1
|
Vetter P, Niggli C, Hambrecht J, Haschtmann D, Pape HC, Mica L. Prothrombin time predicting time-dependent and risk-stratified mortality in polytrauma patients. Int J Emerg Med 2025; 18:69. [PMID: 40175890 PMCID: PMC11963296 DOI: 10.1186/s12245-025-00841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/22/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Polytrauma is associated with a high mortality rate and often accompanied by coagulopathy. Prothrombin time (PT) is a prognostic factor for mortality in polytrauma patients. The aim was to analyze the time- and severity-dependent role of PT in polytrauma patients related to mortality. METHODS Patients (≥ 16 years) with an Injury Severity Score ≥ 16 were retrospectively included, yielding 2890 cases after exclusion criteria. PT was measured at admission and 1, 2, 3, 4, 6, 8, 12, 24, and 48 h thereafter, reported as percentage activity of the reference reagence [%]. According to survival status, two groups were formed and compared. Binary logistic regression was used to test PT as an independent predictor for mortality. A closest top-left threshold method served for calculating threshold values between the survivor and non-survivor group. Patients were divided into subgroups according to PT levels and mortality was assessed for each subgroup at each time point. RESULTS PT values in the non-survivor group were lower throughout the measuring period (p < 0.05). PT threshold values declined from admission until 2 h afterwards, reaching less than 50%. Already a slightly compromised PT (≤ 70%) represented a significant factor (p < 0.05) for mortality at early and late time points, associated with a rate of more than 20%. In extremis, PT values of ≤ 25% were related to a mortality rate of more than 50% up to four hours after admission. CONCLUSION There are early and significant differences in mortality according to PT values in polytrauma patients (despite resuscitation measures), urging for a fast correction of PT. Time-dependent and stratified referencing may help clinicians estimate the mortality risk and decide upon the extent of surgical care.
Collapse
Affiliation(s)
- Philipp Vetter
- Department of Trauma Surgery, University Hospital Zurich, Zurich, 8091, Switzerland.
| | - Cédric Niggli
- Department of Trauma Surgery, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Jan Hambrecht
- Department of Trauma Surgery, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Daniel Haschtmann
- Department of Spine Surgery, Schulthess Clinic, Zurich, 8008, Switzerland
| | - Hans-Christoph Pape
- Department of Trauma Surgery, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ladislav Mica
- Department of Trauma Surgery, University Hospital Zurich, Zurich, 8091, Switzerland
| |
Collapse
|
2
|
Azoulay E, Zuber J, Bousfiha AA, Long Y, Tan Y, Luo S, Essafti M, Annane D. Complement system activation: bridging physiology, pathophysiology, and therapy. Intensive Care Med 2024; 50:1791-1803. [PMID: 39254734 DOI: 10.1007/s00134-024-07611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
The complement system is a set of over 50 proteins that constitutes an essential part of the innate immune system. Complement system activation involves an organized proteolytic cascade. Overactivation of complement system activation is the main pathogenic mechanism of several diseases and contributes to the manifestations of many other conditions. This review describes the normal complement system and the role for complement dysregulation in critical illnesses, notably sepsis and acute respiratory distress syndrome. Complement activation is involved in the immune system response to pathogens but, when excessive, can contribute to tissue damage, runaway inflammation, and capillary leakage syndrome. Complement overactivation may play a key role in severe forms of coronavirus disease 2019 (COVID-19). Two diseases whose manifestations are mainly caused by complement overactivation, namely, atypical hemolytic and uremic syndrome (aHUS) and myasthenia gravis, are discussed. A diagnostic algorithm for aHUS is provided. Early complement-inhibiting therapy has been proven effective. When renal transplantation is required, complement-inhibiting drugs can be used prophylactically to prevent aHUS recurrence. Similarly, acetylcholine-receptor autoantibody-positive generalized myasthenia gravis involves complement system overactivation and responds to complement inhibition. The two main complement inhibitors used in to date routine are eculizumab and ravulizumab. The main adverse event is Neisseria infection, which is rare and preventable, but can be fatal. The complement system is crucial to health but, when overactivated, can cause or contribute to disease. Effective complement inhibitors are now available, although additional data are required to determine optimal regimens. Further research is also needed to better understand the complement system, develop advanced diagnostic tools, and identify markers that allow the personalization of treatment strategies.
Collapse
Affiliation(s)
- Elie Azoulay
- Intensive Care Unit, Saint-Louis University Hospital, AP-HP, Paris Cité University, Paris, France.
| | - Julien Zuber
- Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker University Hospital, AP-HP, Paris, France
| | - Ahmed Aziz Bousfiha
- Department of Pediatric Infectious and Immunological Diseases, IbnRochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology, Inflammation and Allergy (LICIA), Casablanca, Morocco
- School of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
- Institute of Nephrology, Peking University, Beijing, PR China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
- Huashan Rare Diseases Center, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Diseases, Shanghai, PR China
| | - Meriem Essafti
- Intensive Care Department, Mother-Children Center, Mohamed VI University Hospital, Marrakech, Morocco
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, AP-HP, Garches, France
- Simone Veil School of Medicine, Versailles-Saint Quentin University, Paris-Saclay University, Versaillles, France
- Institut Hospitalo-Universitaire PROMETHEUS & Fédération Hospitalo-Universitaire SEPSIS, Paris-Saclay University, Saclay, France
- INSERM, Garches, France
| |
Collapse
|
3
|
Roué M, Guédon AF, Lapidus N, Razazi K, Hariri G, Morawiec E, Desnos C, Ederhy S, Cohen A, Mekontso Dessap A, Fartoukh M, Labbé V. In-hospital outcomes after acute myocardial infarction with obstructive coronary artery disease in critically ill patients hospitalized for non-cardiac disease. Ann Intensive Care 2023; 13:87. [PMID: 37725298 PMCID: PMC10509106 DOI: 10.1186/s13613-023-01188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the major cardiac complications in patients hospitalized in the intensive care unit (ICU) for non-cardiac disease. A better knowledge of ischemic and bleeding risks in these patients is needed to identify those most likely to benefit from specific cardiac management. We therefore assessed the incidence and predictors of a composite outcome of severe ischemic event (AMI recurrence, ischemic stroke), major bleeding, or all-cause death in this setting. METHODS In this multicenter retrospective study, all consecutive adult patients admitted for non-cardiac disease to four French university hospital ICUs between January 2012 and December 2018 who had an AMI with obstructive coronary artery disease (OCAD) during the ICU stay were considered for inclusion. AMI with OCAD was defined as an elevated cardiac troponin value associated with at least one sign (clinical, electrocardiographic, or echocardiographic) suggestive of myocardial ischemia and presence of OCAD on coronary angiography. The primary endpoint was in-hospital occurrence of the composite outcome. RESULTS Ninety-six patients [median age 69 years, 22 women (23%), 59 with sepsis (61%), 35 with ST elevation (37%), median sequential organ failure assessment (SOFA) of 8 on the day of AMI] were included. The median peak cardiac troponin value was 131 (IQR 44-303) times the upper reference limit. Dual antiplatelet, therapeutic anticoagulation, and early mechanical reperfusion therapies were administered in 61 (64%), 68 (71%), and 47 (49%) patients, respectively. The composite outcome occurred in 48 (50%) patients. Severe ischemic events occurred in 17 (18%) patients and major bleeding in 26 (27%) patients; 26 patients (27%) died in the hospital. AMI management was not significantly different in patients with and without the composite outcome. A history of arterial hypertension (HR 2.05, 95% CI 1.01-4.16) and high SOFA score at the time of AMI (HR 1.07, 95% CI 1.00-1.15) were independent risk factors for the composite outcome. CONCLUSIONS Patients who have an AMI with OCAD during an ICU stay for non-cardiac disease are at risk of a composite outcome of severe ischemia, major bleeding, and death. A history of arterial hypertension and high SOFA scores were independent hazards for poor prognosis.
Collapse
Affiliation(s)
- Morgan Roué
- Service de Médecine Intensive Réanimation, Département Médico-Universitaire APPROCHES, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Alexis F Guédon
- Sorbonne Université, Public Health Department, Saint Antoine Hospital, AP-HP, Paris, France
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Paris, France
| | - Nathanaël Lapidus
- Sorbonne Université, Public Health Department, Saint Antoine Hospital, AP-HP, Paris, France
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Paris, France
| | - Keyvan Razazi
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Département Médico-Universitaire Médecine, AP-HP, Créteil, France
- Université Paris Est, Groupe de Recherche Clinique GR05 CARMAS, Institut Mondor de Recherche Biomédicale, INSERM, Créteil, France
| | - Geoffroy Hariri
- Service de Médecine Intensive Réanimation, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Elise Morawiec
- Service de Médecine Intensive Réanimation, Hôpital La Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Cyrielle Desnos
- Service de Médecine Intensive Réanimation, Département Médico-Universitaire APPROCHES, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Stéphane Ederhy
- Department of Cardiology, UNICO Cardio-Oncology Program, Hôpital Saint-Antoine, AP-HP, Paris, France
- INSERM U 856, Paris, France
| | - Ariel Cohen
- Department of Cardiology, UNICO Cardio-Oncology Program, Hôpital Saint-Antoine, AP-HP, Paris, France
- INSERM U 856, Paris, France
- Sorbonne Université, UMR-S ICAN 1166, Paris, France
| | - Armand Mekontso Dessap
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Département Médico-Universitaire Médecine, AP-HP, Créteil, France
- Université Paris Est, Groupe de Recherche Clinique GR05 CARMAS, Institut Mondor de Recherche Biomédicale, INSERM, Créteil, France
| | - Muriel Fartoukh
- Service de Médecine Intensive Réanimation, Département Médico-Universitaire APPROCHES, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
- Université Paris Est, Groupe de Recherche Clinique GR05 CARMAS, Institut Mondor de Recherche Biomédicale, INSERM, Créteil, France
| | - Vincent Labbé
- Service de Médecine Intensive Réanimation, Département Médico-Universitaire APPROCHES, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France.
- Université Paris Est, Groupe de Recherche Clinique GR05 CARMAS, Institut Mondor de Recherche Biomédicale, INSERM, Créteil, France.
- Service des Soins Intensifs, Hôpital Universitaire Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
4
|
Wang H, Zhang C, Zhang C, Wang Y, Zhai K, Tong Z. MicroRNA-122-5p regulates coagulation and inflammation through MASP1 and HO-1 genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105268. [PMID: 35293311 DOI: 10.1016/j.meegid.2022.105268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 04/11/2023]
Abstract
MiR-122-5p is a diagnostic and prognostic biomarker of sepsis and is correlated with coagulation abnormalities in sepsis. However, its functional aspects remain unknown. This study applied bioinformatics analysis to evaluate the coagulation-related target genes for miR-122-5p. THP-1, HUVEC, and LO-2 cell lines were used in this study. MiR-122-5p mimics were transfected into the three previously mentioned cell lines, which helped in detecting mRNA and protein levels by qRT-PCR and western blotting, respectively. Serum samples from 84 sepsis patients were collected to evaluate target gene code proteins. The protein and mRNA levels of Heme oxygenase1(HO-1), IL-1β, IL-6, monocyte chemoattractant protein 1(MCP-1), and TNF-α were also evaluated in three cell lines. Mannan binding lectin serine peptidase 1(MASP1) was a direct target gene of miR-122-5p, and levels of MASP1, C3, and C4 were all significantly lower in the sepsis with disseminated intravascular coagulopathy (DIC) group than in the sepsis without DIC group. MiR-122-5p mimics could down-regulate HO-1 in the three cell lines. HO-1, IL-1β, IL-6, MCP-1, and TNF-α gene and protein levels were decreased after miR-122-5p mimics were added. MiR-122-5p regulated coagulation and inflammation through MASP1 and HO-1, respectively.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Chunfang Zhang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Yishan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Kan Zhai
- Department of Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100012, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
5
|
Chen K, Lin Y, Liu Y, Liao S, Yang R, Huang J, Xu M, He J. Investigation of Association of Complement 5 Genetic Polymorphisms with Sepsis and Sepsis-Induced Inflammatory Responses. J Inflamm Res 2021; 14:6461-6475. [PMID: 34880647 PMCID: PMC8648101 DOI: 10.2147/jir.s340446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Complement 5 (C5) and C5a production play a pivotal role in the pathophysiology of sepsis. Strong evidence demonstrates an association of C5 gene polymorphisms with various inflammatory diseases. However, no current studies have explored the clinical relevance of C5 polymorphisms in sepsis. Methods Two C5 gene polymorphisms, rs17611 and rs2269067, were identified by genotyping in 636 sepsis patients and 753 controls in a Han Chinese population. C5 gene expression was detected via quantitative real-time PCR. C5a and proinflammatory cytokine production was measured by enzyme-linked immunosorbent assay. An Annexin V apoptosis assay was performed to assess cell apoptosis. Results Our results showed significantly lower frequencies of rs2269067 GC/CC genotypes or C allele in sepsis patients than healthy controls. The frequencies of rs17611 CC/CT genotypes or C allele were significantly overrepresented in both the septic shock and non-survivor subgroups. Patients with this sepsis-associated high-risk rs17611 C allele exhibited a significant increase in C5a, TNF-α and IL-6 production. However, no significant difference in C5a and downstream proinflammatory cytokine production was observed among patients with different rs2269067 genotypes. In addition, in vitro experiments showed an effect of recombinant C5a on enhancing LPS-stimulated IL-1β, IL-6 and TNF-α production and cell apoptosis in THP-1 monocytes. Conclusion The rs2269067 polymorphism conferred protection against sepsis susceptibility. The rs17611 polymorphism was associated with increased C5a production, which ultimately potentiated the secretion of downstream proinflammatory cytokines and conferred susceptibility to sepsis progression and poor prognosis.
Collapse
Affiliation(s)
- Kaidian Chen
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Yao Lin
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Yuchun Liu
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Shuanglin Liao
- The Intensive Care Unit, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Ruoxuan Yang
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Jiefeng Huang
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Mingwei Xu
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Junbing He
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Factor XIII Activity Might Already Be Impaired before Veno-Venous ECMO in ARDS Patients: A Prospective, Observational Single-Center Cohort Study. J Clin Med 2021; 10:jcm10061203. [PMID: 33799338 PMCID: PMC7999955 DOI: 10.3390/jcm10061203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Direct complications in patients receiving extracorporeal (veno-venous) membrane oxygenation (vvECMO) are mainly either due to bleeding or thromboembolism. We aimed to evaluate the course of routine coagulation parameters and the activity of different coagulation factors—with special focus on factor XIII (F XIII)—before, during and after vvECMO in acute respiratory distress syndrome (ARDS) patients. The activity of coagulation factors and rotational thrombelastometry were analyzed in 20 ECMO patients before (T-1) and 6 h (T0), one (T1), three (T3) and seven days (T7) after the implantation, as well as one and three days after the termination of ECMO. F XIII activity was already severely decreased to 37% (30/49) before ECMO. F XIII activity was the only coagulation factor continuously declining during vvECMO, being significantly decreased at T3 (31% (26/45) vs. 24% (18/42), p = 0.0079) and T7 (31% (26/45) vs. 23% (17/37), p = 0.0037) compared to T0. Three days after termination of vvECMO, platelet count and fibrinogen nearly doubled and factors II, V, XI and XIII showed spontaneous significant increases. Severe ARDS patients showed a considerably diminished factor XIII activity before vvECMO initiation and its activity continuously declined later on. Thus, incorporation of F XIII monitoring into the regular hemostaseologic routine during vvECMO therapy seems advisable. Due to the potential development of a hypercoagulatory state after the termination of vvECMO, tight hemostasiologic monitoring should persist in the initial phase after ECMO termination.
Collapse
|
7
|
Shimizu J, Fujino K, Sawai T, Tsujita Y, Tabata T, Eguchi Y. Association between plasma complement factor H concentration and clinical outcomes in patients with sepsis. Acute Med Surg 2021; 8:e625. [PMID: 33510899 PMCID: PMC7814988 DOI: 10.1002/ams2.625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aim The complement system is important for defending against pathogens, however, excessive complement activation is associated with a poor prognosis and organ dysfunction in sepsis. Complement factor H (CFH) acts to prevent excessive complement activation and damage to the self through the regulation of the complement alternative pathway. We investigated the association between plasma CFH levels on admission to the intensive care unit (ICU) and 90‐day mortality, severity scores, and organ dysfunction in patients with sepsis. Methods We assessed the relationship between the plasma CFH on admission to the ICU and 90‐day mortality, severity scores such as the Acute Physiology and Chronic Health Evaluation II score, Sequential Organ Failure Assessment score, and Simplified Acute Physiology Score 2, and organ dysfunction. Results This analysis included 62 patients. The plasma CFH levels were significantly lower in 90‐day non‐survivors than in survivors (70.0 μg/mL [interquartile range, 51.2–97.6] versus 104.8 μg/mL [interquartile range, 66.8–124.2]; P = 0.006) . The plasma CFH levels were associated with 90‐day mortality (odds ratio 0.977; 95% confidence interval, 0.957–0.994; P = 0.01). The plasma CFH levels were negatively correlated with severity scores. The Sequential Organ Failure Assessment scores for the coagulation and neurological components were negatively correlated with the CFH concentration. Conclusion Lower plasma levels of CFH were associated with increased severity and mortality in patients with sepsis on admission to the ICU and were correlated with central nervous system dysfunction and coagulopathy.
Collapse
Affiliation(s)
- Junji Shimizu
- Emergency and Intensive Care Unit Shiga University of Medical Science Hospital Otsu Japan
| | - Kazunori Fujino
- Department of Critical and Intensive Care Medicine Shiga University of Medical Science Shiga Japan
| | - Toshihiro Sawai
- Department of Pediatrics Shiga University of Medical Science Shiga Japan
| | - Yasuyuki Tsujita
- Emergency and Intensive Care Unit Shiga University of Medical Science Hospital Otsu Japan
| | - Takahisa Tabata
- Department of Critical and Intensive Care Medicine Shiga University of Medical Science Shiga Japan
| | - Yutaka Eguchi
- Department of Critical and Intensive Care Medicine Shiga University of Medical Science Shiga Japan
| |
Collapse
|
8
|
Thrombocytopenia and its effect on mortality and morbidity in the intensive care unit. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.842587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Jagdale A, Nguyen H, Li J, Burnette K, Ayares D, Cooper DKC, Hara H. Does expression of a human complement-regulatory protein on xenograft cells protect them from systemic complement activation? Int J Surg 2020; 83:184-188. [PMID: 32987208 DOI: 10.1016/j.ijsu.2020.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/06/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND There are many causes of systemic complement activation, which may have detrimental effects on a pig xenograft. Transgenic expression of one or more human complement-regulatory proteins (hCRPs), e.g., hCD46, provides some protection to the xenograft, but it is not known whether it protects the xenograft from the effects of systemic complement activation. We used wild-type (WT) pig aortic endothelial cells (pAECs) to activate complement, and determined whether the expression of hCD46 on a1,3galactosyltransferase gene-knockout (GTKO) pAECs protected them from injury. METHODS CFSE-labeled and non-labeled pAECs from a WT, a GTKO, or a GTKO/hCD46 pig were separately incubated with heat-inactivated pooled human serum in vitro. Antibody pre-bonded CFSE-labeled and non-labeled pAECs were mixed, and then incubated with rabbit complement. The complement-dependent cytotoxicity was measured by flow cytometry. RESULTS There was significantly less lysis of GTKO/CD46 pAECs (6%) by 50% human serum compared to that of WT (91%, p<0.001) or GTKO (32%, p<0.01) pAECs. The lysis of GTKO pAECs was significantly increased when mixed with WT pAECs (p<0.05). In contrast, there was no significant change in cytotoxicity of GTKO/CD46 pAECs when mixed with WT pAECs. CONCLUSIONS The expression of hCD46 protected pAECs from systemic complement activation.
Collapse
Affiliation(s)
- Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - KaLia Burnette
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Tang N, Pan Y, Xu C, Li D. Characteristics of emergency patients with markedly elevated D-dimer levels. Sci Rep 2020; 10:7784. [PMID: 32385325 PMCID: PMC7210267 DOI: 10.1038/s41598-020-64853-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Markedly elevated D-dimer levels can occur in emergency patients with various clinical situations, and is likely to indicate the presence of coagulopathy, rapid differential diagnosis was crucial for them. METHODS D-dimer was detected in consecutive 813 patients entering the emergency department of our hospital, for the patients with D-dimer levels above 5.0 µg/mL, the final diagnoses and 28-day mortality were confirmed, and the levels of thrombomodulin (TM), thrombin-antithrombin complex (TAT) and plasmin-antiplasmin complex (PAP) on admission were detected. RESULTS There were 148 emergency patients with D-dimer levels higher than 5.0 µg/mL mainly due to sepsis, malignancy, trauma, venous thromboembolism (VTE), cerebrovascular accident, and so on. Both of the TM and TAT levels among these diagnoses were significantly different (p < 0.001). The elevated TM (>13.3 TU/mL) had a predictive value of 96.0% for excluding VTE, and the normal TM had a predictive value of 90.4% for excluding sepsis. The overall 28-day mortality of these patients with D-dimer >5.0 ug/mL was 14.2%, the TAT level on admission was independently associated with 28-day mortality (odds ratio 1.014, 95% CI 1.001-1.027, P = 0.030). CONCLUSIONS The medical emergencies associated with markedly elevated D-dimer levels were revealed, specific markers of endothelial dysfunction and thrombin generation measured by automatic analyzer have the potential to distinguish diagnoses and predict outcomes in these patients.
Collapse
Affiliation(s)
- Ning Tang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yinyin Pan
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Carlisi M, Mancuso S, Caimi G, Siragusa S. Thrombotic risk in paroxysmal nocturnal hemoglobinuria-like (PNH-like) phenotype. Clin Hemorheol Microcirc 2020; 79:491-503. [PMID: 32116238 DOI: 10.3233/ch-190735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement system is an essential component of the innate immune defence that, if overly activated, may damage organs and tissues. For this reason, there is a fine complement regulatory system. The complement modulation system includes two proteins with important regulatory activity, CD55 or decay accelerating factor (DAF) and CD59 or membrane inhibitor of reactive lysis (MIRL).The paroxysmal nocturnal hemoglobinuria (PNH) is a clonal and non-neoplastic disease characterized by intravascular haemolysis, occurrence of thrombosis and bone marrow failure.In clinical practice, in opposition to PNH, a variety of pathological conditions have been observed with an acquired and non-genetic deficiency of the regulatory proteins CD55 and CD59. This abnormal, non-clonal, reduced expression of complement regulatory proteins configures what we may define as PNH-like phenotype.Similarly to PNH, even in the PNH-like phenotype diseases there has been a greater exposure to the mediated complement cellular lysis and, a likely increased risk of thromboembolic events.Therefore, the knowledge of the potential roles of the complement system becomes necessary for a deeper understanding of several pathological conditions and for an improved clinical management of the patients.
Collapse
Affiliation(s)
- Melania Carlisi
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Palermo, Italy
| | - Salvatrice Mancuso
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| | - Gregorio Caimi
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| | - Sergio Siragusa
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
The Pathogenesis of Sepsis and Potential Therapeutic Targets. Int J Mol Sci 2019; 20:ijms20215376. [PMID: 31671729 PMCID: PMC6862039 DOI: 10.3390/ijms20215376] [Citation(s) in RCA: 462] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Sepsis is defined as “a life-threatening organ dysfunction caused by a host’s dysfunctional response to infection”. Although the treatment of sepsis has developed rapidly in the past few years, sepsis incidence and mortality in clinical treatment is still climbing. Moreover, because of the diverse manifestations of sepsis, clinicians continue to face severe challenges in the diagnosis, treatment, and management of patients with sepsis. Here, we review the recent development in our understanding regarding the cellular pathogenesis and the target of clinical diagnosis of sepsis, with the goal of enhancing the current understanding of sepsis. The present state of research on targeted therapeutic drugs is also elaborated upon to provide information for the treatment of sepsis.
Collapse
|
13
|
Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J 2019; 17:10. [PMID: 31160889 PMCID: PMC6542012 DOI: 10.1186/s12959-019-0198-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
In addition to protective “immune response”, sepsis is characterized by destructive “endothelial response” of the host, leading to endotheliopathy and its molecular dysfunction. Complement activation generates membrane attack complex (MAC). MAC causes channel formation to the cell membrane of pathogen, leading to death of microorganisms. In the host, MAC also may induce channel formation to innocent bystander endothelial cells (ECs) and ECs cannot be protected. This provokes endotheliopathy, which activates two independent molecular pathways: inflammatory and microthrombotic. Activated inflammatory pathway promotes the release of inflammatory cytokines and triggers inflammation. Activated microthrombotic pathway mediates platelet activation and exocytosis of unusually large von Willebrand factor multimers (ULVWF) from ECs and initiates microthrombogenesis. Excessively released ULVWF become anchored to ECs as long elongated strings and recruit activated platelets to assemble platelet-ULVWF complexes and form “microthrombi”. These microthrombi strings trigger disseminated intravascular microthrombosis (DIT), which is the underlying pathology of endotheliopathy-associated vascular microthrombotic disease (EA-VMTD). Sepsis-induced endotheliopathy promotes inflammation and DIT. Inflammation produces inflammatory response and DIT orchestrates consumptive thrombocytopenia, microangiopathic hemolytic anemia, and multiorgan dysfunction syndrome (MODS). Systemic inflammatory response syndrome (SIRS) is a combined phenotype of inflammation and endotheliopathy-associated (EA)-VMTD. Successful therapeutic design for sepsis can be achieved by counteracting the pathologic microthrombogenesis.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
14
|
Li Y, Zhao Q, Liu B, Dixon A, Cancio L, Dubick M, Dalle Lucca J. Early complementopathy predicts the outcomes of patients with trauma. Trauma Surg Acute Care Open 2019; 4:e000217. [PMID: 31058236 PMCID: PMC6461142 DOI: 10.1136/tsaco-2018-000217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background Complementopathy (rapid complement activation and consumption after trauma) has been reported in trauma patients, but the underlying mechanism of these phenomena and their clinical significance remain unclear. This study aimed to determine the complement/complement pathway activation and identify the association of complement activation with clinical outcomes in trauma patients. Methods We studied 33 trauma patients with mean Injury Severity Score of 25, and 25 healthy volunteers. Sera were collected on patients’ arrival at the emergency department, as well as 1, 2, 3, 5, and 7 days after trauma, to measure the levels of terminal complement activation product soluble C5b-9 (sC5b-9) by ELISA. In addition, the functional complement activation pathway was evaluated using a commercial complement system screening kit. Results Serum concentrations of sC5b-9 (complement terminal pathway activity) were significantly increased in trauma patients throughout the entire observation period except on day 1. Complement terminal activities were significantly higher in 27 of 33 patients with systemic inflammatory response syndrome (SIRS) than non-SIRS patients on day 2, day 5, and day 7. Increased serum levels of sC5b-9 positively correlated with SIRS. Functional complement analysis revealed that the classical pathway was the predominant pathway responsible for complement activation. Burn patients tended to have a greater and prolonged classical pathway activation than non-burn patients, and burn injury and blunt injury were associated with higher blood levels of sC5b-9 than penetrating injury. Discussion Early complement activation through the classical pathway after trauma is observed and positively correlated with the development of SIRS. Thus, monitoring of the complement system might be beneficial in the care of critically injured patients. Level of evidence III. Study type Prognostic.
Collapse
Affiliation(s)
- Yansong Li
- Multiple Organ Support Technology, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Qingwei Zhao
- Burn Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Bin Liu
- Blood Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Alexander Dixon
- Multiple Organ Support Technology, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Leopoldo Cancio
- Multiple Organ Support Technology, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Michael Dubick
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Jurandir Dalle Lucca
- Viral Therapeutics, Chemical and Biological Technologies, Fort Belvoir, Virginia, USA
| |
Collapse
|
15
|
Karasu E, Nilsson B, Köhl J, Lambris JD, Huber-Lang M. Targeting Complement Pathways in Polytrauma- and Sepsis-Induced Multiple-Organ Dysfunction. Front Immunol 2019; 10:543. [PMID: 30949180 PMCID: PMC6437067 DOI: 10.3389/fimmu.2019.00543] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Exposure to traumatic or infectious insults results in a rapid activation of the complement cascade as major fluid defense system of innate immunity. The complement system acts as a master alarm system during the molecular danger response after trauma and significantly contributes to the clearance of DAMPs and PAMPs. However, depending on the origin and extent of the damaged macro- and micro -milieu, the complement system can also be either excessively activated or inhibited. In both cases, this can lead to a maladaptive immune response and subsequent multiple cellular and organ dysfunction. The arsenal of complement-specific drugs offers promising strategies for various critical conditions after trauma, hemorrhagic shock, sepsis, and multiple organ failure. The imbalanced immune response needs to be detected in a rational and real-time manner before the translational therapeutic potential of these drugs can be fully utilized. Overall, the temporal-spatial complement response after tissue trauma and during sepsis remains somewhat enigmatic and demands a clinical triad: reliable tissue damage assessment, complement activation monitoring, and potent complement targeting to highly specific rebalance the fluid phase innate immune response.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
16
|
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, Uppal N, Shoffstall A, Ustin J, Lavik E. Engineering Intravenously Administered Nanoparticles to Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of Trauma. Bioconjug Chem 2018; 29:2436-2447. [PMID: 29965731 DOI: 10.1021/acs.bioconjchem.8b00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bleeding from traumatic injury is the leading cause of death for young people across the world, but interventions are lacking. While many agents have shown promise in small animal models, translating the work to large animal models has been exceptionally difficult in great part because of infusion-associated complement activation to nanomaterials that leads to cardiopulmonary complications. Unfortunately, this reaction is seen in at least 10% of the population. We developed intravenously infusible hemostatic nanoparticles that were effective in stopping bleeding and improving survival in rodent models of trauma. To translate this work, we developed a porcine liver injury model. Infusion of the first generation of hemostatic nanoparticles and controls 5 min after injury led to massive vasodilation and exsanguination even at extremely low doses. In naïve animals, the physiological changes were consistent with a complement-associated infusion reaction. By tailoring the zeta potential, we were able to engineer a second generation of hemostatic nanoparticles and controls that did not exhibit the complement response at low and moderate doses but did at the highest doses. These second-generation nanoparticles led to cessation of bleeding within 10 min of administration even though some signs of vasodilation were still seen. While the complement response is still a challenge, this work is extremely encouraging in that it demonstrates that when the infusion-associated complement response is managed, hemostatic nanoparticles are capable of rapidly stopping bleeding in a large animal model of trauma.
Collapse
Affiliation(s)
- Chimdiya Onwukwe
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Nuzhat Maisha
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Mark Holland
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Matt Varley
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Rebecca Groynom
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - DaShawn Hickman
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Nishant Uppal
- Harvard Medical School , 25 Shattuck Street , Boston , Massachusetts 02115 , United States
| | - Andrew Shoffstall
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey Ustin
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Erin Lavik
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| |
Collapse
|
17
|
Thorburn T, Aali M, Kostek L, LeTourneau-Paci C, Colp P, Zhou J, Holbein B, Hoskin D, Lehmann C. Anti-inflammatory effects of a novel iron chelator, DIBI, in experimental sepsis. Clin Hemorheol Microcirc 2018; 67:241-250. [PMID: 28869457 DOI: 10.3233/ch-179205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Iron catalyzes the generation of reactive oxygen species (ROS) as part of the innate antimicrobial defense. During sepsis, the dysregulated systemic inflammatory response to infection, iron homeostasis becomes disrupted, generating an excess of ROS causing damage to tissues. This can be potentially suppressed using iron chelators that selectively bind iron to prevent its participation in ROS-related inflammatory reactions. OBJECTIVE We hypothesize that administration of DIBI, a novel iron-chelator, attenuates the dysregulated systemic immune response and reduces tissue damage in experimental endotoxemia. METHODS Five groups of animals (n = 5-10) were included in this study: control, untreated endotoxemia, and endotoxemia animals treated with either DIBI-A, MAHMP, or DIBI-B. Intravital microscopy was performed on the intestine of anesthesized mice to observe leukocyte endothelial interactions and evaluate the intestinal microcirculation. RESULTS Treatment of endotoxemic mice with DIBI-B reduced the number of adhering leukocytes in submucosal collecting (V1) venules by 68%. DIBI-B, MAHMP, and DIBI-A were able to restore functional capillary density (FCD) in the intestinal muscle layer by 74%, 44%, and 11%, respectively. CONCLUSIONS DIBI-B reduces leukocyte recruitment and improves FCD in experimental endotoxemia, outperforming other chelators tested. These findings suggest a potential role for DIBI-B as a candidate drug for sepsis treatment.
Collapse
Affiliation(s)
- Taylor Thorburn
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Maral Aali
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Lisanne Kostek
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Chloe LeTourneau-Paci
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Patricia Colp
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Juan Zhou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Bruce Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Chelation Partners Inc., Halifax, NS, Canada
| | - David Hoskin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
18
|
Auxiliary activation of the complement system and its importance for the pathophysiology of clinical conditions. Semin Immunopathol 2017; 40:87-102. [PMID: 28900700 PMCID: PMC5794838 DOI: 10.1007/s00281-017-0646-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological conditions, the activity of the generated proteases is controlled by endogenous protease inhibitors. Consequently, there is remarkable little crosstalk between the different systems in the fluid phase. This concept review article aims at identifying and describing conditions where the strict system-related control is circumvented. These include clinical settings where massive amounts of proteolytic enzymes are released from tissues, e.g., during pancreatitis or post-traumatic tissue damage, resulting in consumption of the natural substrates of the specific proteases and the available protease inhibitor. Another example of cascade system dysregulation is disseminated intravascular coagulation, with canonical activation of all cascade systems of the blood, also leading to specific substrate and protease inhibitor elimination. The present review explains basic concepts in protease biochemistry of importance to understand clinical conditions with extensive protease activation.
Collapse
|
19
|
Tóth J, Debreceni IB, Berhés M, Hajdú E, Deák Á, Pető K, Szabó J, Németh N, Fülesdi B, Kappelmayer J. Red blood cell and platelet parameters are sepsis predictors in an Escherichia coli induced lethal porcine model. Clin Hemorheol Microcirc 2017; 66:249-259. [DOI: 10.3233/ch-170271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Judit Tóth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Berhés
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Hajdú
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Pető
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Németh
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Fülesdi
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Totsimon K, Biro K, Szabo ZE, Toth K, Kenyeres P, Marton Z. The relationship between hemorheological parameters and mortality in critically ill patients with and without sepsis. Clin Hemorheol Microcirc 2017; 65:119-129. [PMID: 27447421 DOI: 10.3233/ch-16136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The prognostic scoring systems for mortality of intensive care patients estimate clinical outcome using several physiological and biochemical parameters. In altered hemodynamic conditions of critically ill patients, hemorheological variables may play a significant role in appropriate tissue perfusion. We investigated if hemorheological parameters are altered in critical status and if they could be markers of mortality. METHODS 112 patients (67.8 ± 12 years, 58 males, 54 females) treated in intensive care unit with different non-surgical diseases were investigated. Routine laboratory parameters and prognostic scores were determined and hemorheological variables (hematocrit, plasma and whole blood viscosity, red blood cell aggregation and deformability) were measured on the 1st and the 2nd day after admission. RESULTS ICU scores predicted 35.2-41.3% mortality rate, real mortality in intensive care unit was 37.5%, while 30-day mortality was 46.6%. Whole blood viscosity (WBV) and red blood cell (RBC) deformability were lower, red blood cell aggregation was higher in septic than in nonseptic patients (p < 0.05). In septic patients calcium was increased, osmolality was decreased, while in nonseptic patients WBV and RBC aggregation were higher in nonsurvivors compared to survivors (p < 0.05). Worsening of RBC deformability from day 1 to day 2 predicted higher mortality (p < 0.05). CONCLUSION Calcium and osmolality level were associated with outcome in sepsis. Whole blood viscosity, red blood cell aggregation and change in red blood cell deformability could predict mortality in nonseptic patients and they may add prognostic information over the ICU scores. Further investigations are needed to evaluate the benefit of our findings in clinical practice.
Collapse
|
21
|
Helling H, Pindur G, Stephan B. C1 inhibitor in sepsis and clinical outcome. Am J Emerg Med 2016; 34:1179-80. [DOI: 10.1016/j.ajem.2016.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022] Open
|