1
|
Yang Q, Huang D, Zhang Z, Gao H, Wu J, Zhong H, Guo X, Wang Y, Zhou H, Liu C, Duan X. Diabetes affects AD through plasma Aβ40: A Mendelian randomization study. Neuroscience 2025; 575:131-139. [PMID: 40233921 DOI: 10.1016/j.neuroscience.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Amyloid and tau proteins are important proteins in the pathological changes of Alzheimer's disease (AD), while Aβ pathology and tau pathology are the most critical factors contributing to the development of AD. Some studies have shown that there is a causal relationship between AD and diabetes mellitus, but there are no studies showing a causal relationship between diabetic traits and AD biomarkers, so further exploration is needed. We first summarized and analyzed the currently published literature on the link between diabetes and AD through a systematic review. Forest plots were used to observe whether there is an association between diabetes and AD. Then a two-sample Mendelian randomization (MR) analysis based on GWAS summary statistics was performed to verify the causal relationship between diabetic traits and AD biomarkers. Based on summary statistics from the GWAS, potential causal relationships between diabetic traits and AD biomarkers were explored separately. The results of the meta-analysis part showed that diabetes can increase the risk of AD. Meanwhile, our two-sample MR results showed a significant causal relationship between diabetes and plasma Aβ40. In addition, our two-sample MR results also showed a causal relationship between increased HbA1c and plasma APLP2. Other diabetic traits may have potential effects on different AD plasma markers.
Collapse
Affiliation(s)
- Qiumin Yang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Delong Huang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhaojing Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haiyan Gao
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junhao Wu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoshu Zhong
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaowei Guo
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Hemu Zhou
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chengzhen Liu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaodong Duan
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
3
|
Shapiro ALB, Coughlan C, Bettcher BM, Pauley ME, Kim J, Bjornstad P, Rajic B, Truong J, Bell C, Choi YJ, Walker KA, Potter H, Liese AD, Dabelea D, Whitlow CT. Biomarkers of Neurodegeneration and Alzheimer's Disease Neuropathology in Adolescents and Young Adults with Youth-Onset Type 1 or Type 2 Diabetes: A Proof-of-Concept Study. ENDOCRINES 2024; 5:197-213. [PMID: 38764894 PMCID: PMC11101213 DOI: 10.3390/endocrines5020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024] Open
Abstract
Adult-onset diabetes increases one's risk of neurodegenerative disease including Alzheimer's disease (AD); however, the risk associated with youth-onset diabetes (Y-DM) remains underexplored. We quantified plasma biomarkers of neurodegeneration and AD in participants with Y-DM from the SEARCH cohort at adolescence and young adulthood (Type 1, n = 25; Type 2, n = 25; 59% female; adolescence, age = 15 y/o [2.6]; adulthood, age = 27.4 y/o [2.2]), comparing them with controls (adolescence, n = 25, age = 14.8 y/o [2.7]; adulthood, n = 21, age = 24.9 y/o [2.8]). Plasma biomarkers, including glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), phosphorylated tau-181 (pTau181), and amyloid beta (Aβ40, Aβ42), were measured via Simoa. A subset of participants (n = 7; age = 27.5 y/o [5.7]) and six controls (age = 25.1 y/o [4.5]) underwent PET scans to quantify brain amyloid and tau densities in AD sensitive brain regions. Y-DM adolescents exhibited lower plasma levels of Aβ40, Aβ42, and GFAP, and higher pTau181 compared to controls (p < 0.05), a pattern persisting into adulthood (p < 0.001). All biomarkers showed significant increases from adolescence to adulthood in Y-DM (p < 0.01), though no significant differences in brain amyloid or tau were noted between Y-DM and controls in adulthood. Preliminary evidence suggests that preclinical AD neuropathology is present in young people with Y-DM, indicating a potential increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Allison L. B. Shapiro
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
- Section of Endocrinology, Department of Pediatrics, School of Medicine (SOM), CU-Anschutz, Aurora, CO 80045, USA
| | - Christina Coughlan
- University of Colorado Alzheimer’s and Cognition Center, CU-Anschutz, Aurora, CO 80045, USA
- Department of Neurology, SOM, CU-Anschutz, Aurora, CO 80045, USA
| | | | - Meghan E. Pauley
- Barbara Davis Center for Diabetes, CU-Anschutz, Aurora, CO 80045, USA
| | - Jeongchul Kim
- Radiology Informatics and Image Processing Laboratory, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics, School of Medicine (SOM), CU-Anschutz, Aurora, CO 80045, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, SOM, CU-Anschutz, Aurora, CO 80045, USA
| | - Benjamin Rajic
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Jennifer Truong
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Christopher Bell
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Ye Ji Choi
- Section of Endocrinology, Department of Pediatrics, School of Medicine (SOM), CU-Anschutz, Aurora, CO 80045, USA
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 20814, USA
| | - Huntington Potter
- University of Colorado Alzheimer’s and Cognition Center, CU-Anschutz, Aurora, CO 80045, USA
- Department of Neurology, SOM, CU-Anschutz, Aurora, CO 80045, USA
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Christopher T. Whitlow
- Radiology Informatics and Image Processing Laboratory, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
4
|
Rolandsson O, Tornevi A, Steneberg P, Edlund H, Olsson T, Andreasson U, Zetterberg H, Blennow K. Acute Hyperglycemia Induced by Hyperglycemic Clamp Affects Plasma Amyloid-β in Type 2 Diabetes. J Alzheimers Dis 2024; 99:1033-1046. [PMID: 38728183 DOI: 10.3233/jad-230628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background Individuals with type 2 diabetes (T2D) have an increased risk of cognitive symptoms and Alzheimer's disease (AD). Mis-metabolism with aggregation of amyloid-β peptides (Aβ) play a key role in AD pathophysiology. Therefore, human studies on Aβ metabolism and T2D are warranted. Objective The objective of this study was to examine whether acute hyperglycemia affects plasma Aβ1-40 and Aβ1-42 concentrations in individuals with T2D and matched controls. Methods Ten participants with T2D and 11 controls (median age, 69 years; range, 66-72 years) underwent hyperglycemic clamp and placebo clamp (saline infusion) in a randomized order, each lasting 4 hours. Aβ1-40, Aβ1-42, and insulin-degrading enzyme (IDE) plasma concentrations were measured in blood samples taken at 0 and 4 hours of each clamp. Linear mixed-effect regression models were used to evaluate the 4-hour changes in Aβ1-40 and Aβ1-42 concentrations, adjusting for body mass index, estimated glomerular filtration rate, and 4-hour change in insulin concentration. Results At baseline, Aβ1-40 and Aβ1-42 concentrations did not differ between the two groups. During the hyperglycemic clamp, Aβ decreased in the control group, compared to the placebo clamp (Aβ1-40: p = 0.034, Aβ1-42: p = 0.020), IDE increased (p = 0.016) during the hyperglycemic clamp, whereas no significant changes in either Aβ or IDE was noted in the T2D group. Conclusions Clamp-induced hyperglycemia was associated with increased IDE levels and enhanced Aβ40 and Aβ42 clearance in controls, but not in individuals with T2D. We hypothesize that insulin-degrading enzyme was inhibited during hyperglycemic conditions in people with T2D.
Collapse
Affiliation(s)
- Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Pär Steneberg
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Helena Edlund
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Tommy Olsson
- Public Health and Clinical Medicine, Internal Medicine, Umeå University, Umeå, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpetriere Hospital, Sorbonne University, Paris, France
- Department of Neurology, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
5
|
Tahmi M, Benitez R, Luchsinger JA. Metformin as a Potential Prevention Strategy for Alzheimer's Disease and Alzheimer's Disease Related Dementias. J Alzheimers Dis 2024; 101:S345-S356. [PMID: 39422959 DOI: 10.3233/jad-240495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Metformin is a safe and effective medication for type 2 diabetes (T2D) that has been proposed to decrease the risk of aging related disorders including Alzheimer's disease (AD) and Alzheimer's disease related disorders(ADRD). Objective This review seeks to summarize findings from studies examining the association of metformin with AD/ADRD related outcomes. Methods This is a narrative review of human studies, including observational studies and clinical trials, examining the association of metformin with cognitive and brain outcomes. We used PubMed as the main database for our literature search with a focus on English language human studies including observational studies and clinical trials. We prioritized studies published from 2013 until February 15, 2024. Results Observational human studies are conflicting, but those with better study designs suggest that metformin use in persons with T2D is associated with a lower risk of dementia. However, these observational studies are limited by the use of administrative data to ascertain metformin use and/or cognitive outcomes. There are few clinical trials in persons without T2D that have small sample sizes and short durations but suggest that metformin could prevent AD/ADRD. There are ongoing studies including large clinical trials with long duration that are testing the effect of metformin on AD/ADRD outcomes in persons without T2D at risk for dementia. Conclusions Clinical trial results are needed to establish the effect of metformin on the risk of AD and ADRD.
Collapse
Affiliation(s)
- Mouna Tahmi
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Richard Benitez
- Departments of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - José A Luchsinger
- Departments of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Mei X, Zhao Z, Qiu Z, Wang J, Yu H, Zheng C. Association of sleep disorders with clinical symptoms and age in Chinese older adult patients with and without cognitive decline. Front Aging Neurosci 2023; 15:1189837. [PMID: 37621985 PMCID: PMC10445039 DOI: 10.3389/fnagi.2023.1189837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Objective To investigate correlation between cognitive function, age, and sleep disturbances. Methods This retrospective clinical study enrolled 78 patients with sleep disorders who were divided into three groups: a group of 24 patients with sleep disorders accompanied by cognitive decline (SD-CD); 54 patients with sleep disorders and no cognitive decline (SD-nCD) was divided into two groups, one of 30 patients aged between 60 and 70 years and another of 24 patients aged >70 years. Polysomnography was used to record patients' sleep indicators throughout night; these included total sleep duration, sleep efficiency (SE), sleep latency, sleep structure and percentage of N1, N2, and N3 stages, rapid eye movement (REM) stage, as well as apnea hypopnea index (AHI), and oxygen saturation (OS). Analysis of variance (ANOVA) for continuous variables and chi-square test for categorical variables were used to analyze variables between different groups. Pearson's correlation was used to analyze correlation between sleep parameters and mini-mental state examination (MMSE). Blood samples were used to determine their Aβ, Aβ40, Aβ42, total tau, phosphorylated tau protein (ptau), ptau181, ptau217, the inflammatory factor IL-1β, vitamin B12 (VB12), and melatonin levels. Results In the SD-CD group, there was a significant decrease in SE and an increase in N1 stage sleep in older patients and a significant increase in AHI, REM stage AHI, and non-REM stage AHI. In patients with SD-nCD, the minimum OS, minimum OS in the REM period, and minimum OS in the non-REM period were significantly reduced. OS was significantly correlated with cognitive level, as evaluated by the MMSE. The addition of sleep parameters can significantly improve the accuracy of dementia diagnosis. Dementia biomarkers of Aβ and tau proteins in blood showed cognition-related differences, while ptau181 was associated with both cognition and age-related differences. Regression models revealed that age was related to higher levels of cognitive decline before (β = -0.43, P < 0.001) and after (β = -0.38, P < 0.001) adjustment of gender, BMI, and education level. There was a significant mediation effect of relationship between aging and cognitive function by sleep efficiency and N1 stage sleep. Conclusion Sleep disorders and low OS are associated with a higher incidence of cognitive decline and dementia.
Collapse
Affiliation(s)
| | | | | | | | - Haihang Yu
- Department of Psychiatry, Ningbo Kangning Hospital and Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, China
| | - Chengying Zheng
- Department of Psychiatry, Ningbo Kangning Hospital and Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Xu Z, Chen J, Wang P, Li L, Hu S, Liu H, Huang Y, Mo X, Yan H, Shan Z, Wang D, Xu J, Liu L, Peng X. The role of peripheral β-amyloid in insulin resistance, insulin secretion, and prediabetes: in vitro and population-based studies. Front Endocrinol (Lausanne) 2023; 14:1195658. [PMID: 37538787 PMCID: PMC10394827 DOI: 10.3389/fendo.2023.1195658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background Previous experimental studies have shown that mice overexpressing amyloid precursor protein, in which β-amyloid (Aβ) is overproduced, exhibit peripheral insulin resistance, pancreatic impairment, and hyperglycemia. We aimed to explore the effects of Aβ on insulin action and insulin secretion in vitro and the association of plasma Aβ with prediabetes in human. Methods We examined the effects of Aβ40 and Aβ42 on insulin-inhibited glucose production in HepG2 cells, insulin-promoted glucose uptake in C2C12 myotubes, and insulin secretion in INS-1 cells. Furthermore, we conducted a case-control study (N = 1142) and a nested case-control study (N = 300) within the prospective Tongji-Ezhou cohort. Odds ratios (ORs) and 95% confidence intervals (CIs) for prediabetes were estimated by using conditional logistic regression analyses. Results In the in vitro studies, Aβ40 and Aβ42 dose-dependently attenuated insulin-inhibited glucose production in HepG2 cells, insulin-promoted glucose uptake in C2C12 myotubes, and basal and glucose-stimulated insulin secretion in INS-1 cells. In the case-control study, plasma Aβ40 (adjusted OR: 2.00; 95% CI: 1.34, 3.01) and Aβ42 (adjusted OR: 1.94; 95% CI: 1.33, 2.83) were positively associated with prediabetes risk when comparing the extreme quartiles. In the nested case-control study, compared to the lowest quartile, the highest quartile of plasma Aβ40 and Aβ42 were associated with 3.51-fold (95% CI: 1.61, 7.62) and 2.75-fold (95% CI: 1.21, 6.22) greater odds of prediabetes, respectively. Conclusion Elevated plasma Aβ40 and Aβ42 levels were associated with increased risk of prediabetes in human subjects, which may be through impairing insulin sensitivity in hepatocytes and myotubes and insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shan Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hong Yan
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Di Wang
- Xiangyang Key Laboratory of Public Health and Epidemic Prevention Materials Research, Xiangyang Public Inspection and Testing Center, Xiangyang, China
| | - Jian Xu
- Department of Elderly Health Management, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
8
|
Saunders TS, Pozzolo FE, Heslegrave A, King D, McGeachan RI, Spires-Jones MP, Harris SE, Ritchie C, Muniz-Terrera G, Deary IJ, Cox SR, Zetterberg H, Spires-Jones TL. Predictive blood biomarkers and brain changes associated with age-related cognitive decline. Brain Commun 2023; 5:fcad113. [PMID: 37180996 PMCID: PMC10167767 DOI: 10.1093/braincomms/fcad113] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Collapse
Affiliation(s)
- Tyler S Saunders
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Francesca E Pozzolo
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Amanda Heslegrave
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Robert I McGeachan
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, Ohio 45701, USA
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago 3485, Chile
| | - Ian J Deary
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Simon R Cox
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Henrik Zetterberg
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Molndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
9
|
Tian N, Fa W, Dong Y, Liu R, Liu C, Liu K, Mao M, Zhu M, Liang X, Wang N, Ma Y, Ngandu T, Launer LJ, Wang Y, Hou T, Du Y, Qiu C. Triglyceride-glucose index, Alzheimer's disease plasma biomarkers, and dementia in older adults: The MIND-China study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12426. [PMID: 37101710 PMCID: PMC10123384 DOI: 10.1002/dad2.12426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/04/2023] [Accepted: 03/12/2023] [Indexed: 04/28/2023]
Abstract
Introduction Population-based studies have rarely explored the associations of the triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, with dementia and plasma biomarkers for amyloid beta (Aβ) and neurodegeneration. Methods This population-based study included 5199 participants (age ≥ 65 years); of these, plasma Aβ, total tau, and neurofilament light chain (NfL) were measured in 1287 persons. Dementia and subtypes were diagnosed following the international criteria. TyG index was calculated as ln(fasting triglyceride(mg/dL) × fasting glucose[mg/dL]/2). Data were analyzed using logistic and general linear regression models. Results Dementia, Alzheimer's disease (AD), and vascular dementia (VaD) were diagnosed in 301, 195, and 95 individuals, respectively. A high TyG index was significantly associated with increased likelihoods of dementia and AD; the significant association with dementia remained among participants without cardiovascular disease or diabetes. In the biomarker subsample, a high TyG index was correlated with elevated plasma Aβ, but not with total tau or NfL. Discussion High TyG index is associated with dementia, possibly via Aβ pathology.
Collapse
Affiliation(s)
- Na Tian
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanP.R. China
| | - Wenxin Fa
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
| | - Yi Dong
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
| | - Rui Liu
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanP.R. China
| | - Cuicui Liu
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanP.R. China
| | - Keke Liu
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
| | - Ming Mao
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanP.R. China
| | - Min Zhu
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
| | - Xiaoyan Liang
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanP.R. China
| | - Nan Wang
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanP.R. China
| | - Yixun Ma
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
| | - Tiia Ngandu
- Division of Clinical Geriatrics and Center for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and Society (NVS), Karolinska InstitutetStockholmSweden
- Department of Public Health and WelfareFinnish Institute for Health and WelfareHelsinkiFinland
| | - Lenore J. Launer
- Intramural Research Program, Laboratory of Epidemiology and Population SciencesNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Yongxiang Wang
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
- Aging Research Center and Center for Alzheimer ResearchDepartment of NVSKarolinska Institutet‐Stockholm UniversityStockholmSweden
| | - Tingting Hou
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
| | - Yifeng Du
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanP.R. China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanP.R. China
| | - Chengxuan Qiu
- Department of NeurologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanP.R. China
- Aging Research Center and Center for Alzheimer ResearchDepartment of NVSKarolinska Institutet‐Stockholm UniversityStockholmSweden
| |
Collapse
|
10
|
Hajat A, Park C, Adam C, Fitzpatrick AL, Ilango SD, Leary C, Libby T, Lopez O, Semmens EO, Kaufman JD. Air pollution and plasma amyloid beta in a cohort of older adults: Evidence from the Ginkgo Evaluation of Memory study. ENVIRONMENT INTERNATIONAL 2023; 172:107800. [PMID: 36773564 PMCID: PMC9974914 DOI: 10.1016/j.envint.2023.107800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Air pollution has been linked to Alzheimer's disease and related dementias (ADRD), but the mechanisms connecting air pollution to ADRD have not been firmly established. Air pollution may cause oxidative stress and neuroinflammation and contribute to the deposition of amyloid beta (Aβ) in the brain. We examined the association between fine particulate matter<2.5 μm in diameter (PM2.5), particulate matter<10 μm in diameter (PM10), nitrogen dioxide (NO2), and plasma based measures of Aβ1-40, Aβ1-42 and Aβ1-42/Aβ1-40 using data from 3044 dementia-free participants of the Ginkgo Evaluation of Memory Study (GEMS). Air pollution exposures were estimated at residential addresses that incorporated address histories dating back to 1980, resulting in one-, five-, 10- and 20- year exposure averages. Aβ was measured at baseline (2000-2002) and then again at the end of the study (2007-2008) allowing for linear regression models to assess cross-sectional associations and linear random effects models to evaluate repeated measures. After adjustment for socio-demographic and behavioral covariates, we found small positive associations between each air pollutant and Aβ1-40 but no association with Aβ1-42 or the ratio measures in cross sectional analysis. In repeat measures analysis, we found larger positive associations between each air pollutant and all three outcomes. We observed a 4.43% (95% CI 3.26%, 5.60%) higher Aβ1-40 level, 9.73% (6.20%, 13.38%) higher Aβ1-42 and 1.57% (95% CI: 0.94%, 2.20%) higher Aβ1-42/Aβ1-40 ratio associated with a 2 µg/m3 higher 20-year average PM2.5. Associations with other air pollutants were similar. Our study contributes to the broader evidence base on air pollution and ADRD biomarkers by evaluating longer air pollution exposure averaging periods to better mimic disease progression and provides a modifiable target for ADRD prevention.
Collapse
Affiliation(s)
- Anjum Hajat
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA.
| | - Christina Park
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Claire Adam
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Annette L Fitzpatrick
- University of Washington, Department of Family Medicine, 4225 Roosevelt Ave NE Seattle, WA 98195, USA
| | - Sindana D Ilango
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Cindy Leary
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Tanya Libby
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Oscar Lopez
- University of Pittsburgh, Department of Neurology, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15123, USA
| | - Erin O Semmens
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Joel D Kaufman
- University of Washington, Department of Environmental and Occupational Health and Epidemiology, 4225 Roosevelt Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Liu Y, Zhang S, He B, Chen L, Ke D, Zhao S, Zhang Y, Wei W, Xu Z, Xu Z, Yin Y, Mo W, Li Y, Gao Y, Li S, Wang W, Yu H, Wu D, Pi G, Jiang T, Deng M, Xiong R, Lei H, Tian N, He T, Sun F, Zhou Q, Wang X, Ye J, Li M, Hu N, Song G, Peng W, Zheng C, Zhang H, Wang JZ. Periphery Biomarkers for Objective Diagnosis of Cognitive Decline in Type 2 Diabetes Patients. Front Cell Dev Biol 2021; 9:752753. [PMID: 34746146 PMCID: PMC8564071 DOI: 10.3389/fcell.2021.752753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Type 2 diabetes mellitus (T2DM) is an independent risk factor of Alzheimer’s disease (AD), and populations with mild cognitive impairment (MCI) have high incidence to suffer from AD. Therefore, discerning who may be more vulnerable to MCI, among the increasing T2DM populations, is important for early intervention and eventually decreasing the prevalence rate of AD. This study was to explore whether the change of plasma β-amyloid (Aβ) could be a biomarker to distinguish MCI (T2DM-MCI) from non-MCI (T2DM-nMCI) in T2DM patients. Methods: Eight hundred fifty-two T2DM patients collected from five medical centers were assigned randomly to training and validation cohorts. Plasma Aβ, platelet glycogen synthase kinase-3β (GSK-3β), apolipoprotein E (ApoE) genotypes, and olfactory and cognitive functions were measured by ELISA, dot blot, RT-PCR, Connecticut Chemosensory Clinical Research Center (CCCRC) olfactory test based on the diluted butanol, and Minimum Mental State Examination (MMSE) test, respectively, and multivariate logistic regression analyses were applied. Results: Elevation of plasma Aβ1-42/Aβ1-40 is an independent risk factor of MCI in T2DM patients. Although using Aβ1-42/Aβ1-40 alone only reached an AUC of 0.631 for MCI diagnosis, addition of the elevated Aβ1-42/Aβ1-40 to our previous model (i.e., activated platelet GSK-3β, ApoE ε4 genotype, olfactory decline, and aging) significantly increased the discriminating efficiency of T2DM-MCI from T2DM-nMCI, with an AUC of 0.846 (95% CI: 0.794–0.897) to 0.869 (95% CI: 0.822–0.916) in the training cohort and an AUC of 0.848 (95% CI: 0.815–0.882) to 0.867 (95% CI: 0.835–0.899) in the validation cohort, respectively. Conclusion: A combination of the elevated plasma Aβ1-42/Aβ1-40 with activated platelet GSK-3β, ApoE ε4 genotype, olfactory decline, and aging could efficiently diagnose MCI in T2DM patients. Further longitudinal studies may consummate the model for early prediction of AD.
Collapse
Affiliation(s)
- Yanchao Liu
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shujuan Zhang
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Benrong He
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Zhao
- Department of Endocrinology, Central Hospital of Wuhan, Wuhan, China
| | - Yao Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Endocrinology, Central Hospital of Wuhan, Wuhan, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihui Xu
- Department of Endocrinology, Central Hospital of Wuhan, Wuhan, China
| | - Ying Yin
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Mo
- Health Service Center of Jianghan District, Wuhan, China
| | - Yanni Li
- Health Service Center of Jianghan District, Wuhan, China
| | - Yang Gao
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihong Li
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijin Wang
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Yu
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongqin Wu
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guilin Pi
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingmin Deng
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiong
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyang Lei
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tian
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting He
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuzhi Zhou
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinwang Ye
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhu Li
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Hu
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoda Song
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenju Peng
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghong Zheng
- Department of Endocrinology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
12
|
Luchsinger JA, Zetterberg H. Tracking the potential involvement of metabolic disease in Alzheimer's disease-Biomarkers and beyond. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:51-77. [PMID: 32739014 DOI: 10.1016/bs.irn.2020.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is a vast literature linking systemic metabolic conditions to dementia due to Alzheimer's disease (AD). Advances in in vivo measurements of AD neuropathology using brain imaging, cerebrospinal fluid (CSF), and/or blood biomarkers have led to research in AD that uses in vivo biomarkers as outcomes, focusing primarily on amyloid, tau, and neurodegeneration as constructs. Studies of Type 2 Diabetes Mellitus (T2DM) and AD biomarkers seem to show that T2DM is not related to amyloid deposition, but is related to neurodegeneration and tau deposition. There is a dearth of studies examining adiposity, insulin resistance, and metabolic syndrome in relation to AD biomarkers and the associations in these studies are inconsistent. Metabolomics studies have reported associations of unsaturated fatty acids with AD neuropathology at autopsy, and sphingolipids and glycerophospholipids in relation to neurodegeneration and amyloid and tau. There are other neurodegenerative diseases, such as Lewy body disease that may overlap with AD, and specific biomarkers for these pathologies are being developed and should be integrated into AD biomarker research. More longitudinal studies are needed with concurrent assessment of metabolic factors and AD biomarkers in order to improve the opportunity to assess causality. Ideally, AD biomarkers should be integrated into clinical trials of interventions that affect metabolic factors. Advances in blood-based AD biomarkers, which are less costly and invasive compared with CSF and brain imaging biomarkers, could facilitate widespread implementation of AD biomarkers in studies examining the metabolic contribution to AD.
Collapse
Affiliation(s)
- José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
13
|
Peng X, Xu Z, Mo X, Guo Q, Yin J, Xu M, Peng Z, Sun T, Zhou L, Peng X, Xu S, Yang W, Bao W, Shan Z, Li X, Liu L. Association of plasma β-amyloid 40 and 42 concentration with type 2 diabetes among Chinese adults. Diabetologia 2020; 63:954-963. [PMID: 32034441 DOI: 10.1007/s00125-020-05102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS There is evidence for a bidirectional association between type 2 diabetes and Alzheimer's disease. Plasma β-amyloid (Aβ) is a potential biomarker for Alzheimer's disease. We aimed to investigate the association of plasma Aβ40 and Aβ42 with risk of type 2 diabetes. METHODS We performed a case-control study and a nested case-control study within a prospective cohort study. In the case-control study, we included 1063 newly diagnosed individuals with type 2 diabetes and 1063 control participants matched by age (±3 years) and sex. In the nested case-control study, we included 121 individuals with incident type 2 diabetes and 242 matched control individuals. Plasma Aβ40 and Aβ42 concentrations were simultaneously measured with electrochemiluminescence immunoassay. Conditional logistic regression was used to evaluate the association of plasma Aβ40 and Aβ42 concentrations with the likelihood of type 2 diabetes. RESULTS In the case-control study, the multivariable-adjusted ORs for type 2 diabetes, comparing the highest with the lowest quartile of plasma Aβ concentrations, were 1.97 (95% CI 1.46, 2.66) for plasma Aβ40 and 2.01 (95% CI 1.50, 2.69) for plasma Aβ42. Each 30 ng/l increment of plasma Aβ40 was associated with 28% (95% CI 15%, 43%) higher odds of type 2 diabetes, and each 5 ng/l increment of plasma Aβ42 was associated with 37% (95% CI 21%, 55%) higher odds of type 2 diabetes. Individuals in the highest tertile for both plasma Aβ40 and Aβ42 concentrations had 2.96-fold greater odds of type 2 diabetes compared with those in the lowest tertile for both plasma Aβ40 and Aβ42 concentrations. In the nested case-control study, the multivariable-adjusted ORs for type 2 diabetes for the highest vs the lowest quartile were 3.79 (95% CI 1.81, 7.94) for plasma Aβ40 and 2.88 (95% CI 1.44, 5.75) for plasma Aβ42. The multivariable-adjusted ORs for type 2 diabetes associated with each 30 ng/l increment in plasma Aβ40 and each 5 ng/l increment in plasma Aβ42 were 1.44 (95% CI 1.18, 1.74) and 1.47 (95% CI 1.15, 1.88), respectively. CONCLUSIONS/INTERPRETATION Our findings suggest positive associations of plasma Aβ40 and Aβ42 concentration with risk of type 2 diabetes. Further studies are warranted to elucidate the underlying mechanisms and explore the potential roles of plasma Aβ in linking type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qianqian Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Mengdai Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Li Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Shufang Xu
- Department of Clinical Nutrition, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
14
|
Jash K, Gondaliya P, Kirave P, Kulkarni B, Sunkaria A, Kalia K. Cognitive dysfunction: A growing link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:144-164. [DOI: 10.1002/ddr.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| |
Collapse
|
15
|
Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, Gupta VB, Rainey-Smith SR, Hone E, Pedrini S, Lim WL, Martins I, Frost S, Gupta S, O’Bryant S, Rembach A, Ames D, Ellis K, Fuller SJ, Brown B, Gardener SL, Fernando B, Bharadwaj P, Burnham S, Laws SM, Barron AM, Goozee K, Wahjoepramono EJ, Asih PR, Doecke JD, Salvado O, Bush AI, Rowe CC, Gandy SE, Masters CL. Alzheimer's Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J Alzheimers Dis 2018; 62:965-992. [PMID: 29562546 PMCID: PMC5870031 DOI: 10.3233/jad-171145] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Worldwide there are over 46 million people living with dementia, and this number is expected to double every 20 years reaching about 131 million by 2050. The cost to the community and government health systems, as well as the stress on families and carers is incalculable. Over three decades of research into this disease have been undertaken by several research groups in Australia, including work by our original research group in Western Australia which was involved in the discovery and sequencing of the amyloid-β peptide (also known as Aβ or A4 peptide) extracted from cerebral amyloid plaques. This review discusses the journey from the discovery of the Aβ peptide in Alzheimer's disease (AD) brain to the establishment of pre-clinical AD using PET amyloid tracers, a method now serving as the gold standard for developing peripheral diagnostic approaches in the blood and the eye. The latter developments for early diagnosis have been largely achieved through the establishment of the Australian Imaging Biomarker and Lifestyle research group that has followed 1,100 Australians for 11 years. AIBL has also been instrumental in providing insight into the role of the major genetic risk factor apolipoprotein E ɛ4, as well as better understanding the role of lifestyle factors particularly diet, physical activity and sleep to cognitive decline and the accumulation of cerebral Aβ.
Collapse
Affiliation(s)
- Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Victor Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Pratishtha Chatterjee
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Tejal M. Shah
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Bentley, WA, Australia
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada
| | - Kevin Taddei
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Veer B. Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Steve Pedrini
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Wei Ling Lim
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ian Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Shaun Frost
- CSIRO Australian e-Health Research Centre/Health and Biosecurity, Perth, WA, Australia
| | - Sunil Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Sid O’Bryant
- University of North Texas Health Science Centre, Fort Worth, TX, USA
| | - Alan Rembach
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George’s Hospital, Kew, VIC, Australia
| | - Kathryn Ellis
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie J. Fuller
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Belinda Brown
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| | - Samantha L. Gardener
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha Burnham
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- eHealth, CSIRO Health and Biosecurity, Parkville, VIC, Australia
| | - Simon M. Laws
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anna M. Barron
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Anglicare, Sydney, NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Eka J. Wahjoepramono
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prita R. Asih
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - James D. Doecke
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Samuel E. Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin L. Masters
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| |
Collapse
|
16
|
Innes KE, Selfe TK, Brundage K, Montgomery C, Wen S, Kandati S, Bowles H, Khalsa DS, Huysmans Z. Effects of Meditation and Music-Listening on Blood Biomarkers of Cellular Aging and Alzheimer's Disease in Adults with Subjective Cognitive Decline: An Exploratory Randomized Clinical Trial. J Alzheimers Dis 2018; 66:947-970. [PMID: 30320574 PMCID: PMC6388631 DOI: 10.3233/jad-180164] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Telomere length (TL), telomerase activity (TA), and plasma amyloid-β (Aβ) levels have emerged as possible predictors of cognitive decline and dementia. OBJECTIVE To assess the: 1) effects of two 12-week relaxation programs on TL, TA, and Aβ levels in adults with subjective cognitive decline; and 2) relationship of biomarker changes to those in cognitive function, psychosocial status, and quality of life (QOL). METHODS Participants were randomized to a 12-week Kirtan Kriya meditation (KK) or music listening (ML) program and asked to practice 12 minutes/day. Plasma Aβ(38/40/42) and peripheral blood mononuclear cell TL and TA were measured at baseline and 3 months. Cognition, stress, sleep, mood, and QOL were assessed at baseline, 3 months, and 6 months. RESULTS Baseline blood samples were available for 53 participants (25 KK, 28 ML). The KK group showed significantly greater increases in Aβ40 than the ML group. TA rose in both groups, although increases were significant only among those with higher practice adherence and lower baseline TA. Changes in both TL and TA varied by their baseline values, with greater increases among participants with values ≤50th percentile (ps-interaction <0.006). Both groups improved in cognitive and psychosocial status (ps ≤0.05), with improvements in stress, mood, and QOL greater in the KK group. Rising Aβ levels were correlated with gains in cognitive function, mood, sleep, and QOL at both 3 and 6 months, associations that were particularly pronounced in the KK group. Increases in TL and TA were also correlated with improvements in certain cognitive and psychosocial measures. CONCLUSION Practice of simple mind-body therapies may alter plasma Aβ levels, TL, and TA. Biomarker increases were associated with improvements in cognitive function, sleep, mood, and QOL, suggesting potential functional relationships.
Collapse
Affiliation(s)
- Kim E. Innes
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Terry Kit Selfe
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
- Department of Biomedical and Health Information Services, Health Science Center Libraries, University of Florida, Gainesville, FL, USA
| | - Kathleen Brundage
- Department of Microbiology, Flow Cytometry & Single Cell Core Facility, Immunology & Cell Biology, School of Medicine, WVU Morgantown, WV, USA
| | - Caitlin Montgomery
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, WVU, Morgantown, WV, USA
| | - Sahiti Kandati
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Hannah Bowles
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | | | - Zenzi Huysmans
- College of Physical Activity and Sport Sciences, WVU, Morgantown, WV, USA
| |
Collapse
|
17
|
Elaskalani O, Khan I, Morici M, Matthysen C, Sabale M, Martins RN, Verdile G, Metharom P. Oligomeric and fibrillar amyloid beta 42 induce platelet aggregation partially through GPVI. Platelets 2017; 29:415-420. [PMID: 29206067 DOI: 10.1080/09537104.2017.1401057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of the Alzheimer's disease (AD)-associated Amyloid-β (Aβ) peptides on platelet aggregation have been previously assessed, but most of these studies focused on Aβ40 species. It also remains to be determined which distinct forms of Aβ peptides exert differential effects on platelets. In AD, oligomeric Aβ42 species is widely thought to be a major contributor to the disease pathogenesis. We, therefore, examine the ability of oligomeric and fibrillary Aβ42 to affect platelet aggregation. We show that both forms of Aβ42 induced significant platelet aggregation and that it is a novel ligand for the platelet receptor GPVI. Furthermore, a novel binding peptide that reduces the formation of soluble Aβ42 oligomers was effective at preventing Aβ42-dependent platelet aggregation. These results support a role for Aβ42 oligomers in platelet hyperactivity.
Collapse
Affiliation(s)
- O Elaskalani
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - I Khan
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - M Morici
- b School of Medical Sciences , Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University , Joondalup , WA , Australia
| | - C Matthysen
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - M Sabale
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - R N Martins
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia.,c Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , NSW , Sydney , Australia
| | - G Verdile
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia.,b School of Medical Sciences , Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University , Joondalup , WA , Australia.,d School of Psychiatry and Clinical Neurosciences , University of WA , Perth , Australia
| | - P Metharom
- e Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| |
Collapse
|