1
|
Zeng J, Zhang R, Xu H, Zhang C, Lu L. Integrative single-cell RNA sequencing and mendelian randomization analysis reveal the potential role of synaptic vesicle cycling-related genes in Alzheimer's disease. J Prev Alzheimers Dis 2025:100097. [PMID: 40021385 DOI: 10.1016/j.tjpad.2025.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) involves alterations in synaptic vesicle cycling (SVC), which significantly affect neuronal communication and function. Therefore, a thorough investigation into the potential roles of SVC-related genes (SVCRGs) in AD can enhance the identification of critical biomarkers that may influence disease progression and treatment responses. METHODS The datasets used in this study were sourced exclusively from public databases. By integrating differential expression analysis with Mendelian randomization (MR), we identified SVCRGs as biomarkers for AD. Functional characterization of these biomarkers was performed, followed by integration into a nomogram. Further investigation of immune infiltration in AD patients and healthy individuals was carried out. Ultimately, the potential cellular mechanisms of AD were explored through single-cell RNA sequencing (scRNA-seq) analysis. RESULTS ATP6V1D, ATP6V1G2, CLTB, and NSF were identified as biomarkers, exhibiting a positive correlation with each other and a downregulated expression in AD. These markers were pinpointed as protective factors for AD [odds ratio (OR) < 1, P < 0.05], with potential to reduce the risk of the disease. Integrated into a nomogram, they demonstrated satisfactory diagnostic performance and clinical utility, surpassing the use of single gene. They were collectively enriched in pathways related to "interferon gamma response", "inflammatory response", and "TNFα signaling via NFκB". Additionally, an increase in infiltration of 17 immune cell types in AD was noted, particularly cells associated with neuroinflammation such as activated CD8 T cells and various dendritic cells (DCs), suggesting an inflammatory milieu in AD while also displaying a negative correlation with the biomarkers. The cell types were further annotated, revealing specific expressions of biomarkers and uncovering the heterogeneity of excitatory neurons. A significant reduction in the overall number of excitatory neurons under AD conditions was observed, alongside consistent expression of biomarkers during the developmental stages of excitatory neurons. CONCLUSION By using MR, we firstly identified four SVCRGs as protective factors for AD, functioning through pathways associated with mitochondrial dysfunction, chronic inflammation, immune dysregulation, and neuronal damage. These genes had the potential to modulate immune cell infiltration activated in AD patients and exhibited cell-type-specific expression profiles within AD-related cellular contexts. Their findings provide novel insights and valuable references for future research on AD pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Junfeng Zeng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ruihua Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Huihua Xu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Laboratory of Cellular Physiology of Chinese Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
2
|
Bartkowiak-Wieczorek J, Malesza M, Malesza I, Hadada T, Winkler-Galicki J, Grzelak T, Mądry E. Methylsulfinyl Hexyl Isothiocyanate (6-MSITC) from Wasabi Is a Promising Candidate for the Treatment of Cancer, Alzheimer's Disease, and Obesity. Nutrients 2024; 16:2509. [PMID: 39125389 PMCID: PMC11313713 DOI: 10.3390/nu16152509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Methylsulfinyl hexyl isothiocyanate (6-MSITC) isolated from Eutrema japonicum is a promising candidate for the treatment of breast cancer, colorectal and stomach cancer, metabolic syndrome, heart diseases, diabetes, and obesity due to its anti-inflammatory and antioxidant properties. Also, its neuroprotective properties, improving cognitive function and protecting dopaminergic neurons, make it an excellent candidate for treating neurodegenerative diseases like dementia, Alzheimer's, and Parkinson's disease. 6-MSITC acts on many signaling pathways, such as PPAR, AMPK, PI3K/AKT/mTOR, Nrf2/Keap1-ARE, ERK1/2-ELK1/CHOP/DR5, and MAPK. However, despite the very promising results of in vitro and in vivo animal studies and a few human studies, the molecule has not yet been thoroughly tested in the human population. Nonetheless, wasabi should be classified as a "superfood" for the primary and secondary prevention of human diseases. This article reviews the current state-of-the-art research on 6-MSITC and its potential clinical uses, discussing in detail the signaling pathways activated by the molecule and their interactions.
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Michał Malesza
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Ida Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Tomasz Hadada
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Jakub Winkler-Galicki
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Teresa Grzelak
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Edyta Mądry
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| |
Collapse
|
3
|
Menéndez-Valle I, Cachán-Vega C, Boga JA, González-Blanco L, Antuña E, Potes Y, Caballero B, Vega-Naredo I, Saiz P, Bobes J, García-Portilla P, Coto-Montes A. Differential Cellular Interactome in Schizophrenia and Bipolar Disorder-Discriminatory Biomarker Role. Antioxidants (Basel) 2023; 12:1948. [PMID: 38001801 PMCID: PMC10669042 DOI: 10.3390/antiox12111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenia (SCH) and bipolar disorder (BD) are two of the most important psychiatric pathologies due to their high population incidence and disabling power, but they also present, mainly in their debut, high clinical similarities that make their discrimination difficult. In this work, the differential oxidative stress, present in both disorders, is shown as a concatenator of the systemic alterations-both plasma and erythrocyte, and even at the level of peripheral blood mononuclear cells (PBMC)-in which, for the first time, the different affectations that both disorders cause at the level of the cellular interactome were observed. A marked erythrocyte antioxidant imbalance only present in SCH generalizes to oxidative damage at the plasma level and shows a clear impact on cellular involvement. From the alteration of protein synthesis to the induction of death by apoptosis, including proteasomal damage, mitochondrial imbalance, and autophagic alteration, all the data show a greater cellular affectation in SCH than in BD, which could be linked to increased oxidative stress. Thus, patients with SCH in our study show increased endoplasmic reticulum (ER)stress that induces increased proteasomal activity and a multifactorial response to misfolded proteins (UPR), which, together with altered mitochondrial activity, generating free radicals and leading to insufficient energy production, is associated with defective autophagy and ultimately leads the cell to a high apoptotic predisposition. In BD, however, oxidative damage is much milder and without significant activation of survival mechanisms or inhibition of apoptosis. These clear differences identified at the molecular and cellular level between the two disorders, resulting from progressive afflictions in which oxidative stress can be both a cause and a consequence, significantly improve the understanding of both disorders to date and are essential for the development of targeted and preventive treatments.
Collapse
Affiliation(s)
- Iván Menéndez-Valle
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Servicio de Inmunología, Hospital Universitario Central de Asturias (HUCA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
| | - Cristina Cachán-Vega
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - José Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
| | - Laura González-Blanco
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, 33300 Villaviciosa, Asturias, Spain
| | - Eduardo Antuña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - Yaiza Potes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - Ignacio Vega-Naredo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - Pilar Saiz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Departament of Medicine, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - Julio Bobes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Departament of Medicine, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - Paz García-Portilla
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Departament of Medicine, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias (INEUROPA), University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
4
|
Chen F, Wang N, Tian X, Su J, Qin Y, He R, He X. The Protective Effect of Mangiferin on Formaldehyde-Induced HT22 Cell Damage and Cognitive Impairment. Pharmaceutics 2023; 15:1568. [PMID: 37376018 PMCID: PMC10303760 DOI: 10.3390/pharmaceutics15061568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Formaldehyde (FA) has been found to induce major Alzheimer's disease (AD)-like features including cognitive impairment, Aβ deposition, and Tau hyperphosphorylation, suggesting that it may play a significant role in the initiation and progression of AD. Therefore, elucidating the mechanism underlying FA-induced neurotoxicity is crucial for exploring more comprehensive approaches to delay or prevent the development of AD. Mangiferin (MGF) is a natural C-glucosyl-xanthone with promising neuroprotective effects, and is considered to have potential in the treatment of AD. The present study was designed to characterize the effects and mechanisms by which MGF protects against FA-induced neurotoxicity. The results in murine hippocampal cells (HT22) revealed that co-treatment with MGF significantly decreased FA-induced cytotoxicity and inhibited Tau hyperphosphorylation in a dose-dependent manner. It was further found that these protective effects were achieved by attenuating FA-induced endoplasmic reticulum stress (ERS), as indicated by the inhibition of the ERS markers, GRP78 and CHOP, and downstream Tau-associated kinases (GSK-3β and CaMKII) expression. In addition, MGF markedly inhibited FA-induced oxidative damage, including Ca2+ overload, ROS generation, and mitochondrial dysfunction, all of which are associated with ERS. Further studies showed that the intragastric administration of 40 mg/kg/day MGF for 6 weeks significantly improved spatial learning ability and long-term memory in C57/BL6 mice with FA-induced cognitive impairment by reducing Tau hyperphosphorylation and the expression of GRP78, GSK-3β, and CaMKII in the brains. Taken together, these findings provide the first evidence that MGF exerts a significant neuroprotective effect against FA-induced damage and ameliorates mice cognitive impairment, the possible underlying mechanisms of which are expected to provide a novel basis for the treatment of AD and diseases caused by FA pollution.
Collapse
Affiliation(s)
- Fan Chen
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Na Wang
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Xinyan Tian
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Juan Su
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Yan Qin
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100045, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100045, China
| | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| |
Collapse
|
5
|
Deng C, Chen H, Meng Z, Meng S. Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 2022; 13:955618. [PMID: 36213283 PMCID: PMC9533021 DOI: 10.3389/fendo.2022.955618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of sporadic Alzheimer's disease (AD) is increasing in recent years. Studies have shown that in addition to some genetic abnormalities, the majority of AD patients has a history of long-term exposure to risk factors. Neuroendocrine related risk factors have been proved to be strongly associated with AD. Long-term hormone disorder can have a direct detrimental effect on the brain by producing an AD-like pathology and result in cognitive decline by impairing neuronal metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may regulate the complex process of endocrine disorders, and improve metabolic abnormalities, as well as the resulting neuroinflammation and oxidative damage through a variety of pathways. TCM has unique therapeutic advantages in treating early intervention of AD-related neuroendocrine disorders and preventing cognitive decline. This paper reviewed the relationship between neuroendocrine and AD as well as the related TCM treatment and its mechanism. The advantages of TCM intervention on endocrine disorders and some pending problems was also discussed, and new insights for TCM treatment of dementia in the future was provided.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
6
|
Cai J, Sun Z, Zhang L, Xu H. SERP1 reduces inchoate acute hepatic injury through regulation of endoplasmic reticulum stress via the GSK3β/β‑catenin/TCF/LEF signaling pathway. Mol Med Rep 2022; 25:193. [PMID: 35419615 PMCID: PMC9051999 DOI: 10.3892/mmr.2022.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The liver is a crucial digestive organ of humans and in charge of detoxification. Acute hepatic injury is an aggressive type of hepatic disease and its harmful effect cannot be ignored. The present study examined the role and mechanism of stress-associated endoplasmic reticulum protein 1 (SERP1) in acute hepatic injury. Mice were injected intraperitoneally with D-galactosamine/lipopolysaccharide (LPS) and rat hepatocytes were induced by LPS to establish an acute hepatic injury model. Tissue lesions were observed by H&E staining, and biomarkers of hepatic injury in the serum were examined. Western blotting, immunohistochemistry and reverse transcription-quantitative PCR were performed to assess SERP1 expression in tissues and hepatocytes. A SERP1 overexpression plasmid was constructed to evaluate the role of SERP1 in inflammation, apoptosis, endoplasmic reticulum stress (ERS) and the GSK3β/β-catenin/T-cell factor (TCF)/lymphoid enhancing factor (LEF) signaling pathway. In addition, a GSK3β overexpression plasmid was constructed to investigate the role of GSK3β/β-catenin signal activation. Additionally, the present study investigated whether SERP1 regulated the endoplasmic reticulum via this pathway. In the present study, reliable animal and cellular hepatic injury models were established and verified. SERP1 overexpression reduced the expression of inflammatory factors, apoptosis-related proteins and ERS-related proteins, as well as the expression of proteins related to GSK3β/β-catenin/TCF/LEF signaling pathways. A GSK3β overexpression plasmid was constructed and it was revealed that GSK3β overexpression could reverse the effects of SERP1 overexpression in aforementioned aspects. This suggested that the activation of the GSK3β/β-catenin/TCF/LEF signaling pathway may be required for the regulation of SERP1. In conclusion, SERP1 regulated ERS via the GSK3β/β-catenin/TCF/LEF signaling pathway, thereby reducing inchoate acute hepatic injury.
Collapse
Affiliation(s)
- Jie Cai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhenhua Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lili Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongrui Xu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
7
|
Liu Y, Pi T, Yang X, Shi J. Protective Effects and Mechanisms of Dendrobium nobile Lindl. Alkaloids on PC12 Cell Damage Induced by A β 25-35. Behav Neurol 2021; 2021:9990375. [PMID: 34447483 PMCID: PMC8384511 DOI: 10.1155/2021/9990375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aβ deposition abnormally in the mitochondria can damage the mitochondrial respiratory chain and activate the mitochondrial-mediated apoptosis pathway, resulting in AD-like symptoms. OBJECTIVE To observe the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) on Aβ 25-35-induced oxidative stress and apoptosis in PC12 cells explore its possible protective mechanisms. METHODS PC12 cells were treated with DNLA with different concentrations (0.035 mg/L, 0.3 mg/L, and 3.5 mg/L) for 6 h, followed by administration with Aβ 25-35 (10 μM) for 24 h. MTT assay and flow cytometer observe the effect of DNLA on Aβ 25-35-induced cytotoxicity and apoptosis of PC12 cell. Based on the mitochondrial apoptosis pathway to study the antiapoptotic effect of DNLA on this model and its relationship with oxidative stress, flow cytometer detected the level of reactive oxygen species (ROS), and ELISA kits were used to detect superoxide dismutase activity (SOD) and glutathione (GSH) content in cells. The JC-1 fluorescent staining observed the effect of DNLA on the mitochondrial membrane potential (MMP) with inverted immunofluorescence microscopy. Western blot was used to detect the levels of mitochondrial apoptosis pathway-related protein and its major downstream proteins Bax, Bcl-2, cleaved-caspase-9, and cleaved-caspase-3. RESULTS DNLA can significantly improve the viability and apoptosis rate of PC12 cell damage induced by Aβ 25-35. It also can restore the reduced intracellular ROS content and MMP, while SOD activity and GSH content increase significantly. The expression of apoptosis-related protein Bax, cleaved-caspase-9, and cleaved-caspase-3 decreased when the Bcl-2 protein expression was significantly increased. CONCLUSION These findings suggest that it can significantly inhibit the apoptosis of PC12 cell damage induced by Aβ 25-35. The mechanism may reduce the level of cellular oxidative stress and thus inhibit the mitochondrial-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| | - Tingting Pi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| | - Xiaohui Yang
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| |
Collapse
|
8
|
Wu Y, Chen Q, Wen B, Wu N, He B, Chen J. Berberine Reduces Aβ 42 Deposition and Tau Hyperphosphorylation via Ameliorating Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:640758. [PMID: 34349640 PMCID: PMC8327086 DOI: 10.3389/fphar.2021.640758] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is tightly related to endoplasmic reticulum stress (ER stress), which aggravates two dominant pathological manifestations of AD: senile plaques and neurofibrillary tangles. Berberine is widely applied in the clinical treatment of many diseases and is reported to have anti-AD effects. In the present study, berberine was shown to ameliorate ER stress and cognitive impairment in APP/PS1 mice. We found ER stress plays a role as a central hub for signal transduction, which was evidenced by the hyperactivation of glycogen synthase kinase 3β (GSK3β) to phosphorylate tau and the activation of PRKR-like endoplasmic reticulum kinase (PERK) subsequently to phosphorylate eukaryotic translation initiation factor-2 α (eIF2α). Also, eIF2α has regulated the expression of beta-site APP cleaving enzyme-1 (BACE1), which cleaves APP into pro-oligomerized amyloid beta 42 (Aβ42), the main component of senile plaques, proven by using siRNA targeting at eIF2α. Mechanically, berberine can reduce GSK3β activity, contributing to the downregulation of tau phosphorylation. Berberine also suppressed Aβ42 production via inhibiting the PERK/eIF2α/BACE1 signaling pathway. Taken together, these findings indicated that berberine had the potential to ameliorate two major pathological manifestations of AD mainly by suppressing ER stress. Our work provided knowledge on the pharmacological intervention of AD and the possible targets for future drug development.
Collapse
Affiliation(s)
- Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ninghua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China.,Basic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zhao B, Wang Y, Liu R, Jia XL, Hu N, An XW, Zheng CG, Chen C, Sun HT, Chen F, Wang JJ, Li XH. Rutaecarpine Ameliorated High Sucrose-Induced Alzheimer's Disease Like Pathological and Cognitive Impairments in Mice. Rejuvenation Res 2020; 24:181-190. [PMID: 32892706 DOI: 10.1089/rej.2020.2349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
High sucrose can induce tau hyperphosphorylation and cognitive dysfunction/memory impairment as observed in Alzheimer's disease (AD). Rutaecarpine, a specific (transient receptor potential vanilloid 1 [TRPV1]) agonist, is neuroprotective against high sucrose diet-induced impairment, but detailed mechanisms are still elusive. In this study, we investigated whether rutaecarpine mitigates high sucrose diet-induced pathological alterations and cognitive in AD-like mice. Mice were administered fodder containing 0.01% rutaecarpine and 20% sucrose solution. Our results showed that rutaecarpine significantly attenuated high sucrose diet-induced spatial memory impairment and enhanced synaptic plasticity; rutaecarpine prevented high sucrose diet-induced tau hyperphosphorylation by decreasing glycogen synthase kinase-3β (GSK-3β) activity; activation of GSK-3β reversed the protective effect of rutaecarpine on learning and memory deficits, synaptic plasticity, and tau hyperphosphorylation induced by high-glucose diet significantly, suggesting that GSK-3β activation is required for high glucose-induced tau hyperphosphorylation. These results demonstrated that rutaecarpine can mitigate high sucrose diet-induced hyperphosphorylation of AD-associated tau protein and cognitive impairment by inhibiting GSK-3β, which supported that dietary rutaecarpine might have a promising use for therapeutic intervention of AD.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China.,Department of Neurology, Tianjin Hospital of Tianjin, Tianjin, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiao-Li Jia
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xing-Wei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chen-Guang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Feng Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Chen L, Pan H, Bai Y, Li H, Yang W, Lin ZX, Cui W, Xian YF. Gelsemine, a natural alkaloid extracted from Gelsemium elegans Benth. alleviates neuroinflammation and cognitive impairments in Aβ oligomer-treated mice. Psychopharmacology (Berl) 2020; 237:2111-2124. [PMID: 32363440 DOI: 10.1007/s00213-020-05522-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/08/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Gelsemine is a natural alkaloid extracted from Gelsemium elegans Benth., a traditional Chinese medicinal herb. Gelsemine has been shown to penetrate the brain, and could produce neurological activities, such as anxiolytic and neuralgia-alleviating effects, suggesting that this natural compound might be used for treating nervous system diseases. RESULTS In this study, we have found, for the first time, that gelsemine at low concentrations (5-10 μg/kg) significantly alleviated cognitive impairments induced by β-amyloid (Aβ) oligomer, a main neurotoxin of Alzheimer's disease (AD). In addition, gelsemine substantially prevented Aβ oligomer-induced over-activation of microglia and astrocytes, indicating that gelsemine might reduce AD-related gliosis. Consistently, gelsemine inhibited the over-expression of pro-inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in the brain of mice. Moreover, gelsemine largely increased the expression of pSer9-glycogen synthase kinase-3β (GSK3β), and decreased the hyper-phosphorylation of tau protein as evidenced by Western blotting analysis. Furthermore, gelsemine prevented Aβ oligomer-induced reduction of PSD-95, a representative post-synaptic protein. CONCLUSION All these results directly demonstrated the anti-Aβ oligomer neuroprotective properties of gelsemine, opening a novel perspective for the development of gelsemine-based therapeutics against Aβ-associated neurodegeneration disorders, including AD in particular.
Collapse
Affiliation(s)
- Liping Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Hanbo Pan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Yujing Bai
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Huiqin Li
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China. .,Department of Physiology, School of Medicine, Ningbo University. Ningbo, Ningbo, 315211, People's Republic of China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
11
|
Mao Y, Fisher DW, Yang S, Keszycki RM, Dong H. Protein-protein interactions underlying the behavioral and psychological symptoms of dementia (BPSD) and Alzheimer's disease. PLoS One 2020; 15:e0226021. [PMID: 31951614 PMCID: PMC6968845 DOI: 10.1371/journal.pone.0226021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder currently affecting 45 million people worldwide, ranking as the 6th highest cause of death. Throughout the development and progression of AD, over 90% of patients display behavioral and psychological symptoms of dementia (BPSD), with some of these symptoms occurring before memory deficits and therefore serving as potential early predictors of AD-related cognitive decline. However, the biochemical links between AD and BPSD are not known. In this study, we explored the molecular interactions between AD and BPSD using protein-protein interaction (PPI) networks built from OMIM (Online Mendelian Inheritance in Man) genes that were related to AD and two distinct BPSD domains, the Affective Domain and the Hyperactivity, Impulsivity, Disinhibition, and Aggression (HIDA) Domain. Our results yielded 8 unique proteins for the Affective Domain (RHOA, GRB2, PIK3R1, HSPA4, HSP90AA1, GSK3beta, PRKCZ, and FYN), 5 unique proteins for the HIDA Domain (LRP1, EGFR, YWHAB, SUMO1, and EGR1), and 6 shared proteins between both BPSD domains (APP, UBC, ELAV1, YWHAZ, YWHAE, and SRC) and AD. These proteins might suggest specific targets and pathways that are involved in the pathogenesis of these BPSD domains in AD.
Collapse
Affiliation(s)
- Yimin Mao
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
- Applied Science Institute, Jiangxi University of Science and Technology, Jiangxi, China
| | - Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shuxing Yang
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
| | - Rachel M. Keszycki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
He Y, Ruganzu JB, Lin C, Ding B, Zheng Q, Wu X, Ma R, Liu Q, Wang Y, Jin H, Qian Y, Peng X, Ji S, Zhang L, Yang W, Lei X. Tanshinone IIA ameliorates cognitive deficits by inhibiting endoplasmic reticulum stress-induced apoptosis in APP/PS1 transgenic mice. Neurochem Int 2019; 133:104610. [PMID: 31778727 DOI: 10.1016/j.neuint.2019.104610] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Our previous data indicated that tanshinone IIA (tan IIA) improves learning and memory in a mouse model of Alzheimer's disease (AD) induced by streptozotocin via restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. This study aims to estimate whether tan IIA inhibits endoplasmic reticulum (ER) stress-induced apoptosis to prevent cognitive decline in APP/PS1 transgenic mice. Tan IIA (10 mg/kg and 30 mg/kg) was intraperitoneally administered to the six-month-old APP/PS1 mice for 30 consecutive days. β-amyloid (Aβ) plaques were measured by immunohistochemisty and Thioflavin S staining, apoptotic cells were observed by TUNEL, ER stress markers and apoptosis signaling proteins were investigated by western blotting and RT-PCR. Our results showed that tan IIA significantly ameliorates cognitive deficits and improves spatial learning ability of APP/PS1 mice in the nest-building test, novel object recognition test and Morris water maze test. Furthermore, tan IIA significantly reduced the deposition of Aβ plaques and neuronal apoptosis, and markedly prevented abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α), activating transcription factor 6 (ATF6), as well as suppressed the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways in the parietal cortex and hippocampus. Moreover, tan IIA induced an up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 protein activity. Taken together, the above findings indicated that tan IIA improves learning and memory through attenuating Aβ plaques deposition and inhibiting ER stress-induced apoptosis. These results suggested that tan IIA might become a promising therapeutic candidate drug against AD.
Collapse
Affiliation(s)
- Yingying He
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Chengheng Lin
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Bo Ding
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Quzhao Zheng
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiangyuan Wu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Ruiyang Ma
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Qian Liu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yang Wang
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Hui Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiaoqian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Liangliang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China.
| | - Xiaomei Lei
- Department of Child Health Care, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710004, China.
| |
Collapse
|
13
|
Jiang CS, Wang YY, Song JT, Yu JH. Acylphloroglucinols as kinase inhibitors from Sargassum nigrifoloides. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:619-626. [PMID: 29806489 DOI: 10.1080/10286020.2018.1463996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Three new acylphloroglucinols (1-3) and four known biosynthetically related analogs (4-7) were isolated from the ethanol extract of a brown alga Sargassum nigrifoloides. Structures for 1-7 were characterized via detailed spectroscopic analyses especially 2D NMR data. Screening of these compounds in Alzheimer's diseases-related bioassays revealed moderate inhibitory activities against two therapeutically important kinases, CDK5 and GSK3β. A preliminary structure-activity relationship was also discussed.
Collapse
Affiliation(s)
- Cheng-Shi Jiang
- a School of Biological Science and Technology , University of Jinan , Jinan 250022 , China
| | - Yin-Yin Wang
- a School of Biological Science and Technology , University of Jinan , Jinan 250022 , China
| | - Jin-Tong Song
- a School of Biological Science and Technology , University of Jinan , Jinan 250022 , China
| | - Jin-Hai Yu
- a School of Biological Science and Technology , University of Jinan , Jinan 250022 , China
| |
Collapse
|
14
|
Ma Y, Xiong L. Astragaloside IV ameliorates endoplasmic reticulum stress‑induced apoptosis of Aβ25‑35‑treated PC12 cells by inhibiting the p38 MAPK signaling pathway. Mol Med Rep 2019; 19:2005-2012. [PMID: 30664172 PMCID: PMC6390062 DOI: 10.3892/mmr.2019.9855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) serves a vital role in the pathological development of Alzheimer's disease (AD). ERS can promote programmed cell death (apoptosis) during AD; however, the specific molecular mechanisms that lead to ERS remain unclear. It is very important that a drug for the treatment of AD is identified. Our previous studies indicated that astragaloside IV (AST IV) has anti-inflammatory effects and helps cells resist oxidative stress. In the present study, western blotting and reverse transcription semi-quantitative polymerase chain reaction were used to detect protein and mRNA expression levels, flow cytometry was used to measure intracellular reactive oxygen species (ROS) levels, and superoxide dismutase (SOD) and malondialdehyde (MDA) activity was detected using commercially available kits. The results demonstrated that SOD activity was decreased, and MDA content, ROS levels, and the expression levels of p38 mitogen-activated protein kinase (MAPK) and ERS-associated proteins, including binding immunoglobulin protein/glucose-regulated protein and growth arrest- and DNA damage -inducible gene 153/C/EBP homologous protein, were increased in amyloid β (Aβ)25-35-treated PC12 cells. Furthermore, to investigate the role of p38 MAPK and the effects of AST IV in an in vitro model of AD, SB203580, a p38 MAPK signaling pathway inhibitor, and AST IV were administered to Aβ25-35-treated PC12 cells. The results revealed that AST IV protected the cells against AD. This effect may be caused by decreases in ROS levels, which may inhibit the p38 MAPK signaling pathway and thereby suppress ERS in Aβ25-35-treated PC12 cells.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Diagnostics, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Li Xiong
- Department of Diagnostics, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
15
|
Morroni F, Sita G, Graziosi A, Turrini E, Fimognari C, Tarozzi A, Hrelia P. Protective Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate on Aβ 1-42-Induced Cognitive Deficit, Oxidative Stress, Inflammation, and Apoptosis in Mice. Int J Mol Sci 2018; 19:E2083. [PMID: 30021941 PMCID: PMC6073905 DOI: 10.3390/ijms19072083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Although soluble amyloid species are recognized triggers of the disease, no therapeutic approach is able to stop it. 6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabia japonica, which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties. The aim of the present study was to investigate the neuroprotective activity of 6-MSITC in a murine AD model, induced by intracerebroventricular injection of β-amyloid oligomers (Aβ1-42O). The treatment with 6-MSITC started 1 h after the surgery for the next 10 days. Behavioral analysis showed that 6-MSITC ameliorated Aβ1-42O-induced memory impairments. The decrease of glutathione levels and increase of reactive oxygen species in hippocampal tissues following Aβ1-42O injection were reduced by 6-MSITC. Moreover, activation of caspases, increase of inflammatory factors, and phosphorylation of ERK and GSK3 were inhibited by 6-MSITC. These results highlighted an interesting neuroprotective activity of 6-MSITC, which was able to restore a physiological oxidative status, interfere positively with Nrf2-pathway, decrease apoptosis and neuroinflammation and contribute to behavioral recovery. Taken together, these findings demonstrated that 6-MSITC could be a promising complement for AD therapy.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Agnese Graziosi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|