1
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
2
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, Lin Z, Zhang Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238:154030. [PMID: 36116329 DOI: 10.1016/j.prp.2022.154030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
Collapse
Affiliation(s)
- Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Yiwen Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Zixuan Lin
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Tian W, Pang X, Luan F. Diagnosis value of miR-181, miR-652, and CA72-4 for gastric cancer. J Clin Lab Anal 2022; 36:e24411. [PMID: 35446997 PMCID: PMC9169223 DOI: 10.1002/jcla.24411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To find a useful disease marker for early diagnosis of gastric cancer, we tried to explore the expression of serum miR-181, miR-652, and carbohydrate antigen 72-4 (CA72-4). PATIENTS AND METHODS According to clinical pathologic stages, 112 patients with gastric cancer were divided into early gastric cancer group (n = 60) and advanced gastric cancer group (n = 52), stage I-II (n = 65), and stage III-IV (n = 47). Another 50 cases of gastric benign lesions and 40 healthy controls were also selected. Real-time quantitative PCR together with chemiluminescence were applied to detect expression levels. ROC curve was applied to judge their diagnostic efficiency. Pearson's correlation analysis was put into use to investigate the relevance of three indicators. RESULTS Compared with benign lesions group and control group, significantly higher expression levels were found in patients of gastric cancer (all p < 0.001). Similarly, compared with early gastric cancer group, significantly higher expression levels were found in advanced gastric cancer group (all p < 0.001). The same result was also found in stage III-IV (all p < 0.001). The best cutoff values were 0.93, 2.38, and 16.94 U/ml, respectively. The area under the curve (0.917, 95%CI: 0.856-0.975) of the three combined diagnosis of early gastric cancer was the largest, and its sensitivity and specificity were 92.5% and 86.8%. And miR-181 and miR-652 were positively correlated with CA72-4 (r = 0.772, p < 0.001, r = 0.853, p < 0.001). CONCLUSION Serum miR-181, miR-652, and CA72-4 are closely linked to the occurrence and development of gastric cancer. Combination of three indicators has diagnostic value for early gastric cancer.
Collapse
Affiliation(s)
- Wenyan Tian
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| | - Xueqin Pang
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| | - Fujuan Luan
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| |
Collapse
|
5
|
Liu J, Yang T, Huang Z, Chen H, Bai Y. Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 2022; 50:92. [PMID: 35593304 DOI: 10.3892/ijmm.2022.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of endogenous non‑coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post‑transcriptional level by targeting the 3'‑untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus‑cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non‑canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.
Collapse
Affiliation(s)
- Junjie Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Tianhao Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Zishen Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Huifang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| |
Collapse
|
6
|
MiR-223 Promotes Tumor Progression via Targeting RhoB in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6708871. [PMID: 35035482 PMCID: PMC8758265 DOI: 10.1155/2022/6708871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is among the most prevalent causes of cancer-related death globally. MiR-223 has been implicated in a variety of cellular mechanisms linked to cancer progression. However, the miR-223 expressions and its function in GC are unknown. We discovered that miR-223 expression was raised in GC tissues in comparison with nearby normal tissues in this investigation. Additionally, multiplied miR-223 expression was strongly linked with TNM stage (p=0.022), live metastasis (p=0.004),lymph node metastasis (p=0.004),and Borrmann type and was associated with an unfavorable prognostic for patients with GC. Furthermore, suppressing miR-223 significantly increased cell death and prevented cell migration and invasion in vitro. Additionally, miR-223 silencing decreased tumor development in vivo. Additionally, we discovered that miR-223 enhanced GC development by specifically targeting RhoB. In summary, our findings reveal that miR-223 increases tumor progression in GC by targeting RhoB, suggesting that it could serve to be a potential biomarker for the prediction of the disease.
Collapse
|
7
|
Chi X, Jiang Y, Chen Y, Lv L, Chen J, Yang F, Zhang X, Pan F, Cai Q. Upregulation of microRNA miR-652-3p is a prognostic risk factor for hepatocellular carcinoma and regulates cell proliferation, migration, and invasion. Bioengineered 2021; 12:7519-7528. [PMID: 34608826 PMCID: PMC8806865 DOI: 10.1080/21655979.2021.1979861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As powerful regulatory factors, microRNAs (miRNAs) are involved in tumor progression. The current research aimed to excavate the prognostic significance and potential regulatory mechanisms of miR-652-3p in hepatocellular carcinoma (HCC). Expression of miR-652-3p in HCC tissues and cells was exposed by Quantitative real-time polymerase chain reaction (RT-qPCR) assay, and we found that miR-652-3p was elevated in HCC tissues and cells than in the control group (P < 0.05). Then, the relationship between miR-652-3p levels and clinical characteristics was obtained from the Chi-square test. Kaplan-Meier survival analysis and Cox regression model to explore the outcome of miR-652-3p on the prognosis of HCC. The results investigated that overexpression of miR-652-3p was related to clinical tumor-node-metastasis (TNM) stage (P = 0.020) and differentiation (P = 0.031). HCC patients with elevated miR-652-3p levels were correlated with poor overall survival (log-rank, P = 0.007), and maybe a possible prognostic marker for HCC. Finally, CCK-8, colony formation, wound healing and Transwell assay was detected after transfection of HCC cells with miR-652-3p mimic or inhibitor. And the results confirmed that elevation miR-652-3p promoted the proliferation, migration, and invasion of tumor cells (P < 0.05). All data indicated that elevated miR-652-3p is a prognostic marker and would be able to participate in tumor progression of HCC by regulating cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Xiaobin Chi
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Yongbiao Chen
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Jianwei Chen
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Xiaojin Zhang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Fan Pan
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| |
Collapse
|
8
|
Stevens MT, Saunders BM. Targets and regulation of microRNA-652-3p in homoeostasis and disease. J Mol Med (Berl) 2021; 99:755-769. [PMID: 33712860 DOI: 10.1007/s00109-021-02060-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
microRNA are small non-coding RNA molecules which inhibit gene expression by binding mRNA, preventing its translation. As important regulators of gene expression, there is increasing interest in microRNAs as potential diagnostic biomarkers and therapeutic targets. Studies investigating the role of one of the miRNA-miR-652-3p-detail diverse roles for this miRNA in normal cell homoeostasis and disease states, including cancers, cardiovascular disease, mental health, and central nervous system diseases. Here, we review recent literature surrounding miR-652-3p, discussing its known target genes and their relevance to disease progression. These studies demonstrate that miR-652-3p targets LLGL1 and ZEB1 to modulate cell polarity mechanisms, with impacts on cancer metastasis and asymmetric cell division. Inhibition of the NOTCH ligand JAG1 by miR-652-3p can have diverse effects on angiogenesis and immune cell regulation. Investigation of miR-652-3p and other dysregulated miRNAs identified a number of pathways potentially regulated by miR-652-3p. This review demonstrates that miR-652-3p has great promise as a diagnostic or therapeutic target due to its activity across multiple cellular systems.
Collapse
Affiliation(s)
- Maxwell T Stevens
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Wu JC, Liu ZH, Ding X, Ke RS. miR-3178 as a prognostic indicator and tumor suppressor of gastric cancer. Ir J Med Sci 2021; 191:139-145. [PMID: 33547612 DOI: 10.1007/s11845-021-02527-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gastric cancer is a common malignant tumor with an increasing death rate. MicroRNA can serve as a promising biomarker for the progression and prognosis of various cancers. AIMS The clinical significance and biological function of miR-3178 in gastric cancer was assessed in this study. METHODS A total of 117 paired tissues were collected from gastric cancer patients. Quantitative real-time polymerase chain reaction was used to detect the expression of miR-3178 in gastric cancer tissues and cells. The association between miR-3178 expression and the clinicopathological features of patients were analyzed by χ2 test. Kaplan-Meier analysis and Cox regression were employed to investigate the prognostic value of miR-3178. Finally, the effect of miR-3178 on the cellular process of gastric cancer was investigated by CCK-8 and transwell assay. RESULTS miR-3178 was downregulated in gastric cancer tissues and cells, which showed a significant association with the TNM stage and lymph node metastasis of patients and a poor prognosis. MiR-3178 and TNM stage were considered as two independent prognostic factors for gastric cancer. Furthermore, the downregulation of miR-3178 promoted cell proliferation, migration, and invasion of gastric cancer by regulating Notch1. CONCLUSION miR-3178 may be involved in the progression of gastric cancer, which provides new insights into the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jin-Cheng Wu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, Fujian, China
| | - Zhao-Hui Liu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, Fujian, China
| | - Xiaomei Ding
- Department of Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Rui-Sheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, Fujian, China.
| |
Collapse
|
10
|
Ying H, FengYing S, YanHong W, YouMing H, FaYou Z, HongXiang Z, XiaoLei T. MicroRNA-155 from sputum as noninvasive biomarker for diagnosis of active pulmonary tuberculosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1419-1425. [PMID: 33235699 PMCID: PMC7671418 DOI: 10.22038/ijbms.2020.44029.10324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a widespread infectious disease around the world. Early diagnosis is always important in order to avoid spreading. At present, many studies have confirmed that microRNA (miRNA) could be a useful tool for diagnosis. This study aimed to evaluate whether miRNAs could be regarded as a noninvasive diagnosis biomarker from sputum for pulmonary tuberculosis (PTB). Materials and Methods The M. tuberculosis strain H37Rv was incubated and cultured with human macrophage line THP-1. The total RNA was extracted from the THP-1 cells for detection. Six increased expressions of miRNAs were selected by miRNA microarray chips and the miRNAs were confirmed by qRT-PCR in the M. tuberculosis infection cell model. At last, the efficiency of other methods was compared with using miRNA. Results Only miR-155 showed a better diagnostic value for PTB than the other five miRNAs to distinguish PTB from non-PTB, including pneumonia, lung cancer, and unexplained pulmonary nodules. Next, we detected and analyzed the results of 68 PTB patients and 122 non-PTB, the sensitivity and specificity of miR-155 detection was 94.1% and 87.7%, respectively. It was higher than sputum smear detection and anti-TB antibody detection. But slightly lower than ELISpot (97%, P=0.404). Interestingly, the ranking of sputum smear by Ziehl-Neelsen staining had positive correlation with the expression level of miR-155 in smear-positive sputum (R2=0.8443, P<0.05). Conclusion Our research suggested that miR-155 may be an efficiency biomarker for active PTB diagnosis and bacteria-loads evaluation.
Collapse
Affiliation(s)
- Hua Ying
- Vascular Disease Research Center and Basic Medical Laboratory, the Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Wuhu 241000, Anhui Province, PR China.,School of Nursing, Wannan Medical College, Wenchang Xi Road 22#, Wuhu 241000, Anhui Province, PR China
| | - Sun FengYing
- Department of Clinical Laboratory, the Second Peoples' Hospital of Wuhu city, Jiuhua Zhong Road 259#, Wuhu 241000, Anhui Province, PR China
| | - Wu YanHong
- Department of Microbiology, Wannan Medical College, Wenchang Xi Road 22#, Wuhu 241000, Anhui Province, PR China
| | - Huang YouMing
- Vascular Disease Research Center and Basic Medical Laboratory, the Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Wuhu 241000, Anhui Province, PR China
| | - Zhou FaYou
- Vascular Disease Research Center and Basic Medical Laboratory, the Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Wuhu 241000, Anhui Province, PR China
| | - Zhang HongXiang
- Vascular Disease Research Center and Basic Medical Laboratory, the Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Wuhu 241000, Anhui Province, PR China
| | - Tang XiaoLei
- Vascular Disease Research Center and Basic Medical Laboratory, the Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Wuhu 241000, Anhui Province, PR China
| |
Collapse
|
11
|
Tang J, Hu Y, Zhang C, Gong C. miR-4636 inhibits tumor cell proliferation, migration and invasion, and serves as a candidate clinical biomarker for gastric cancer. Oncol Lett 2020; 21:33. [PMID: 33262825 PMCID: PMC7693299 DOI: 10.3892/ol.2020.12294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies with a high worldwide incidence rate. The association between microRNAs (miRs) and malignancy has been widely studied in recent years. The aim of the present study was to assess the clinical value of miR-4636 in patients with GC and its effect on the proliferation, migration and invasion of GC cells. Reverse transcription-quantitative PCR was used to detect the expression of miR-4636. Receiver operating characteristics curve, Kaplan-Meier survival curve and Cox regression analyses were used to evaluate the diagnostic and prognostic value of miR-4636. Transwell migration and MTT assays were used to assess the regulatory effects of miR-4636 expression on the biological function of GC. The results demonstrated that the expression of miR-4636 was significantly downregulated in GC serum and tissue samples, as well as in GC cell lines. The aberrant miR-4636 expression was closely associated with lymph node metastasis and TNM stage, and had considerable diagnostic and prognostic significance in patients with GC. Cellular experiments revealed that the overexpression of miR-4636 inhibited GC cell proliferation, migration and invasion, while the knockdown of miR-4636 led to opposite effects on the biological function of GC. In summary, decreased miR-4636 expression may serve as a biomarker for the diagnosis and prognosis of GC. Furthermore, miR-4636 overexpression significantly inhibited GC cell proliferation, migration and invasion, indicating the potential of miR-4636 as a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Jiaying Tang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Ying Hu
- Department of Blood Transfusion, Qilu Hospital Huantai Branch, Zibo, Shandong 256400, P.R. China
| | - Chunjie Zhang
- Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Cuixue Gong
- Outpatient Dressing Room, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
12
|
Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death Dis 2020; 11:643. [PMID: 32811810 PMCID: PMC7434919 DOI: 10.1038/s41419-020-02821-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
As a common female malignancy, triple-negative breast cancer (TNBC) is the most serious subtype in breast cancer (BC). BAALC binder of MAP3K1 and KLF4 (BAALC) is a common oncogene in acute myelocytic leukemia (AML). We sought to explore the role of BAALC in TNBC. In this study, BAALC was significantly upregulated in TNBC tissues and cells. Then, the results of functional assays disclosed that BAALC facilitated cell proliferation, invasion, and epithelial–mesenchymal transition (EMT) processes, but repressed cell apoptosis in TNBC. Next, miR-380–3p was identified as the upstream of BAALC in TNBC cells. Moreover, LRRC75A-AS1 (also named small nucleolar RNA host gene 29: SNHG29) was verified to act as the sponge of miR-380–3p to elevate BAALC expression in TNBC. Besides, LRRC75A-AS1 could negatively regulate miR-380–3p but positively regulate BAALC expression. Finally, rescue assays elucidated that LRRC75A-AS1 facilitated cell proliferation, invasion, and EMT processes in TNBC by targeting miR-380–3p/BAALC pathway. Taken together, our study revealed a novel ceRNA network of LRRC75A-AS1/miR-380–3p/BAALC in accelerating TNBC development, indicating new promising targets for TNBC treatment.
Collapse
|
13
|
Li Y, Tian Z, Tan Y, Lian G, Chen S, Chen S, Li J, Li X, Huang K, Chen Y. Bmi-1-induced miR-27a and miR-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Mol Cancer 2020; 19:109. [PMID: 32580736 PMCID: PMC7315508 DOI: 10.1186/s12943-020-01229-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously reported an inverse relationship between B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and Raf kinase inhibitory protein (RKIP), which is associated with the prognosis of gastric cancer (GC). In this study, we further explored the microRNA (miRNA) regulatory mechanism between Bmi-1 and RKIP. METHODS Microarray analysis was first carried out to identify miRNA profiles that were differentially expressed in cells overexpressing Bmi-1. Then, miRNAs that could regulate RKIP were identified. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to measure the expression of Bmi-1, miR-155, miR-27a and RKIP. RKIP was confirmed as a target of miR-27a and miR-155 through luciferase reporter assays, qRT-PCR and Western blotting. The effects of the Bmi-1/miR-27a/RKIP and Bmi-1/miR-155/RKIP axes on tumor growth, proliferation, migration, invasion, colony-formation ability, metastasis and chemoresistance were investigated both in vitro and in vivo. RESULTS The downregulation of RKIP by Bmi-1 occurred at the protein but not mRNA level. This indicates probable posttranscriptional regulation. miRNA expression profiles of cells with ectopic expression of Bmi-1 were analyzed and compared to those of control cells by microarray analysis. A total of 51 upregulated and 72 downregulated miRNAs were identified. Based on publicly available algorithms, miR-27a and miR-155 were predicted, selected and demonstrated to target RKIP. Bmi-1, miR-27a and miR-155 are elevated in human GC and associated with poor prognosis of GC, while RKIP is expressed at lower levels in GC and correlated with good prognosis. Then, in vitro tests shown that in addition to regulating RKIP expression via miR-27a and miR-155, Bmi-1 was also able to regulate the migration, invasion, proliferation, colony-formation ability and chemosensitivity of GC cells through the same pathway. Finally, the in vivo test showed similar results, whereby the knockdown of the Bmi-1 gene led to the inhibition of tumor growth, metastasis and chemoresistance through miR-27a and miR-155. CONCLUSIONS Bmi-1 was proven to induce the expression of miR-27a and miR-155 and thus promote tumor metastasis and chemoresistance by targeting RKIP in GC. Overall, miR-27a and miR-155 might be promising targets for the screening, diagnosis, prognosis, treatment and disease monitoring of GC.
Collapse
Affiliation(s)
- Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shangxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Xuanna Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| |
Collapse
|
14
|
Starzyńska T, Karczmarski J, Paziewska A, Kulecka M, Kuśnierz K, Żeber-Lubecka N, Ambrożkiewicz F, Mikula M, Kos-Kudła B, Ostrowski J. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Int J Mol Sci 2020; 21:E4470. [PMID: 32586046 PMCID: PMC7352720 DOI: 10.3390/ijms21124470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Most pancreatic neuroendocrine tumors (PNETs) are indolent, while pancreatic ductal adenocarcinomas (PDACs) are particularly aggressive. To elucidate the basis for this difference and to establish the biomarkers, by using the deep sequencing, we analyzed somatic variants across coding regions of 409 cancer genes and measured mRNA/miRNA expression in nine PNETs, eight PDACs, and four intestinal neuroendocrine tumors (INETs). There were 153 unique somatic variants considered pathogenic or likely pathogenic, found in 50, 57, and 24 genes in PDACs, PNETs, and INETs, respectively. Ten and 11 genes contained a pathogenic mutation in at least one sample of all tumor types and in PDACs and PNETs, respectively, while 28, 34, and 11 genes were found to be mutated exclusively in PDACs, PNETs, and INETs, respectively. The mRNA and miRNA transcriptomes of PDACs and NETs were distinct: from 54 to 1659 differentially expressed mRNAs and from 117 to 250 differentially expressed miRNAs exhibited high discrimination ability and resulted in models with an area under the receiver operating characteristics curve (AUC-ROC) >0.9 for both miRNA and mRNA. Given the miRNAs high stability, we proposed exploring that class of RNA as new pancreatic tumor biomarkers.
Collapse
Affiliation(s)
- Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Katarzyna Kuśnierz
- Department of Gastrointestinal Surgery, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, ENETS Center of Excelence, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
15
|
Li Y, Liu Y, Yao J, Li R, Fan X. Downregulation of miR-484 is associated with poor prognosis and tumor progression of gastric cancer. Diagn Pathol 2020; 15:25. [PMID: 32192507 PMCID: PMC7082931 DOI: 10.1186/s13000-020-00946-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer is one of the most common cancers leading to high cancer mortality. MicroRNA-484 (miR-484) has been evaluated as a biomarker for various types of cancers. The subject of this study is to investigate the functional role of miR-484 in gastric cancer. Methods The expression of miR-484 in gastric cancer was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Kaplan-Meier survival and Cox regression analyses were employed to explore the prognostic significance of miR-484 in gastric cancer. The functional role of miR-484 in gastric cancer was determined by CCK-8 and Transwell assays. Results The results showed that miR-484 was significantly downregulated in gastric cancer tissues and cell lines. The downregulation of miR-484 was closely related to differentiation, lymph node metastasis, TNM stage, and poor prognosis. Cox regression analyses demonstrated that miR-484 was an independent prognosis indicator for gastric cancer patients. Additionally, the downregulation of miR-484 enhanced cell proliferation, migration, and invasion in gastric cancer cells. Conclusion These data demonstrated that miR-484 can serve as a potential prognostic biomarker and therapeutic target for gastric cancer and it may be involved in the progression of gastric cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Yusong Liu
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Jie Yao
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Rui Li
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Xiaocheng Fan
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China.
| |
Collapse
|