, Nanyang Central Hospital, Nanyang 473005, China
| | - Hui Li
- Department of Scientific Research, Nanyang Central Hospital, Nanyang 473005, China.
| |
Collapse
|
3
|
Ren S, Lee W, Park B, Han K. Constructing lncRNA-miRNA-mRNA networks specific to individual cancer patients and finding prognostic biomarkers. BMC Genom Data 2024; 25:67. [PMID: 38978021 PMCID: PMC11232193 DOI: 10.1186/s12863-024-01251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The competitive endogenous RNA (ceRNA) hypothesis suggests that microRNAs (miRNAs) mediate a regulatory relation between long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) which share similar miRNA response elements (MREs) to bind to the same miRNA. Since the ceRNA hypothesis was proposed, several studies have been conducted to construct a network of lncRNAs, miRNAs and mRNAs in cancer. However, most cancer-related ceRNA networks are intended for representing a general relation of RNAs in cancer rather than for a patient-specific relation. Due to the heterogeneous nature of cancer, lncRNA-miRNA-mRNA interactions can vary in different patients. RESULTS We have developed a new method for constructing a ceRNA network of lncRNAs, miRNAs and mRNAs, which is specific to an individual cancer patient and for finding prognostic biomarkers consisting of lncRNA-miRNA-mRNA triplets. We tested our method on extensive data sets of three types of cancer (breast cancer, liver cancer, and lung cancer) and obtained potential prognostic lncRNA-miRNA-mRNA triplets for each type of cancer. CONCLUSIONS Analysis of expression patterns of the RNAs involved in the triplets and survival rates of cancer patients revealed several interesting findings. First, even for the same cancer type, prognostic lncRNA-miRNA-mRNA triplets can be different depending on whether lncRNA and mRNA show opposite or similar expression patterns. Second, prognostic lncRNA-miRNA-mRNA triplets are often more predictive of survival rates than RNA pairs or individual RNAs. Our approach will be useful for constructing patient-specific lncRNA-miRNA-mRNA networks and for finding prognostic biomarkers from the networks.
Collapse
Affiliation(s)
- Shulei Ren
- Department of Computer Engineering, Inha University, 22212, Incheon, South Korea
| | - Wook Lee
- Department of Computer Engineering, Inha University, 22212, Incheon, South Korea
| | - Byungkyu Park
- Department of Computer Engineering, Inha University, 22212, Incheon, South Korea
| | - Kyungsook Han
- Department of Computer Engineering, Inha University, 22212, Incheon, South Korea.
| |
Collapse
|
4
|
Zhang Z, Yi Y, Wang Z, Zhang H, Zhao Y, He R, Luo Y, Cui Z. LncRNA MAGI2-AS3-Encoded Polypeptide Restrains the Proliferation and Migration of Breast Cancer Cells. Mol Biotechnol 2024; 66:1409-1423. [PMID: 37358745 DOI: 10.1007/s12033-023-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Accumulating articles have reported the coding potential of long non-coding RNAs (lncRNAs). However, only a few lncRNAs-encoded peptides have been studied. Breast cancer (BRCA) progression-related gene modules were determined by weighted gene co-expression network analysis (WGCNA). Cell viability, proliferation, and migration capacities were assessed by Cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays. Immunofluorescence (IF) assay was implemented to observe protein expression. Co-immunoprecipitation (Co-IP) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) were employed to analyze MAGI2 antisense RNA 3 (MAGI2-AS3)-ORF5-interacted proteins. WGCNA identified that MEpurple and MEblack modules were significantly negatively correlated with T stage in BRCA patients. MAGI2-AS3 was screened as one of the differentially expressed (DE) lncRNAs with translational potential in MEblack and MEpurple modules in BRCA. The data in The Cancer Genome Atlas (TCGA) uncovered that MAGI2-AS3 abundance was significantly decreased in invasive BRCA patients, and it had high diagnostic and prognostic values. MAGI2-AS3-ORF5 notably restrained BRCA cell viability, proliferation, and migration. Mechanically, MAGI2-AS3-ORF5 might affect the progression of BRCA cells by binding to extracellular matrix (ECM)-related proteins. MAGI2-AS3-ORF5 played an anti-tumor role by inhibiting BRCA cell viability, proliferation, and migration. MAGI2-AS3-ORF5 might modulate BRCA cell migration through ECM-associated proteins.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanli Yi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Zai Wang
- Science and Education Division, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Haoyun Zhang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanchun Zhao
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Ruijing He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yan Luo
- Department of Reproductive Genetic, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Zhiqiang Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
5
|
Farias E, Terrematte P, Stransky B. Machine Learning Gene Signature to Metastatic ccRCC Based on ceRNA Network. Int J Mol Sci 2024; 25:4214. [PMID: 38673800 PMCID: PMC11049832 DOI: 10.3390/ijms25084214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 04/28/2024] Open
Abstract
Clear-cell renal-cell carcinoma (ccRCC) is a silent-development pathology with a high rate of metastasis in patients. The activity of coding genes in metastatic progression is well known. New studies evaluate the association with non-coding genes, such as competitive endogenous RNA (ceRNA). This study aims to build a ceRNA network and a gene signature for ccRCC associated with metastatic development and analyze their biological functions. Using data from The Cancer Genome Atlas (TCGA), we constructed the ceRNA network with differentially expressed genes, assembled nine preliminary gene signatures from eight feature selection techniques, and evaluated the classification metrics to choose a final signature. After that, we performed a genomic analysis, a risk analysis, and a functional annotation analysis. We present an 11-gene signature: SNHG15, AF117829.1, hsa-miR-130a-3p, hsa-mir-381-3p, BTBD11, INSR, HECW2, RFLNB, PTTG1, HMMR, and RASD1. It was possible to assess the generalization of the signature using an external dataset from the International Cancer Genome Consortium (ICGC-RECA), which showed an Area Under the Curve of 81.5%. The genomic analysis identified the signature participants on chromosomes with highly mutated regions. The hsa-miR-130a-3p, AF117829.1, hsa-miR-381-3p, and PTTG1 were significantly related to the patient's survival and metastatic development. Additionally, functional annotation resulted in relevant pathways for tumor development and cell cycle control, such as RNA polymerase II transcription regulation and cell control. The gene signature analysis within the ceRNA network, with literature evidence, suggests that the lncRNAs act as "sponges" upon the microRNAs (miRNAs). Therefore, this gene signature presents coding and non-coding genes and could act as potential biomarkers for a better understanding of ccRCC.
Collapse
Affiliation(s)
- Epitácio Farias
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte (UFRN), Natal 59078-400, Brazil; (E.F.); (B.S.)
| | - Patrick Terrematte
- Metropolis Digital Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal 59078-400, Brazil
| | - Beatriz Stransky
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte (UFRN), Natal 59078-400, Brazil; (E.F.); (B.S.)
- Biomedical Engineering Department, Center of Technology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| |
Collapse
|
6
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Slanař O. Long non-coding RNAs PTENP1, GNG12-AS1, MAGI2-AS3 and MEG3 as tumor suppressors in breast cancer and their associations with clinicopathological parameters. Cancer Biomark 2024; 40:61-78. [PMID: 38277283 PMCID: PMC11191509 DOI: 10.3233/cbm-230259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Breast cancer is the most commonly occurring cancer worldwide and is the main cause of death from cancer in women. Novel biomarkers are highly warranted for this disease. OBJECTIVE Evaluation of novel long non-coding RNAs biomarkers for breast cancer. METHODS The study comprised the analysis of the expression of 71 candidate lncRNAs via screening, six of which (four underexpressed, two overexpressed) were validated and analyzed by qPCR in tumor tissues associated with NST breast carcinomas, compared with the benign samples and with respect to their clinicopathological characteristics. RESULTS The results indicated the tumor suppressor roles of PTENP1, GNG12-AS1, MEG3 and MAGI2-AS3. Low levels of both PTENP1 and GNG12-AS1 were associated with worsened progression-free and overall survival rates. The reduced expression of GNG12-AS1 was linked to the advanced stage. A higher grade was associated with the lower expression of PTENP1, GNG12-AS1 and MAGI2-AS3. Reduced levels of both MEG3 and PTENP1 were linked to Ki-67 positivity. The NRSN2-AS1 and UCA1 lncRNAs were overexpressed; higher levels of UCA1 were associated with multifocality. CONCLUSIONS The results suggest that the investigated lncRNAs may play important roles in breast cancer and comprise a potential factor that should be further evaluated in clinical studies.
Collapse
Affiliation(s)
- Luděk Záveský
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
- General University Hospital, Prague, Czech Republic
- First Faculty of Medicine, Institute of Pharmacology, Charles University, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- University Hospital Brno, Brno, Czech Republic
- Department of Obstetrics and Gynecology, Masaryk University, Brno, Czech Republic
| | - Luboš Minář
- University Hospital Brno, Brno, Czech Republic
- Department of Obstetrics and Gynecology, Masaryk University, Brno, Czech Republic
| | - Milada Kohoutová
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
- General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- General University Hospital, Prague, Czech Republic
- First Faculty of Medicine, Institute of Pharmacology, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Chen Z, Zhou J, Liu Y, Ni H, Zhou B. Targeting MAGI2-AS3-modulated Akt-dependent ATP-binding cassette transporters as a possible strategy to reverse temozolomide resistance in temozolomide-resistant glioblastoma cells. Drug Dev Res 2023; 84:1482-1495. [PMID: 37551766 DOI: 10.1002/ddr.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Drug resistance is a major impediment to the successful treatment of glioma. This study aimed to elucidate the effects and mechanisms of the long noncoding RNA membrane-associated guanylate kinase inverted-2 antisense RNA 3 (MAGI2-AS3) on temozolomide (TMZ) resistance in glioma cells. MAGI2-AS3 expression in TMZ-resistant glioblastoma (GBM) cells was analyzed using the Gene Expression Omnibus data set GSE113510 and quantitative real-time PCR (qRT-PCR). Cell viability and TMZ half-maximal inhibitory concentration values were determined using the MTT assay. Apoptosis and cell cycle distribution were evaluated using flow cytometry. The expression of multidrug resistance 1 (MDR1), ATP-binding cassette superfamily G member 2 (ABCG2), protein kinase B (Akt), and phosphorylated Akt was detected using qRT-PCR and/or western blot analysis. MAGI2-AS3 was expressed at low levels in TMZ-resistant GBM cells relative to that in their parental cells. MAGI2-AS3 re-expression alleviated TMZ resistance in TMZ-resistant GBM cells. MAGI2-AS3 overexpression also accelerated TMZ-induced apoptosis and G2/M phase arrest. Mechanistically, MAGI2-AS3 overexpression reduced MDR1 and ABCG2 expression and inhibited the Akt pathway, whereas Akt overexpression abrogated the reduction in MDR1 and ABCG2 expression induced by MAGI2-AS3. Moreover, activation of the Akt pathway inhibited the effects of MAGI2-AS3 on TMZ resistance. MAGI2-AS3 inhibited tumor growth and enhanced the suppressive effect of TMZ on glioma tumorigenesis in vivo. In conclusion, MAGI2-AS3 reverses TMZ resistance in glioma cells by inactivating the Akt pathway.
Collapse
Affiliation(s)
- Zhongjun Chen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Jingmin Zhou
- Emergency Department, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Yu Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Yao Q, Zhang X, Wei C, Chen H, Xu Q, Chen J, Chen D. Prognostic prediction and immunotherapy response analysis of the fatty acid metabolism-related genes in clear cell renal cell carcinoma. Heliyon 2023; 9:e17224. [PMID: 37360096 PMCID: PMC10285252 DOI: 10.1016/j.heliyon.2023.e17224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a common urinary cancer. Although diagnostic and therapeutic approaches for ccRCC have been improved, the survival outcomes of patients with advanced ccRCC remain unsatisfactory. Fatty acid metabolism (FAM) has been increasingly recognized as a critical modulator of cancer development. However, the significance of the FAM in ccRCC remains unclear. Herein, we explored the function of a FAM-related risk score in the stratification and prediction of treatment responses in patients with ccRCC. Methods First, we applied an unsupervised clustering method to categorize patients from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets into subtypes and retrieved FAM-related genes from the MSigDB database. We discern differentially expressed genes (DEGs) among different subtypes. Then, we applied univariate Cox regression analysis followed by least absolute shrinkage and selection operator (LASSO) linear regression based on DEGs expression to establish a FAM-related risk score for ccRCC. Results We stratified the three ccRCC subtypes based on FAM-related genes with distinct overall survival (OS), clinical features, immune infiltration patterns, and treatment sensitivities. We screened nine genes from the FAM-related DEGs in the three subtypes to establish a risk prediction model for ccRCC. Nine FAM-related genes were differentially expressed in the ccRCC cell line ACHN compared to the normal kidney cell line HK2. High-risk patients had worse OS, higher genomic heterogeneity, a more complex tumor microenvironment (TME), and elevated expression of immune checkpoints. This phenomenon was validated in the ICGC cohort. Conclusion We constructed a FAM-related risk score that predicts the prognosis and therapeutic response of ccRCC. The close association between FAM and ccRCC progression lays a foundation for further exploring FAM-related functions in ccRCC.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China
| | - Xiuyuan Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China
| | - Chunchun Wei
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China
| | - Hongjun Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China
| | - Qiannan Xu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China
| | - Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China
| |
Collapse
|
9
|
Taheri M, Askari A, Hussen BM, Ghafouri-Fard S, Rashnoo F. Role of MAGI2-AS3 in malignant and non-malignant disorders. Pathol Res Pract 2023; 246:154530. [PMID: 37196468 DOI: 10.1016/j.prp.2023.154530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
MAGI2 Antisense RNA 3 (MAGI2-AS3) is a long non-coding RNA (lncRNA) transcribed from a locus on 7q21.11. This lncRNA has been described to be abnormally expressed in a variety of malignancies in correlation with many clinical characteristics. Moreover, it might participate in the pathogenesis of congenital diaphragmatic hernia, Alzheimer's disease and intervertebral disc degeneration. Mechanistically, MAGI2-AS3 can serve as a molecular sponge for miR-142-3p, miR-424-5p, miR-15b, miR-233, miR-452-5p, miR-629-5p, miR-25, miR-155, miR-23a-3p, miR-519c-3p, miR-374b-5p, miR-374a, miR-31-5p, miR-3163, miR-525-5p, miR-15-5p, miR-374a-5p, miR-374b-5p, miR-218-5p, miR-141-3p and miR-200a-3p to regulate expression of their mRNA targets. The current review summarizes the role of MAGI2-AS3 in different disorders to highlight its importance in their pathophysiology.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Fariborz Rashnoo
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
10
|
Yang G, Li T, Liu J, Quan Z, Liu M, Guo Y, Wu Y, Ou L, Wu X, Zheng Y. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics 2023; 115:110599. [PMID: 36889366 DOI: 10.1016/j.ygeno.2023.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Prostate cancer (PCa) is a common malignant cancer in elderly males in Western countries. Whole-genome sequencing confirmed that long non-coding RNAs (lncRNAs) are frequently altered in castration-resistant prostate cancer (CRPC) and promote drug resistance to cancer therapy. Therefore, elucidating the prospective role of lncRNAs in PCa oncogenesis and progression is of remarkable clinical significance. In this study, gene expression in prostate tissues was determined using RNA-sequencing datasets, and the gene diagnostic and prognostic values of CRPC were analyzed using bioinformatics. Further, the expression levels and clinical significance of MAGI2 Antisense RNA 3 (MAGI2-AS3) in PCa clinical specimens were evaluated. The tumor-suppressive activity of MAGI2-AS3 was functionally explored in PCa cell lines and animal xenograft models. MAGI2-AS3 was found to be aberrantly decreased in CRPC and was negatively correlated with Gleason score and lymph node status. Notably, low MAGI2-AS3 expression positively correlated with poorer survival in patients with PCa. The overexpression of MAGI2-AS3 significantly inhibited the proliferation and migration of PCa in vitro and in vivo. Mechanistically, MAGI2-AS3 could play a tumor suppressor function in CRPC through a novel miR-106a-5p/RAB31 regulatory network and could be a target for future cancer therapy.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 400030 Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Liping Ou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
11
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| |
Collapse
|
12
|
Yan C, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Meng B. Long Noncoding RNA MAGI2-AS3 Represses Cell Progression in Clear Cell Renal Cell Carcinoma by Modulating the miR-629-5p/PRDM16 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:43-56. [PMID: 37602452 DOI: 10.1615/critreveukaryotgeneexpr.2023048338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The objective of this study was to determine the regulatory mechanism of MAGI2-AS3 in clear cell renal cell carcinoma (ccRCC), thereby supplying a new insight for ccRCC treatment. Expression data in TCGA-KIRC were obtained. Target gene lncRNA for research was determined using expression analysis and clinical analysis. lncRNA's downstream regulatory miRNA and mRNA were predicted by bioinformatics databases. ccRCC cell malignant phenotypes were detected via CCK-8, colony formation, Transwell migration, and invasion assays. The targeting relationship between genes was assessed through dual-luciferase reporter gene analysis. Kaplan-Meier (K-M) analysis was carried out to verify the effect of MAGI2-AS3, miR-629-5p, and PRDM16 on the survival rate of ccRCC patients. MAGI2-AS3 expression in ccRCC tissue and cells was shown to be markedly decreased and its expression to continuously decline with tumor progression. MAGI2-AS3 suppresses ccRCC proliferation and migration. Dual-luciferase assay showed that MAGI2-AS3 binds miR-629-5p and that miR-629-5p binds PRDM16. In addition, functional experiments showed that MAGI2-AS3 facilitates PRDM16 expression by repressing miR-629-5p expression, thereby suppressing ccRCC cell aggression. K-M analysis showed that upregulation of either MAGI2-AS3 or PRDM16 significantly improves ccRCC patient survival, while upregulation of miR-629-5p has no significant impact. MAGI2-AS3 sponges miR-629-5p to modulate PRDM16 to mediate ccRCC development. Meanwhile, the MAGI2-AS3/miR-629-5p/PRDM16 axis, as a regulatory pathway of ccRCC progression, may be a possible therapeutic target and prognostic indicator of ccRCC.
Collapse
Affiliation(s)
- Chengquan Yan
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Pengfei Wang
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Chaofei Zhao
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Guangwei Yin
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Xin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Lin Li
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Shengyong Cai
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Bin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| |
Collapse
|
13
|
Abstract
Prostate cancer is a common male cancer with high morbidity and mortality worldwide. According to current research, the integration of long non-coding RNA (lncRNAs) and microRNA(miRNAs) can be expressed in a variety of cancers and play an important role in diagnosis. Based on this, this study explored the clinical role of lncRNA MAGI2-AS3 (MAGI2-AS3) in prostate cancer. By detecting the expression levels of MAGI2-AS3 and miR-142-3p, the correlation between the MAGI2-AS3 expression and the characteristics of clinical data was analyzed. ROC curve analysis was performed and the area under the ROC curve (AUC) was used to evaluate the diagnostic value of MAGI2-AS3 in distinguishing prostate cancer patients from healthy controls. The function of MAGI2-AS3 in prostate cancer cells was explored through CCK-8 and Transwell assays, and the relationship between MAGI2-AS3 and miR-142-3p was investigated by luciferase activity assay. MAGI2-AS3 has descended expression while miR-142-3p has an ascendant one in prostate cancer serum samples and cells. ROC curve analysis revealed that the AUC was 0.953 for MAGI2-AS3, with a sensitivity of 91.5% and specificity of 84.7%. Overexpression of MAGI2-AS3 in LNCaP and PC3 cells suppressed the biological function of the cell including proliferation capacity, migration level, and invasion. MAGI2-AS3 was considered a diagnostic biomarker for prostate cancer patients and inhibited prostate cancer progression by targeting miR-142-3p.
Collapse
Affiliation(s)
- Renbao Hu
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| | - Pei Wu
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| | - Jianhui Liu
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| |
Collapse
|
14
|
Li C, Guo H, Xiong J, Feng B, Zhu P, Jiang W, Jiang P, Su X, Huang X. Exosomal long noncoding RNAs MAGI2-AS3 and CCDC144NL-AS1 in oral squamous cell carcinoma development via the PI3K-AKT-mTOR signaling pathway. Pathol Res Pract 2022; 240:154219. [DOI: 10.1016/j.prp.2022.154219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022]
|
15
|
Peng F, Wang L, Xiong L, Tang H, Du J, Peng C. Maackiain Modulates miR-374a/GADD45A Axis to Inhibit Triple-Negative Breast Cancer Initiation and Progression. Front Pharmacol 2022; 13:806869. [PMID: 35308218 PMCID: PMC8930825 DOI: 10.3389/fphar.2022.806869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer ranks as the leading cause of death in lethal malignancies among women worldwide, with a sharp increase of incidence since 2008. Triple negative breast cancer (TNBC) gives rise to the largest proportion in breast cancer-related deaths because of its aggressive growth and rapid metastasis. Hence, searching for promising targets and innovative approaches is indispensable for the TNBC treatment. Maackiain (MA), a natural compound with multiple biological activities, could be isolated from different Chinese herbs, such as Spatholobus suberectus and Sophora flavescens. It was the first time to report the anti-cancer effect of MA in TNBC. MA could suppress TNBC cell proliferation, foci formation, migration, and invasion. MA also exerted a significant inhibitory effect on tumor growth of TNBC. Furthermore, MA could induce apoptosis with an increase of GADD45α and a decrease of miR-374a. In contrast, overexpressing miR-374a would result in at least partly affecting the proapoptotic effect of MA and suppressing GADD45α stimulated by MA. These results reveal the anti-TNBC effect of MA in vitro and in vivo, providing evidence for its potential as a drug candidate utilized in TNBC therapy.
Collapse
Affiliation(s)
- Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| |
Collapse
|
16
|
Qin M, Ma Y, Wang Z, Fang D, Wei J. Using immune-related lncRNAs to construct novel biomarkers and investigate the immune landscape of breast cancer. Transl Cancer Res 2022; 10:2991-3003. [PMID: 35116607 PMCID: PMC8799245 DOI: 10.21037/tcr-21-783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
Background The role of immune-related long noncoding RNAs (irlncRNAs) in breast cancer (BRCA) is still unclear. Recently, studies have performed analyses based on the expression of irlncRNAs, however, in the present study, we used a novel method that did not require the specific expression levels of lncRNAs of BRCA patients. Methods We downloaded transcriptome and clinical data of BRCA patients from The Cancer Genome Atlas (TCGA), obtained immune genes from the Immport database, and extracted immune genes and lncRNAs for correlation analysis. Then, the differential expression of irlncRNA pairs (IRLPs) was determined and the prognostic signature was established by the IRLPs. The immune cell abundance of the TCGA-BRCA cohort was downloaded from the Tumor IMmune Estimation Resource (TIMER) database, and the relationship between the risk score of the IRLP signature and immune cell abundance was analyzed. Finally, we explored the relationship between risk scores and drug sensitivity based on the R package pRRophetic. Results Univariate cox regression results showed that 33 IRLPs had significant effects on the overall survival (OS) of BRCA patients. Then 22 IRLPs were obtained via lasso regression for further analysis. Multivariate regression analysis obtained 12 IRLPs to establish the IRLP prognostic signature. The model showed that this IRLP signature could act as a prognostic biomarker for BRCA patients. Kaplan-Meier (KM) survival analysis indicated that low-risk patients of IRLP’s signature had a better OS (P<0.001). Advanced status BRCA patients may have higher risk scores, and univariate and multivariate cox regression analyses showed that risk scores were independent prognostic factors of clinical features (P<0.001). The results of the relationship between risk scores and immune infiltration showed that M1 macrophages were higher in the low-risk group (P=0.00015), while M2 macrophages were higher in the high-risk group (P=0.0015). The high-risk group had a greater sensitivity to chemotherapeutic agents such as cisplatin, docetaxel, doxorubicin, and gemcitabine. Conclusions In present study, we used a novel method that did not require the specific expression levels of lncRNAs of BRCA patients, which can be used as a novel model for predicting the prognosis of BRCA patients.
Collapse
Affiliation(s)
- Muping Qin
- Department of Hematology, Baise People's Hospital, Baise, China.,Department of Oncology, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Yanfei Ma
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zifan Wang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.,Department of Burn Plastic and Wound Repair, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| |
Collapse
|
17
|
Abdi E, Latifi-Navid S, Latifi-Navid H. Long noncoding RNA polymorphisms and colorectal cancer risk: Progression and future perspectives. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:98-112. [PMID: 35275417 DOI: 10.1002/em.22477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers causing death worldwide. Many long noncoding RNAs (lncRNAs) have possible carcinogenic or tumor suppressor functions. Some lncRNA polymorphisms are useful for predicting cancer risk, and may help advance personalized therapy management. While the use of lncRNAs as biomarkers is promising, there are still drawbacks, and further studies are needed to verify the consistency of current outcomes in large-scale populations and different ethnicities. Single nucleotide polymorphisms (SNPs) can disrupt a lncRNAs' function, thus enhancing or hindering disease occurrence. SNPs can directly influence the lncRNA expression by interfering with transcription factor binding or affecting indirectly a regulatory factors' expression. Moreover, the association between lncRNAs and other RNAs or proteins may be disrupted by SNPs. This research sought to assess the association between lncRNA polymorphisms and CRC risk, as well as clinical and therapeutic consequences in certain cases.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
18
|
LncRNA MAGI2-As3 Suppresses the Proliferation and Invasion of Cervical Cancer by Sponging MiR-15b. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9707206. [PMID: 35126958 PMCID: PMC8808199 DOI: 10.1155/2022/9707206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cervical cancer is the leading cause of cancer deaths among women, and more than 85% of cervical cancer deaths occur in low and middle-income countries. The purpose of this study is to investigate the functions of MAGI2-AS3 and miR-15b in cervical cancer. MATERIALS AND METHODS The mRNA levels of MAGI2-AS3, miR-15b, and CCNE1 were evaluated using RT-qPCR assay. Dual-luciferase reporter gene assay was used to confirm whether miR-15b binds to CCNE1. RESULTS LncRNA MAGI2-AS3 was downregulated, while miR-15b was upregulated in cervical cancer. Cervical cancer patients with low expression of MAGI2-AS3 have a poor prognosis. Upregulation of MAGI2-AS3 inhibited proliferative and invasive abilities of HeLa cells via regulating the expression of miRNA-15b. MiR-15b inhibitor suppressed cell proliferation and invasion. CCNE1 was a direct target gene of miR-15b, which binds to the 3'-UTR of its mRNA. MiR-15b partially reversed the inhibitory effect of overexpression of MAGI2-AS3 on the proliferation and invasion of HeLa cells. MAGI2-AS3 mediated the expression of CCNE1 in HeLa cells. CONCLUSION LncRNA MAGI2-AS3 inhibits the proliferation and invasion of cervical cancer cells via the miRNA-15/CCNE1 axis. Our results illustrates that MAGI2-AS3 can be used as a useful clinical predictor for early diagnosis and prognosis assessment of cervical cancer.
Collapse
|
19
|
Jayarathna DK, Rentería ME, Sauret E, Batra J, Gandhi NS. Identifying Complex lncRNA/Pseudogene-miRNA-mRNA Crosstalk in Hormone-Dependent Cancers. BIOLOGY 2021; 10:biology10101014. [PMID: 34681112 PMCID: PMC8533463 DOI: 10.3390/biology10101014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Competing endogenous RNAs (ceRNAs) have gained attention in cancer research owing to their involvement in microRNA-mediated gene regulation. Here, we identified a shared ceRNA network across five hormone-dependent (HD) cancers (prostate, breast, colon, rectal, and endometrial), that contain two long non-coding RNAs, nine mRNAs, and seventy-four microRNAs. Among them, two mRNAs and forty-one microRNAs were associated with at least one HD cancer survival. A similar analytical approach can be applied to identify shared ceRNAs across a group of related cancers, which will significantly contribute to understanding their shared disease biology. Abstract The discovery of microRNAs (miRNAs) has fundamentally transformed our understanding of gene regulation. The competing endogenous RNA (ceRNA) hypothesis postulates that messenger RNAs and other RNA transcripts, such as long non-coding RNAs and pseudogenes, can act as natural miRNA sponges. These RNAs influence each other’s expression levels by competing for the same pool of miRNAs through miRNA response elements on their target transcripts, thereby modulating gene expression and protein activity. In recent years, these ceRNA regulatory networks have gained considerable attention in cancer research. Several studies have identified cancer-specific ceRNA networks. Nevertheless, prior bioinformatic analyses have focused on long-non-coding RNA-associated ceRNA networks. Here, we identify an extended ceRNA network (including both long non-coding RNAs and pseudogenes) shared across a group of five hormone-dependent (HD) cancers, i.e., prostate, breast, colon, rectal, and endometrial cancers, using data from The Cancer Genome Atlas (TCGA). We performed a functional enrichment analysis for differentially expressed genes in the shared ceRNA network of HD cancers, followed by a survival analysis to determine their prognostic ability. We identified two long non-coding RNAs, nine genes, and seventy-four miRNAs in the shared ceRNA network across five HD cancers. Among them, two genes and forty-one miRNAs were associated with at least one HD cancer survival. This study is the first to investigate pseudogene-associated ceRNAs across a group of related cancers and highlights the value of this approach to understanding the shared molecular pathogenesis in a group of related diseases.
Collapse
Affiliation(s)
- Dulari K. Jayarathna
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; (D.K.J.); (J.B.)
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Miguel E. Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Emilie Sauret
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; (D.K.J.); (J.B.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; (D.K.J.); (J.B.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
- Correspondence:
| |
Collapse
|
20
|
Zhou Y, Yang J, Tian Z, Zeng J, Shen W. Research progress concerning m 6A methylation and cancer. Oncol Lett 2021; 22:775. [PMID: 34589154 PMCID: PMC8442141 DOI: 10.3892/ol.2021.13036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) methylation is a type of methylation modification on RNA molecules, which was first discovered in 1974, and has become a hot topic in life science in recent years. m6A modification is an epigenetic regulation similar to DNA and histone modification and is dynamically reversible in mammalian cells. This chemical marker of RNA is produced by m6A 'writers' (methylase) and can be degraded by m6A 'erasers' (demethylase). Methylated reading protein is the 'reader', that can recognize the mRNA containing m6A and regulate the expression of downstream genes accordingly. m6A methylation is involved in all stages of the RNA life cycle, including RNA processing, nuclear export, translation and regulation of RNA degradation, indicating that m6A plays a crucial role in RNA metabolism. Recent studies have shown that m6A modification is a complicated regulatory network in different cell lines, tissues and spatio-temporal models, and m6A methylation is associated with the occurrence and development of tumors. The present review describes the regulatory mechanism and physiological functions of m6A methylation, and its research progress in several types of human tumor, to provide novel approaches for early diagnosis and targeted treatment of cancer.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Jie Yang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Zheng Tian
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Jing Zeng
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Weigan Shen
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
21
|
Fu A, Yu Z, Zhang E, Song J. Long noncoding RNA ZBED3-AS1 restrains breast cancer progression by targeting the microRNA-513a-5p/KLF6 axis. Thorac Cancer 2021; 12:2719-2731. [PMID: 34427978 PMCID: PMC8520814 DOI: 10.1111/1759-7714.14111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) is the most commonly occurring malignancy in women. This study aimed to investigate the functions of the long noncoding RNA ZBED3‐AS1 (ZBED3‐AS1) in BC and its molecular mechanisms. qRT‐PCR was conducted to access the expression of ZBED3‐AS1, microRNA‐513a‐5p (miR‐513a‐5p), and Kruppel like factor 6 (KLF6) in BC. Additionally, BC cell viability and proliferative capacity were measured by MTT and 5‐Ethynyl‐20‐deoxyuridine (EdU) assays. A transwell assay was used for evaluating BC cell migration and invasion. The interactions among ZBED3‐AS1, miR‐513a‐5p, and KLF6 in BC were confirmed by dual‐luciferase reporter assay. Furthermore, feedback approaches were performed to determine whether ZBED3‐AS1 influences BC cell behaviors by regulating the miR‐513a‐5p/KLF6 axis. The murine xenograft model was established to assess the effect of ZBED3‐AS1 on tumor growth. The expression of ZBED3‐AS1 and KLF6 was reduced, while miR‐513a‐5p expression was elevated in BC. ZBED3‐AS1 elevation attenuated the malignant behaviors of BC cells, including viability, proliferative capacity, migration, and invasion. Mechanical experiments revealed that ZBED3‐AS1 targeted miR‐513a‐5p, and miR‐513a‐5p targeted KLF6 in BC. Feedback approaches validated that miR‐513a‐5p overexpression or KLF6 depletion reversed the inhibitory effects of ZBED3‐AS1 upregulation on viability, proliferative capacity, migration, and invasion of BC cells. Furthermore, ZBED3‐AS1 elevation attenuated the tumor growth in the murine xenograft model. ZBED3‐AS1 hindered the malignant development of BC cells by regulating the miR‐513a‐5p/KLF6 axis, providing a novel therapeutic target in BC.
Collapse
Affiliation(s)
- Aiqin Fu
- Department of Medical Oncology, Yantai Yantaishan Hospital, Yantai City, China
| | - Ze Yu
- Department of Medical Oncology, Yantai Yantaishan Hospital, Yantai City, China
| | - Enning Zhang
- Department of Medical Oncology, Yantai Yantaishan Hospital, Yantai City, China
| | - Jijie Song
- Department of General Surgery, Yantai Municipal Laiyang Central Hospital, Yantai City, China
| |
Collapse
|
22
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
23
|
Su X, Yu Z, Zhang Y, Chen J, Wei L, Sun L. Construction and Analysis of the Dysregulated ceRNA Network and Identification of Risk Long Noncoding RNAs in Breast Cancer. Front Genet 2021; 12:664393. [PMID: 34149805 PMCID: PMC8212960 DOI: 10.3389/fgene.2021.664393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BRCA) is the second leading cause of cancer-related mortality in women worldwide. However, the molecular mechanism involved in the development of BRCA is not fully understood. In this study, based on the miRNA-mediated long non-coding RNA (lncRNA)-protein coding gene (PCG) relationship and lncRNA-PCG co-expression information, we constructed and analyzed a specific dysregulated lncRNA-PCG co-expression network in BRCA. Then, we performed the random walk with restart (RWR) method to prioritize BRCA-related lncRNAs through comparing their RWR score and significance. As a result, we identified 30 risk lncRNAs for BRCA, which can distinguish normal and tumor samples. Moreover, through gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that these risk lncRNAs mainly synergistically exerted functions related to cell cycle and DNA separation and replication. At last, we developed a four-lncRNA prognostic signature (including AP000851.1, LINC01977, MAFG-DT, SIAH2-AS1) and assessed the survival accuracy of the signature by performing time-dependent receiver operating characteristic (ROC) analysis. The areas under the ROC curve for 1, 3, 5, and 10 years of survival prediction were 0.68, 0.61, 0.62, and 0.63, respectively. The multivariable Cox regression results verified that the four-lncRNA signature could be used as an independent prognostic biomarker in BRCA. In summary, these results have important reference value for the study of diagnosis, treatment, and prognosis evaluation of BRCA.
Collapse
Affiliation(s)
- Xiaojie Su
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Zhaoyan Yu
- Department of Otorhinolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuexin Zhang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Jiaxin Chen
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Ling Wei
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
24
|
Qu Y, Gao N, Wu T. Expression and clinical significance of SYNE1 and MAGI2 gene promoter methylation in gastric cancer. Medicine (Baltimore) 2021; 100:e23788. [PMID: 33530176 PMCID: PMC7850698 DOI: 10.1097/md.0000000000023788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related mortality globally. Abnormal DNA methylation is closely related to gastric cancer. The purpose of the study was to investigate the methylation of the SYNE1 and MAGI2 gene promoter and its relationship with the clinical-pathological factors, chemotherapy efficacy, and survival, thus providing a new biomarker for the prognosis and chemotherapy efficacy in gastric cancer.The methylation status of SYNE1 and MAGI2 in gastric cancer and adjacent tissues was detected by MSP method in 70 cases of advanced gastric cancer paraffin specimens.The methylation rate of the SYNE1 and MAGI2 gene promoter region was higher in gastric cancer tissues compared with adjacent tissues. The methylation status of SYNE1 was associated with the age at diagnosis and the size of the primary tumors, but no clinical or pathological factors have been found to be related with the methylation status of MAGI2 promoter. A high level of SYNE1 promoter methylation was associated with poorer chemotherapy efficacy in recurrent patients with gastric cancer. Thirty-three percent of the 70 patients exhibited highly methylated MAGI2; in this group, the median progression-free survival time was 4.1 months, shorter than those with negative methylated MAGI2 whose PFS was 5.1 months.MAGI2 is more methylated in gastric cancer than in adjacent tissues suggesting that hypermethylation changes in MAGI2 may be one of the mechanisms of tumorigenesis in gastric cancer. The methylation status of the SYNE1 and MAGI2 promoter regions may affect the chemotherapy efficacy of advanced gastric cancer. The prognosis of MAGI2-negative patients was better than that of positive ones, suggesting that MAGI2 may be an independent prognostic factor for PFS in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Yanjun Qu
- Department of Oncology, the Second Hospital of Dalian Medical University
| | - Na Gao
- Department of Obstetrics and Gynecology, the First Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Tao Wu
- Department of Oncology, the Second Hospital of Dalian Medical University
| |
Collapse
|
25
|
Shen D, Xu J, Cao X, Cao X, Tan H, Deng H. Long noncoding RNA MAGI2-AS3 inhibits bladder cancer progression through MAGI2/PTEN/epithelial-mesenchymal transition (EMT) axis. Cancer Biomark 2021; 30:155-165. [PMID: 33104021 DOI: 10.3233/cbm-201421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) are critical regulators of tumor progression. OBJECTIVE To determine how the lncRNA membrane associated guanylate kinase, WW and PDZ domain-containing 2 (MAG12) antisense RNA 3 (MAGI2-AS3) and the phosphatase and tensin homolog (PTEN) gene function in regulating bladder cancer (Bca) progression. METHODS Total RNA from 80 Bca tissues and 30 paired para-cancerous tissues from patients was sequentially extracted, quantified, purified, and reverse transcribed using RT-PCR. A library was constructed and sequenced. Four Bca cell lines and a normal urothelial cell line were transfected with lentiviral plasmids, and cell migration and invasion were assayed in vitro. An orthotopic mouse model of Bca was created for in vivo studies. RESULTS MAGI2-AS3 expression was significantly downregulated in Bca, compared with normal tissues, and negatively associated with tumor stage and a poor prognosis. MAGI2-AS3 and its sense RNA MAGI2 showed significant and positive correlation. The expression of MAGI2 and its downstream gene, PTEN, increased in Bca cells overexpressing MAGI2-AS3, and interference by MAGI2 expression reversed the migration and invasion inhibited by MAGI2-AS3 overexpression. CONCLUSION MAGI2-AS3 overexpression inhibited Bca cell progression by regulating the MAGI2/PTEN/epithelial-mesenchymal transition, offering novel insights into the mechanism of Bca progression.
Collapse
Affiliation(s)
- Daqing Shen
- Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jing Xu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiande Cao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xianxiang Cao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Hailin Tan
- Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanghao Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Shen D, Zhang Y, Zheng Q, Yu S, Xia L, Cheng S, Li G. A Competing Endogenous RNA Network and an 8-lncRNA Prognostic Signature Identify MYO16-AS1 as an Oncogenic lncRNA in Bladder Cancer. DNA Cell Biol 2020; 40:26-35. [PMID: 33270518 DOI: 10.1089/dna.2020.6014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, growing evidence has shed light on the competitive endogenous RNAs (ceRNAs) activity of long noncoding RNAs (lncRNAs) in carcinogenesis and tumor progression. To better elucidate the regulatory mechanisms of lncRNA in muscle-invasive bladder cancer (MIBC), we identified aberrantly expressed mRNAs, lncRNAs, and miRNAs in tumor tissues by using RNA sequence profiles from The Cancer Genome Atlas. The MIBC-specific ceRNA network, including 58 lncRNAs, 22 miRNAs, and 52 mRNAs, was constructed and visualized in Cytoscape. Further, using the univariate and multivariate Cox regression model, we screened 8 lncRNAs (AC078778.1, LINC00525, AC008676.1, AP000553.1, SACS-AS1, AC009065.1, AC127496.3, and MYO16-AS1) to construct an lncRNA signature for predicting the overall survival of MIBC patients. Kaplan-Meier analysis and a receiver operating characteristic curve were applied to evaluate the performance of the signature. Real-time quantitative PCR analysis was carried out to test expression levels of the 8 lncRNAs in MIBC patient tissues. Transwell assays demonstrated that overexpressing MYO16-AS1 can enhance UMUC2 migration and invasion. Our study offers a novel lncRNA-correlated ceRNA model to better understand the molecular mechanisms involved in MIBC. In addition, we developed an independent 8-lncRNAs biomarker for prognostic prediction and identified MYO16-AS1 as an oncogenic lncRNA in bladder cancer.
Collapse
Affiliation(s)
- Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youyun Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shicheng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging (Albany NY) 2020; 12:25547-25563. [PMID: 33231563 PMCID: PMC7803496 DOI: 10.18632/aging.104162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
In this study, we performed bioinformatics analysis to identify the competing endogenous RNAs (ceRNAs) that regulate bladder cancer (BCa) progression. RNA-sequencing data analysis identified 2451 differentially expressed mRNAs, 174 differentially expressed lncRNAs, and 186 microRNAs (miRNAs) in BCa tissues (n=414) compared to the normal urothelial tissues (n=19) from the TGCA database. CeRNA network analysis of the differentially expressed lncRNAs and mRNAs showed strong positive correlation between lncRNA MAGI2-AS3 and Tensin 1 (TNS1) mRNA in BCa tissues. Bioinformatics analysis also showed that both MAGI2-AS3 and TNS1 mRNA sequences contain miR-31-5p binding sites. Furthermore, we observed significantly lower MAGI2-AS3 and TNS1 mRNA expression and higher miR-31-5p expression in the BCa tissues and cell lines (T24 and J82) compared with their corresponding controls. Functional and biochemical experiments in BCa cell lines including luciferase reporter assays showed that MAGI2-AS3 upregulated TNS1 by sponging miR-31-5p. Transwell assays showed that the MAGI2-AS3/miR-31-5p/TNS1 axis regulated migration and invasion ability of BCa cell lines. Moreover, immunohistochemical staining of paired BCa and normal urothelial tissues showed that low expression of TNS1 correlated with advanced tumor (T) stages and lymph node metastasis in BCa. In conclusion, our study demonstrates that the MAGI2-AS3/miR-31-5p/TNS1 axis regulates BCa progression.
Collapse
|
28
|
Coexpression Network Analysis Identifies a Novel Nine-RNA Signature to Improve Prognostic Prediction for Prostate Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4264291. [PMID: 32953881 PMCID: PMC7482004 DOI: 10.1155/2020/4264291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
Background Prostate cancer (PCa) is the most common malignancy and the leading cause of cancer death in men. Recent studies suggest the molecular signature was more effective than the clinical indicators for the prognostic prediction, but all of the known studies focused on a single RNA type. The present study was to develop a new prognostic signature by integrating long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) and evaluate its prognostic performance. Methods The RNA expression data of PCa patients were downloaded from The Cancer Genome Atlas (TCGA) or Gene Expression Omnibus database (GSE17951, GSE7076, and GSE16560). The PCa-driven modules were identified by constructing a weighted gene coexpression network, the corresponding genes of which were overlapped with differentially expressed RNAs (DERs) screened by the MetaDE package. The optimal prognostic signature was screened using the least absolute shrinkage and selection operator analysis. The prognostic performance and functions of the combined prognostic signature was then assessed. Results Twelve PCa-driven modules were identified using TCGA dataset and validated in the GSE17951 and GSE7076 datasets, and six of them were considered to be preserved. A total of 217 genes in these 6 modules were overlapped with 699 DERs, from which a nine-gene prognostic signature was identified (including 3 lncRNAs and 6 mRNAs), and the risk score of each patient was calculated. The overall survival was significantly shortened in patients having the risk score higher than the cut-off, which was demonstrated in TCGA (p = 5.063E − 03) dataset and validated in the GSE16560 (p = 3.268E − 02) dataset. The prediction accuracy of this risk score was higher than that of clinical indicators (the Gleason score and prostate-specific antigen) or the single RNA type, with the area under the receiver operator characteristic curve of 0.945. Besides, some new therapeutic targets and mechanisms (MAGI2-AS3-SPARC/GJA1/CYSLTR1, DLG5-AS1-DEFB1, and RHPN1-AS1-CDC45/ORC) were also revealed. Conclusion The risk score system established in this study may provide a novel reliable method to identify PCa patients at a high risk of death.
Collapse
|
29
|
Zhang X, Zheng P, Li Z, Gao S, Liu G. The Somatic Mutation Landscape and RNA Prognostic Markers in Stomach Adenocarcinoma. Onco Targets Ther 2020; 13:7735-7746. [PMID: 32801780 PMCID: PMC7414981 DOI: 10.2147/ott.s263733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/12/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose Stomach cancer is one of the highest incidence and mortality malignancies worldwide. Our study aimed to illustrate the somatic mutation landscape and identify molecular markers of stomach cancer. Materials and Methods By integrated analysis of sequencing data and clinical data of stomach adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA) database, we identified several susceptibility genes and novel molecular markers and validated their potential function by the starBase website. Further, we validated the clinical value of two candidate lncRNAs in collected STAD samples by RT-qPCR. Results We illustrated the distributions of mutation frequencies and types to get the top 20 high-mutation frequency genes in STAD. We also found 2127 mRNAs, 129 miRNAs, and 170 lncRNAs that were differentially expressed. We identified four lncRNA-miRNA-mRNA ceRNAs (PVT1, MAGI2-AS3, MIR17HG, KCNQ1OT1). Besides, 27 mRNAs (PDE4C, ID1, AQP3, VCAN, FAP, NOX4, ANGPT2, SERPINE1, SPARC, PDGFRB, FN1, MFAP2, CSMD2, INHBA, COL10A1, MATN3, P4HA3, ADAMTS12, DGKI, OLFML2B, TMEM200A, FNDC1, CTHRC1, CHST1, F5, COL5A2, TUBB3) and two lncRNAs (MIR4458HG, LINC01235) showed a significant prognostic value, and their prognostic values were validated by the starBase website. What's more, the clinical values of MIR4458HG and LINC01235 were also demonstrated in collected STAD samples. Conclusion We constructed the lncRNA ceRNA networks and identified 20 high-mutation frequency genes and 29 prognostic markers (27 mRNAs and two lncRNAs).
Collapse
Affiliation(s)
- Xiulei Zhang
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Peiming Zheng
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Zhen Li
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Shanjun Gao
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Guangzhi Liu
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China.,Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China.,Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| |
Collapse
|
30
|
Chang Y, Yang L. LINC00467 promotes cell proliferation and stemness in lung adenocarcinoma by sponging miR-4779 and miR-7978. J Cell Biochem 2020; 121:3691-3699. [PMID: 31680321 DOI: 10.1002/jcb.29510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Lung adenocarcinoma (LAD), as one of the most common types of lung tumors, is lethal and malignant. Long noncoding RNAs (lncRNAs) play important roles in various cancers according to many previous studies. LINC00467 was proposed to be a tumor promoter. Despite the validated promotive effect of LINC00467 on neuroblastoma progression, its regulatory mechanism in LAD remains unclear. In this study, LINC00467 expressed higher in LAD tissues and cell lines, and increased LINC00467 indicated a poor prognosis. Knockdown of LINC00467 inhibited cell proliferation, the expressions of tumor stem cell-related genes, and cell spheroid formation ability, while it promoted cell apoptosis. miR-4779 and miR-7978 were reported to play antitumor roles in several cancers before. LINC00467 could combine with miR-4779 and miR-7978, and negatively regulated miR-4779 and miR-7978. miR-4779 and miR-7978 inhibitor could partly rescue the LINC00467 knockdown-induced influence on cell proliferation, apoptosis, and stemness. In a word, this study innovatively investigated the mechanism of LINC00467 in LAD and verified LINC00467 exerted its carcinogenesis function by sponging miR-4779 and miR-7978, which may become a catalyst for generating new therapeutic targets for LAD treatment.
Collapse
Affiliation(s)
- Yanxiang Chang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lisheng Yang
- Department of Pulmonary Disease, Xi'an Traditional Chinese Medicine Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Chang H, Zhang X, Li B, Meng X. MAGI2-AS3 suppresses MYC signaling to inhibit cell proliferation and migration in ovarian cancer through targeting miR-525-5p/MXD1 axis. Cancer Med 2020; 9:6377-6386. [PMID: 32681706 PMCID: PMC7476821 DOI: 10.1002/cam4.3126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OV) is one of the most lethal gynecological malignance in females, and usually diagnosed at advanced stages. Long noncoding RNAs (lncRNAs) exhibit their crucial functions in modulatory mechanisms of cancers. Substantive studies have proven the anti-tumor role of MAGI2-AS3 in multiple cancers, but the physiological functions of MAGI2-AS3 in OV need more detailed explanations. The current study corroborated that overexpression of MAGI2-AS3 executed inhibitory activity in OV via hindering cell proliferation, cell cycle, migration as well as invasion while promoted apoptosis. Moreover MAGI2-AS3 bound with miR-525-5p and negatively regulated the expression of miR-525-5p. Further studies testified that MXD1 was a downstream target of miR-525-5p and the competing relationship between MAGI2-AS3 and MXD1 were confirmed by RNA pull down. Based on the combination between MAX and MYC, we analyzed the effects of MAGI2-AS3 on MXD1 and MYC, unveiling the competing relationship between MXD1 and MYC for binding to MAX. Finally, we constructed rescue assays to certify that MAGI2-AS3 suppressed the course of OV via enhancing MXD1 expression. In summary, MAGI2-AS3 repressed the progression of OV by targeting miR-525-5p/MXD1 axis, offering a novel insight into understanding OV at the molecular level.
Collapse
Affiliation(s)
- Hua Chang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang, P.R. China
| | - Xue Zhang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang, P.R. China
| | - Baixue Li
- Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiangkai Meng
- Department of Gynecology, the First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
32
|
Wu H, Gu J, Zhou D, Cheng W, Wang Y, Wang Q, Wang X. LINC00160 mediated paclitaxel-And doxorubicin-resistance in breast cancer cells by regulating TFF3 via transcription factor C/EBPβ. J Cell Mol Med 2020; 24:8589-8602. [PMID: 32652877 PMCID: PMC7412707 DOI: 10.1111/jcmm.15487] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance represents a major challenge in breast cancer (BC) treatment. This study aimed to probe the roles of LINC00160 in paclitaxel‐ and doxorubicin‐resistant BC cells. Three pairs of BC and adjacent normal tissue were used for lncRNA microarray analysis. Paclitaxel‐resistant MCF‐7 (MCF‐7/Tax) and doxorubicin‐resistant BT474 (BT474/Dox) cells were generated by exposure of parental drug‐sensitive MCF‐7 or BT474 cells to gradient concentrations of drugs. Correlation between LINC00160 expression and clinical response to paclitaxel in BC patients was examined. Short interfering RNAs specifically targeting LINC00160 or TFF3 were designed to construct LINC00160‐ and TFF3‐depleted BC cells to discuss their effects on biological episodes of MCF‐7/Tax and BT474/Dox cells. Interactions among LINC00160, transcription factor C/EBPβ and TFF3 were identified. MCF‐7/Tax and BT474/Dox cells stable silencing of LINC00160 were transplanted into nude mice. Consequently, up‐regulated LINC00160 led to poor clinical response to paclitaxel in BC patients. LINC00160 knockdown reduced drug resistance in MCF‐7/Tax and BT474/Dox cells and reduced cell migration and invasion. LINC00160 recruited C/EBPβ into the promoter region of TFF3 and increased TFF3 expression. LINC00160‐depleted MCF‐7/Tax and BT474/Dox cells showed decreased tumour growth rates in nude mice. Overall, we identified a novel mechanism of LINC00160‐mediated chemoresistance via the C/EBPβ/TFF3 axis, highlighting the potential of LINC00160 for treating BC with chemoresistance.
Collapse
Affiliation(s)
- Huaiguo Wu
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Juan Gu
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Wuxi, China
| | - Daoping Zhou
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Wei Cheng
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Yueping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Biology, College of Arts & Science, Massachusetts University, Boston, MA, USA
| | - Qingping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Xuedong Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| |
Collapse
|
33
|
Yang X, Wu S, Li X, Yin Y, Chen R. MAGI2-AS3 rs7783388 polymorphism contributes to colorectal cancer risk through altering the binding affinity of the transcription factor GR to the MAGI2-AS3 promoter. J Clin Lab Anal 2020; 34:e23431. [PMID: 32533587 PMCID: PMC7595890 DOI: 10.1002/jcla.23431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background It has been indicated that the single nuclear polymorphisms (SNPs) in the long noncoding RNA (lncRNA) have association with colorectal cancer (CRC) susceptibility. Methods We enrolled 1078 cases with CRC and 1175 age‐ and gender‐matched cancer‐free controls to explore whether the polymorphisms in MAGI2‐AS3 have associations with CRC risk. qRT‐PCR, expression quantitative trait loci (eQTL) analyses, dual‐luciferase reporter assay, chromatin immunoprecipitation (ChIP), flow cytometry, and transwell assays were performed to explore the specific mechanisms in which MAGI2‐AS3 rs7783388 variation influenced the tumorigenesis of CRC. Results Subjects carrying rs7783388 GG genotype presented a higher risk of CRC compared with the AG/AA genotypes. Mechanistically, we found that the functional genetic variant of rs7783388 A > G decreased binding affinity of transcription factor glucocorticoid receptor (GR) to the MAGI2‐AS3 promoter, resulting in decreased transcriptional activity that subsequently downregulated MAGI2‐AS3 expression. Furthermore, functional experiments elucidated that MAGI2‐AS3 overexpression suppressed CRC cell proliferation, migration, and invasion capacities, arrested cell cycle at G0/G1 phase, and promoted cell apoptosis. Conclusion Taken together, our study demonstrated that the potential function of MAGI2‐AS3 as a tumor suppressor for CRC, and the MAGI2‐AS3 rs7783388 polymorphism is associated with the increased susceptibility to CRC by altering the binding ability of GR to the MAGI2‐AS3 promoter.
Collapse
Affiliation(s)
- Xi Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ying Yin
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
34
|
Cao C, Zhou S, Hu J. Long noncoding RNA MAGI2‐AS3/miR‐218‐5p/GDPD5/SEC61A1 axis drives cellular proliferation and migration and confers cisplatin resistance in nasopharyngeal carcinoma. Int Forum Allergy Rhinol 2020; 10:1012-1023. [PMID: 32450008 DOI: 10.1002/alr.22562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Cheng Cao
- Department of Otorhinolaryngology Yinzhou Hospital, affiliated with the Medical School of Ningbo University Ningbo Zhejiang China
| | - Shao Zhou
- Department of Otorhinolaryngology Yinzhou Hospital, affiliated with the Medical School of Ningbo University Ningbo Zhejiang China
| | - Jiandao Hu
- Department of Otorhinolaryngology Yinzhou Hospital, affiliated with the Medical School of Ningbo University Ningbo Zhejiang China
| |
Collapse
|
35
|
Feng X, Yang S, Zhou S, Deng S, Xie Y. Long non-coding RNA DDX11-AS1 promotes non-small cell lung cancer development via regulating PI3K/AKT signalling. Clin Exp Pharmacol Physiol 2020; 47:1622-1631. [PMID: 32298476 DOI: 10.1111/1440-1681.13325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) has been considered to be the most common category of lung cancer, comprising approximately 80% of lung cancers. Long non-coding RNAs (lncRNAs) were diffusely documented to modulate carcinogenesis or progression of tumours. However, the role of DDX11-AS1 was still unclear in NSCLC. Bioinformatics analysis and experimental assays including hematoxylin and eosin (H&E) staining, RT-qPCR, colony formation, CCK-8, flow cytometry, western blot and xenograft assays were applied to investigate the biological role and molecular mechanism of DDX11-AS1 in NSCLC. The level of lncRNA DDX11-AS1 was up-regulated in NSCLC tumour tissues and cells. In function aspect, knockdown of DDX11-AS1 caused an apparent inhibitive effect on cell proliferation in vitro and in vivo. DDX11-AS1 inhibition promoted cell apoptosis in vitro. In mechanism, the protein level of phosphorylated AKT was reduced by DDX11-AS1 inhibition but increased by DDX11-AS1 overexpression. These results indicated that DDX11-AS1 exacerbated NSCLC progression via activating PI3K/AKT signalling pathway. All in all, DDX11-AS1 promotes NSCLC development via regulating PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xuegang Feng
- Department of Cardiothoracic Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, China
| | - Shengsheng Yang
- Department of Cardiothoracic Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, China
| | - Shunkai Zhou
- Department of Cardiothoracic Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, China
| | - Shilong Deng
- Department of Cardiothoracic Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, China
| | - Yongwei Xie
- Department of Cardiothoracic Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, China
| |
Collapse
|
36
|
Li D, Wang J, Zhang M, Hu X, She J, Qiu X, Zhang X, Xu L, Liu Y, Qin S. LncRNA MAGI2-AS3 Is Regulated by BRD4 and Promotes Gastric Cancer Progression via Maintaining ZEB1 Overexpression by Sponging miR-141/200a. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:109-123. [PMID: 31837602 PMCID: PMC6920306 DOI: 10.1016/j.omtn.2019.11.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 10/12/2019] [Accepted: 11/03/2019] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and tumor progression. However, the biological function of most lncRNAs remains unknown in human gastric cancer. This study here aims to explore the unknown function of lncRNA MAGI2-AS3 in gastric cancer. First, bioinformatics analysis showed that lncRNA MAGI2-AS3 was overexpressed in gastric cancer tissues, and the overexpression of MAGI2-AS3 has been shown to be associated with poor prognosis in all three independent gastric cancer cohorts (The Cancer Genome Atlas stomach cancer [TCGA_STAD], GEO: GSE62254 and GSE15459). The multivariate analysis indicated that lncRNA MAGI2-AS3 was an independent prognostic factor for both overall survival and disease-free survival of gastric cancer patients. Moreover, MAGI2-AS3 was identified to be an epithelial-mesenchymal transition (EMT)-related lncRNA and was highly co-expressed with ZEB1/2 in both gastric cancer tissues and normal stomach tissues. Loss-of-function and gain-of-function studies showed that lncRNA MAGI2-AS3 could positively regulate ZEB1 expression and the process of cell migration and invasion in gastric cancer. Subcellular location assay showed that lncRNA MAGI2-AS3 was mainly located in the cytoplasm of gastric cancer cells. Bioinformatics analysis and functional experiments revealed that lncRNA MAGI2-AS3 was negatively correlated with miR-141/200a expression and negatively regulated miR-141/200a-3p expression in gastric cancer. Therefore, we speculate that lncRNA MAGI2-AS3 promotes tumor progression through sponging miR-141/200a and maintaining overexpression of ZEB1 in gastric cancer. Nevertheless, we identified that BRD4 is a transcriptional regulator of lncRNA MAGI2-AS3 in gastric cancer. Additionally, our findings highlight that lncRNA MAGI2-AS3 is an ideal biomarker and could be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Dandan Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jingjie Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Meixin Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xinhui Hu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jiajun She
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xuemei Qiu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xudong Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Xu
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ying Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.
| | - Shanshan Qin
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.
| |
Collapse
|
37
|
Zhang X, Jiang Y, Xie Y, Leng X, Song F. Comprehensive Analysis of lncRNAs Associated with the Pathogenesis and Prognosis of Gastric Cancer. DNA Cell Biol 2020; 39:299-309. [DOI: 10.1089/dna.2019.5161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xianqin Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yuyou Jiang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yan Xie
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xue Leng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
He J, Zhou X, Li L, Han Z. Long Noncoding MAGI2-AS3 Suppresses Several Cellular Processes of Lung Squamous Cell Carcinoma Cells by Regulating miR-374a/b-5p/CADM2 Axis. Cancer Manag Res 2020; 12:289-302. [PMID: 32021443 PMCID: PMC6972594 DOI: 10.2147/cmar.s232595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) accounts for approximately 30% of all lung cancers that possesses the highest occurrence and mortality in all cancer types. Long noncoding RNAs have been reported to modulate tumor development for several decades. Aim of the Study This research aims to investigate the role of MAGI2-AS3 in LUSC. Methods RT-qPCR tested genes (including MAGI2-AS3, miR-374a/b-5p and CADM2) expression. Cell proliferation was detected by colony formation and EdU assays. Cell migration and invasion were evaluated by transwell assay. Flow cytometry analysis of apoptotic cells and Western blot analysis on apoptosis-related genes were applied to measure cell apoptosis. Nuclear-cytoplasmic fractionation and FISH assay positioned MAGI2-AS3. The combination between miR-374a/b-5p and MAGI2-AS3 (or CADM2) was determined by luciferase reporter assay and RIP assay. Results MAGI2-AS3 inhibited the proliferative, migratory and invasive capability of LUSC cells with upregulated expression. Additionally, MAGI2-AS3 overexpression promoted cell apoptosis. We discovered that MAGI2-AS3 was located in the cytoplasm. Hereafter, we found out that MAGI2-AS3 targeted miR-374a/b-5p. CADM2 was targeted by miR-374a/b-5p. Finally, rescue assays indicated that the promoting effects of miR-374a/b-5p amplification on biological activities were restored by CADM2 addition. Conclusion In conclusion, lncRNA MAGI2-AS3 suppressed LUSC by regulating miR-374a/b-5p/CADM2 axis, which might potentially serve as a therapeutic marker for LUSC patients.
Collapse
Affiliation(s)
- Jia He
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Li Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Zhijun Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| |
Collapse
|
39
|
Gokulnath P, de Cristofaro T, Manipur I, Di Palma T, Soriano AA, Guarracino MR, Zannini M. Long Non-Coding RNA MAGI2-AS3 is a New Player with a Tumor Suppressive Role in High Grade Serous Ovarian Carcinoma. Cancers (Basel) 2019; 11:cancers11122008. [PMID: 31842477 PMCID: PMC6966615 DOI: 10.3390/cancers11122008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
High-Grade Serous Ovarian Carcinoma (HGSC) is the most incidental and lethal subtype of epithelial ovarian cancer (EOC) with a high mortality rate of nearly 65%. Recent findings aimed at understanding the pathogenesis of HGSC have attributed its principal source as the Fallopian Tube (FT). To further comprehend the exact mechanism of carcinogenesis, which is still less known, we performed a transcriptome analysis comparing FT and HGSC. Our study aims at exploring new players involved in the development of HGSC from FT, along with their signaling network, and we chose to focus on non-coding RNAs. Non-coding RNAs (ncRNAs) are increasingly observed to be the major regulators of several cellular processes and could have key functions as biological markers, as well as even a therapeutic approach. The most physiologically relevant and significantly dysregulated non-coding RNAs were identified bioinformatically. After analyzing the trend in HGSC and other cancers, MAGI2-AS3 was observed to be an important player in EOC. We assessed its tumor-suppressive role in EOC by means of various assays. Further, we mapped its signaling pathway using its role as a miRNA sponge to predict the miRNAs binding to MAGI2AS3 and showed it experimentally. We conclude that MAGI2-AS3 acts as a tumor suppressor in EOC, specifically in HGSC by sponging miR-15-5p, miR-374a-5p and miR-374b-5p, and altering downstream signaling of certain mRNAs through a ceRNA network.
Collapse
Affiliation(s)
- Priyanka Gokulnath
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Dpt. Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Tiziana de Cristofaro
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
| | - Ichcha Manipur
- High Performance Computing and Networking Institute, National Research Council, via P. Castellino 111, 80131 Napoli, Italy
| | - Tina Di Palma
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
| | - Amata Amy Soriano
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Present affiliation: IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISReMIT, 71013 San Giovanni Rotondo FG, Italy
| | - Mario Rosario Guarracino
- Dpt. Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mariastella Zannini
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Correspondence:
| |
Collapse
|
40
|
Ma Q, Qi X, Lin X, Li L, Chen L, Hu W. LncRNA SNHG3 promotes cell proliferation and invasion through the miR-384/hepatoma-derived growth factor axis in breast cancer. Hum Cell 2019; 33:232-242. [DOI: 10.1007/s13577-019-00287-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
|