1
|
Hou ZH, Tao M, Dong J, Qiu HM, Li F, Bai XY. KLF11 promotes the proliferation of breast cancer cells by inhibiting p53-MDM2 signaling. Cell Signal 2024; 120:111238. [PMID: 38810862 DOI: 10.1016/j.cellsig.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Abnormal Krüppel-like factor 11 (KLF11) expression is frequently found in tumor tissues and is associated with cancer prognosis, but its biological functions and corresponding mechanisms remain elusive. Here, we demonstrated that KLF11 functions as an oncoprotein to promote tumor proliferation in breast cancer cells. Mechanistically, at the transcription level, KLF11 decreased TP53 mRNA expression. Notably, KLF11 also interacted with and stabilized MDM2 through inhibiting MDM2 ubiquitination and subsequent degradation. This increase in MDM2 in turn accelerated the ubiquitin-mediated proteolysis of p53, leading to the reduced expression of p53 and its target genes, including CDKN1A, BAX, and NOXA1. Accordingly, data from animals further confirmed that KLF11 significantly upregulated the growth of breast cancer cells and was inversely correlated with p53 expression. Taken together, our findings reveal a novel mechanism for breast cancer progression in which the function of the tumor suppressor p53 is dramatically weakened.
Collapse
Affiliation(s)
- Zhi-Han Hou
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Min Tao
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Jiang Dong
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Hong-Mei Qiu
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Fan Li
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Xiao-Yan Bai
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China..
| |
Collapse
|
2
|
Zhou ZQ, Lv X, Liu SB, Qu HC, Xie QP, Sun LF, Li G. The induction of ferroptosis by KLF11/NCOA4 axis: the inhibitory role in clear cell renal cell carcinoma. Hum Cell 2023; 36:2162-2178. [PMID: 37642832 DOI: 10.1007/s13577-023-00973-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Ferroptosis is a form of cell death and has great potential application in the treatment of many cancers, including clear cell renal cell carcinoma (ccRCC). Herein, we identified the essential roles of Krüppel-like factor 11 (KLF11) in suppressing the progression of ccRCC. By analyzing mRNA expression data from the Gene Expression Omnibus (GEO) database, we found that KLF11 was a significantly downregulated gene in ccRCC tissues. The results of subsequent functional assays verified that KLF11 played an antiproliferative role in ccRCC cells and xenograft tumors. Furthermore, gene set enrichment analysis indicated that ferroptosis was involved in ccRCC development, and correlation analysis revealed that KLF11 was positively related to ferroptosis drivers. We also found that KLF11 promoted ferroptosis in ccRCC by downregulating the protein expression of ferritin, system xc (-) cystine/glutamate antiporter (xCT), and glutathione peroxidase 4 (GPX4), acting as the inhibitory factors of ferroptosis and increasing the intracellular levels of lipid reactive oxygen species (ROS). As a transcriptional regulator, KLF11 significantly increased the promoter activity of nuclear receptor coactivator 4 (NCOA4), a gene significantly downregulated in ccRCC and whose low expression is associated with poor survival. The characteristics of ccRCC cells caused by KLF11 overexpression were reversed after NCOA4 silencing. In summary, the present study suggests that KLF11 suppresses the progression of ccRCC by increasing NCOA4 transcription. Therefore, the KLF11/NCOA4 axis may serve as a novel therapeutic target for human ccRCC.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Xi Lv
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Shi-Bo Liu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Hong-Chen Qu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Qing-Peng Xie
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Long-Feng Sun
- Department of Geriatric Cardiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning Province, China.
| | - Gang Li
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China.
| |
Collapse
|
3
|
Allione A, Viberti C, Cotellessa I, Catalano C, Casalone E, Cugliari G, Russo A, Guarrera S, Mirabelli D, Sacerdote C, Gentile M, Eichelmann F, Schulze MB, Harlid S, Eriksen AK, Tjønneland A, Andersson M, Dollé MET, Van Puyvelde H, Weiderpass E, Rodriguez-Barranco M, Agudo A, Heath AK, Chirlaque MD, Truong T, Dragic D, Severi G, Sieri S, Sandanger TM, Ardanaz E, Vineis P, Matullo G. Blood cell DNA methylation biomarkers in preclinical malignant pleural mesothelioma: The EPIC prospective cohort. Int J Cancer 2023; 152:725-737. [PMID: 36305648 DOI: 10.1002/ijc.34339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer mainly caused by asbestos exposure. Specific and sensitive noninvasive biomarkers may facilitate and enhance screening programs for the early detection of cancer. We investigated DNA methylation (DNAm) profiles in MPM prediagnostic blood samples in a case-control study nested in the European Prospective Investigation into Cancer and nutrition (EPIC) cohort, aiming to characterise DNAm biomarkers associated with MPM. From the EPIC cohort, we included samples from 135 participants who developed MPM during 20 years of follow-up and from 135 matched, cancer-free, controls. For the discovery phase we selected EPIC participants who developed MPM within 5 years from enrolment (n = 36) with matched controls. We identified nine differentially methylated CpGs, selected by 10-fold cross-validation and correlation analyses: cg25755428 (MRI1), cg20389709 (KLF11), cg23870316, cg13862711 (LHX6), cg06417478 (HOOK2), cg00667948, cg01879420 (AMD1), cg25317025 (RPL17) and cg06205333 (RAP1A). Receiver operating characteristic (ROC) analysis showed that the model including baseline characteristics (age, sex and PC1wbc) along with the nine MPM-related CpGs has a better predictive value for MPM occurrence than the baseline model alone, maintaining some performance also at more than 5 years before diagnosis (area under the curve [AUC] < 5 years = 0.89; AUC 5-10 years = 0.80; AUC >10 years = 0.75; baseline AUC range = 0.63-0.67). DNAm changes as noninvasive biomarkers in prediagnostic blood samples of MPM cases were investigated for the first time. Their application can improve the identification of asbestos-exposed individuals at higher MPM risk to possibly adopt more intensive monitoring for early disease identification.
Collapse
Affiliation(s)
| | - Clara Viberti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Chiara Catalano
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Alessia Russo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simonetta Guarrera
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Dario Mirabelli
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti", University of Turin, Turin, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | | | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Sophia Harlid
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Anne Kirstine Eriksen
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Martin Andersson
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Martijn E T Dollé
- Centre for Health Protection National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Heleen Van Puyvelde
- International Agency for Research on Cancer, World Health Organisation, Lyon, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organisation, Lyon, France
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - María-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Thérèse Truong
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Paris, France
| | - Dzevka Dragic
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Paris, France
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Médecine Sociale et Préventive, Faculté de Médecine, Québec, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Paris, France
- Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano Via Venezian, Milan, Italy
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eva Ardanaz
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Paolo Vineis
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti", University of Turin, Turin, Italy
- Medical Genetics Unit, AOU Città della Salute e Della Scienza, Turin, Italy
| |
Collapse
|
4
|
Liu L, Cheng X, Li S. Effect of Krüppel-Like Factor 7 (KLF7) on High Sugar Induced Retinal Ganglion Cell Biological Activity and Oxidative Stress. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated KLF7’s effect on sugar induced retinal ganglion cells (RGCs) biological activity. The RGCs cells divided into blank group (RA), high sugar group (RB), high sugar+NC group (RC) and high sugar+KLF7 group (RD) (transfected with KLF7 mimic) followed by analysis
cell proliferation by MTT, cell apoptosis by flow cytometry and protein expression by western blot and ROS level. RB and RC group showed significantly reduced KLF7 mRNA and protein level compared to RA group (P < 0.05) without different between RB and RC group (P > 0.05).
RD group had significantly increased LKF7 and Sirt1 protein expression (F = 113.3, P < 0.0, 01), reduced cell proliferation (P < 0.05) and increased RGCs apoptosis rate (P < 0.05) compared with RB and RC group. After 24 h, RB and RC group presented significantly
higher ROS level (P < 0.05) which was reduced in RD group (P < 0.05). In conclusion, KLF7 can change sugar induced retinal ganglion cell biological activity and reduce the oxidative stress level.
Collapse
Affiliation(s)
- Lan Liu
- Department of Ophthalmology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Xinchao Cheng
- Department of Ophthalmology, Xianning City Center, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, Hubei Province, 437000, China
| | - Shaomin Li
- Department of Pediatric Ophthalmology, Zhongxiang Aier Eye Hospital, Jingmen City, Hubei Province, 448001, China
| |
Collapse
|
5
|
Li J, Wang C, Cheng R, Su H, Wang L, Ji L, Ji H. KLF11 promotes the progression of glioma via regulating HJURP. Cell Biol Int 2022; 46:1144-1155. [PMID: 35293659 DOI: 10.1002/cbin.11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/09/2022]
Abstract
Understanding the molecular mechanism of glioma is very important for the diagnosis and treatment of glioma. Recently, a new study illustrated that KLF11 could be a potential prognostic and diagnostic biomarker in glioma, but the critical role is not illustrated. In this paper, we found that KLF11 was highly expressed in glioma cancer tissues and cells, and KLF11 high expression of glioblastoma (GBM) and Lower-grade glioma (LGG) were correlated with poorer overall survival and disease-free survival percentages. KLF11 knockdown inhibited glioma cell proliferation and migration, while KLF11 overexpression enhanced cell proliferation and migration. In vivo, knockdown of KLF11 reduced the tumor size of glioma. With regard to the molecular regulatory mechanism, we clarified that the Holliday Junction Recognition Protein (HJURP) was positively regulated by KLF11. Meanwhile, we demonstrated that HJURP knockdown also inhibited glioma carcinoma progression. Overexpression of HJURP rescued the suppressed proliferation and migration function of glioma cells with depletion of KLF11. Therefore, our study demonstrated the function of KLF11 in glioma and showed KLF11 and HJURP could be prognostic and diagnostic markers in glioma, which provides a new insight of glioma therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jian Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Chanzhi City People's hospital, Chanzhi, 046099, Shanxi Province, China
| | - Chunhong Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Rui Cheng
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Haiyang Su
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Lijun Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Lei Ji
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Hongming Ji
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| |
Collapse
|
6
|
Zhu KY, Tian Y, Li YX, Meng QX, Ge J, Cao XC, Zhang T, Yu Y. The functions and prognostic value of Krüppel-like factors in breast cancer. Cancer Cell Int 2022; 22:23. [PMID: 35033064 PMCID: PMC8760734 DOI: 10.1186/s12935-022-02449-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Krüppel‐like factors (KLFs) are zinc finger proteins which participate in transcriptional gene regulation. Although increasing evidence indicate that KLFs are involved in carcinogenesis and progression, its clinical significance and biological function in breast cancer are still limited. Methods We investigated all the expression of KLFs (KLF1-18) at transcriptional levels by using Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA). The mRNA and protein expression levels of KLFs were also determined by using RT-qPCR and immunohistochemistry, respectively. CBioPortal, GeneMANIA and STRING were used to comprehensive analysis of the molecular characteristics of KLFs. The clinical value of prognostic prediction based on the expression of KLFs was determined by using the KM plotter. The relevant molecular pathways of KLFs were further analyzed by using Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Finally, we investigated the effect of KLF2 and KLF15 on biological behavior of breast cancer cells in vitro. Results The expression of KLF2/4/6/8/9/11/15 was significantly down-regulated in breast cancer. The patients with high KLF2, KLF4 or KLF15 expression had a better outcome, while patients with high KLF8 or KLF11 had a poor prognosis. Furthermore, our results showed that KLF2 or KLF15 can be used as a prognostic factor independent on the other KLFs in patients with breast cancer. Overexpression of KLF2 or KLF15 inhibited cell proliferation and migration, and blocked cell cycle at G0/G1 phase, resulting in cell apoptosis. Conclusions KLF2 and KLF15 function as tumor suppressors in breast cancer and are potential biomarkers for prognostic prediction in patients with breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02449-6.
Collapse
Affiliation(s)
- Ke-Yun Zhu
- Department of Hepatobiliary Surgery, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yao Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying-Xi Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qing-Xiang Meng
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Radiobiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Ge
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
| | - Xu-Chen Cao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
| | - Ti Zhang
- Department of Hepatobiliary Surgery, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yue Yu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.
| |
Collapse
|
7
|
Yang Y, Li J, Yao L, Wu L. Effect of Photodynamic Therapy on Gemcitabine-Resistant Cholangiocarcinoma in vitro and in vivo Through KLF10 and EGFR. Front Cell Dev Biol 2021; 9:710721. [PMID: 34805140 PMCID: PMC8595284 DOI: 10.3389/fcell.2021.710721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma is a relatively rare neoplasm with increasing incidence. Although chemotherapeutic agent such as gemcitabine has long been used as standard treatment for cholangiocarcinoma, the interindividual variability in target and drug sensitivity and specificity may lead to therapeutic resistance. In the present study, we found that photodynamic therapy (PDT) treatment inhibited gemcitabine-resistant cholangiocarcinoma cells via repressing cell viability, enhancing cell apoptosis, and eliciting G1 cell cycle arrest through modulating Cyclin D1 and caspase 3 cleavage. In vivo, PDT treatment significantly inhibited the growth of gemcitabine-resistant cholangiocarcinoma cell-derived tumors. Online data mining and experimental analyses indicate that KLF10 expression was induced, whereas EGFR expression was downregulated by PDT treatment; KLF10 targeted the EGFR promoter region to inhibit EGFR transcription. Under PDT treatment, EGFR overexpression and KLF10 silencing attenuated the anti-cancer effects of PDT on gemcitabine-resistant cholangiocarcinoma cells by promoting cell viability, inhibiting apoptosis, and increasing S phase cell proportion. Importantly, under PDT treatment, the effects of KLF10 silencing were significantly reversed by EGFR silencing. In conclusion, PDT treatment induces KLF10 expression and downregulates EGFR expression. KLF10 binds to EGFR promoter region to inhibit EGFR transcription. The KLF10/EGFR axis participates in the process of the inhibition of PDT on gemcitabine-resistant cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Clinical Pathology, Hunan Cancer Hospital, Changsha, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jigang Li
- Department of Clinical Pathology, Hunan Cancer Hospital, Changsha, China
| | - Lei Yao
- Academician Expert Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lile Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Xi Z, Zhang R, Zhang F, Ma S, Feng T. KLF11 Expression Predicts Poor Prognosis in Glioma Patients. Int J Gen Med 2021; 14:2923-2929. [PMID: 34234522 PMCID: PMC8254095 DOI: 10.2147/ijgm.s307784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Glioma is a primary intracranial malignant tumor with high recurrence and mortality rates. It is very important to study the prognostic factors. KLF11 can function as an oncogene or a tumor suppressor, depending on the tumor and tissue types and the cancer stage. In this study, we aimed to determine whether KLF11 expression is related to the overall survival of glioma patients. Patients and Methods We investigated KLF11 expression in 116 glioma patients with different grades using Western blot and immunohistochemistry assay. We analyzed the patients with different glioma grades and KLF11 expression levels by Kaplan-Meier survival curves. Independent prognostic factors for poor overall survival were identified by univariate and multivariate analyses. Results There were 37 patients in KLF11 low expression group and 79 patients in high expression group. There was no difference in gender, age, tumor diameter or tumor location between two groups. The patients in KLF11 high expression group had higher ECOG score (P =0.025) and higher WHO grades (P =0.029). Western blot and immunohistochemistry assay showed KLF11 expression was significantly upregulated in glioma groups compared with normal brain tissues group (P < 0.05), and the expression in grades III-IV was significantly higher than those in grades I-II (P < 0.05). Kaplan-Meier survival curve analysis showed high KLF11 expression tended to reduce the overall survival (P < 0.05). After univariate and multivariate analyses, KLF11 expression (P =0.003) and age (P =0.007) were independent prognostic factors for poor survival in glioma patients. Conclusion KLF11 expression was increased in glioma tissues, and high KLF11 expression was associated with poor prognosis. KLF11 expression was an independent prognostic factor for poor survival in glioma patients. KLF11 may serve as a novel prognostic marker for gliomas and as a novel treatment target.
Collapse
Affiliation(s)
- Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Furong Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shuang Ma
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tianda Feng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
9
|
Wang H, Shi Y, Chen CH, Wen Y, Zhou Z, Yang C, Sun J, Du G, Wu J, Mao X, Liu R, Chen C. KLF5-induced lncRNA IGFL2-AS1 promotes basal-like breast cancer cell growth and survival by upregulating the expression of IGFL1. Cancer Lett 2021; 515:49-62. [PMID: 34052325 DOI: 10.1016/j.canlet.2021.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Basal-like breast cancer (BLBC) is the most malignant subtype of breast cancer and has a poor prognosis. Kruppel-like factor 5 (KLF5) is an oncogenic transcription factor in BLBCs. The mechanism by which KLF5 promotes BLBC by regulating the transcription of lncRNAs has not been fully elucidated. In this study, we discovered that lncRNA IGFL2-AS1 is a downstream target gene of KLF5 and that IGFL2-AS1 mediates the pro-proliferation and pro-survival functions of KLF5. Additionally, we demonstrated that IGFL2-AS1 functions by upregulating the transcription of its neighboring gene IGFL1 via two independent mechanisms. On the one hand, nuclear IGFL2-AS1 promotes the formation of a KLF5/TEAD4 transcriptional complex at the IGFL1 gene enhancer. On the other hand, cytoplasmic IGFL2-AS1 inhibits the expression of miR4795-3p, which targets the IGFL1 gene. TNFα induces the expression of IGFL2-AS1 and IGFL1 through KLF5. Taken together, the results of this study indicate that IGFL2-AS1 and IGFL1 may serve as new therapeutic targets for BLBCs.
Collapse
Affiliation(s)
- Haixia Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Chuan-Huizi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
10
|
An ZJ, Li Y, Tan BB, Zhao Q, Fan LQ, Zhang ZD, Zhao XF, Li SY. Up-regulation of KLF17 expression increases the sensitivity of gastric cancer to 5-fluorouracil. Int J Immunopathol Pharmacol 2021; 35:20587384211010925. [PMID: 33960231 PMCID: PMC8113926 DOI: 10.1177/20587384211010925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been reported that the expression of Krüppel-like factor 17 (KLF17) was
associated with the occurrence, development, invasion, metastasis and
chemotherapy resistance of various tumors. However, the detailed mechanisms by
which KLF17 promotes chemotherapy resistance in gastric cancer (GC) have not
been fully investigated. In the present study, we collected the GC tissues and
non-tumor tissues (matched adjacent normal tissues with corresponding GC
tissues) of 60 GC patients, used qRT-PCR, Western blot and immunohistochemistry
assay to analyze the relationship between the expression of KLF17 and the
clinical pathological data of the patients. The effect of KLF17 on the
sensitivity of GC cell lines to 5-fluorouracil (5-FU), and the potential
mechanism were detected by MTS assay, Flow cytometry assay, and Western blot.
Compared with non-tumor tissues, the expression level of KLF17 in GC tissue was
significantly down-regulated, and the expression level of KLF17 in GES-1 cell
line and GC cell lines also had a similar trend. Down-regulated expression of
KLF17 is related to tumor size, invasion, regional lymph node metastasis, and
TNM staging. Furthermore, through upregulating the expression of KLF17, the
sensitivity of BGC-823 and SGC-7901 cell lines to 5-FU was obviously increased.
Mechanistically, upregulation the expression of KLF17 can inhibit the
expressions of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and
B-Cell lymphoma-2 (BCL-2), which have been reported to be associated with drug
resistance and cell proliferation. Collectively, these data implied that KLF17
has the biological effect of inhibiting chemotherapy resistance of GC, and it
could be a potential strategy for the GC chemotherapy resistance.
Collapse
Affiliation(s)
- Zhao-Jie An
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bi-Bo Tan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Qiao Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Dong Zhang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Feng Zhao
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shao-Yi Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Zhang P, Katzaroff AJ, Buttitta LA, Ma Y, Jiang H, Nickerson DW, Øvrebø JI, Edgar BA. The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proc Natl Acad Sci U S A 2021; 118:e2015675118. [PMID: 33558234 PMCID: PMC7896318 DOI: 10.1073/pnas.2015675118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Alexia J Katzaroff
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Laura A Buttitta
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Yiqin Ma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Huaqi Jiang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Derek W Nickerson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jan Inge Øvrebø
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112;
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
12
|
Li C, Cui J, Zou L, Zhu L, Wei W. Bioinformatics analysis of the expression of HOXC13 and its role in the prognosis of breast cancer. Oncol Lett 2019; 19:899-907. [PMID: 31897205 PMCID: PMC6924138 DOI: 10.3892/ol.2019.11140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The homeobox (HOX) genes, a class of transcription factors, are known to promote embryonic development and induce tumor formation. To date, the HOXA and HOXB gene families have been reported to be associated with breast cancer. However, the expression and exact role of homeobox C13 (HOXC13) in breast cancer has not yet been investigated. In the present study, the HOXC13 expression in human breast cancer was evaluated using the Oncomine database and Cancer Cell Line Encyclopedia (CCLE). Next, the Gene expression-based Outcome for Breast cancer online database, cBioportal, University of California Santa Cruz Xena browser and bc-GenExMinerv were used to explore the specific expression of HOXC13 in breast cancer. The methylation and mutation status of HOXC13 in breast cancer was then validated using the CCLE and cBioportal databases. Finally, the co-expression of HOX transcript antisense RNA (HOTAIR) and HOXC13 in breast cancer were analyzed and their impact on clinical prognosis determined. It was found that the expression of HOXC13 was high in breast cancer compared with other types of cancer, such as gastric cancer and colon cancer. Following co-expression analysis, a significant positive association was identified between HOTAIR and HOXC13. An association between HOTAIR and HOXC13, and lymph node and distant metastasis recurrence was also revealed during the development of breast cancer. Of note, survival analysis showed that high expression of HOTAIR and HOXC13 predicted poor prognosis. These findings revealed that HOXC13 plays an important role in the progression of breast cancer. However, the specific mechanism needs to be confirmed by subsequent experiments.
Collapse
Affiliation(s)
- Changyou Li
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Junwei Cui
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Li Zou
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Lizhang Zhu
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Wei Wei
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|