1
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Kiaris H. Nontraditional models as research tools: the road not taken. Trends Mol Med 2024; 30:924-931. [PMID: 39069395 PMCID: PMC11466687 DOI: 10.1016/j.molmed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Historical reasons resulted in the almost exclusive use of a few species, most prominently Mus musculus, as the mainstream models in biomedical research. This selection was not based on Mus's distinctive relevance to human disease but rather to the pre-existing availability of resources and tools for the species that were used as models, which has enabled their adoption for research in health sciences. Unless the utilization and range of nontraditional research models expand considerably, progress in biomedical research will remain restricted within the trajectory that has been set by the existing models and their ability to provide clinically relevant information.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
3
|
Madan S, Lentzen M, Brandt J, Rueckert D, Hofmann-Apitius M, Fröhlich H. Transformer models in biomedicine. BMC Med Inform Decis Mak 2024; 24:214. [PMID: 39075407 PMCID: PMC11287876 DOI: 10.1186/s12911-024-02600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Deep neural networks (DNN) have fundamentally revolutionized the artificial intelligence (AI) field. The transformer model is a type of DNN that was originally used for the natural language processing tasks and has since gained more and more attention for processing various kinds of sequential data, including biological sequences and structured electronic health records. Along with this development, transformer-based models such as BioBERT, MedBERT, and MassGenie have been trained and deployed by researchers to answer various scientific questions originating in the biomedical domain. In this paper, we review the development and application of transformer models for analyzing various biomedical-related datasets such as biomedical textual data, protein sequences, medical structured-longitudinal data, and biomedical images as well as graphs. Also, we look at explainable AI strategies that help to comprehend the predictions of transformer-based models. Finally, we discuss the limitations and challenges of current models, and point out emerging novel research directions.
Collapse
Affiliation(s)
- Sumit Madan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany.
- Institute of Computer Science, University of Bonn, Bonn, 53115, Germany.
| | - Manuel Lentzen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, 53115, Germany
| | - Johannes Brandt
- School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Rueckert
- School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- School of Computation, Information and Technology, Technical University Munich, Munich, Germany
- Department of Computing, Imperial College London, London, UK
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, 53115, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany.
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, 53115, Germany.
| |
Collapse
|
4
|
Ifediora N, Canoll P, Hargus G. Human stem cell transplantation models of Alzheimer's disease. Front Aging Neurosci 2024; 16:1354164. [PMID: 38450383 PMCID: PMC10915253 DOI: 10.3389/fnagi.2024.1354164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia. It is characterized by pronounced neuronal degeneration with formation of neurofibrillary tangles and deposition of amyloid β throughout the central nervous system. Animal models have provided important insights into the pathogenesis of AD and they have shown that different brain cell types including neurons, astrocytes and microglia have important functions in the pathogenesis of AD. However, there are difficulties in translating promising therapeutic observations in mice into clinical application in patients. Alternative models using human cells such as human induced pluripotent stem cells (iPSCs) may provide significant advantages, since they have successfully been used to model disease mechanisms in neurons and in glial cells in neurodegenerative diseases in vitro and in vivo. In this review, we summarize recent studies that describe the transplantation of human iPSC-derived neurons, astrocytes and microglial cells into the forebrain of mice to generate chimeric transplantation models of AD. We also discuss opportunities, challenges and limitations in using differentiated human iPSCs for in vivo disease modeling and their application for biomedical research.
Collapse
Affiliation(s)
- Nkechime Ifediora
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Widjaya MA, Liu CH, Lee SD, Cheng WC. Transcriptomics Meta-Analysis Reveals Phagosome and Innate Immune System Dysfunction as Potential Mechanisms in the Cortex of Alzheimer's Disease Mouse Strains. J Mol Neurosci 2023; 73:773-786. [PMID: 37733230 DOI: 10.1007/s12031-023-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Immune-related pathways can affect the immune system directly, such as the chemokine signaling pathway, or indirectly, such as the phagosome pathway. Alzheimer's disease (AD) is reportedly associated with several immune-related pathways. However, exploring its underlying mechanism is challenging in animal studies because AD mouse strains differentially express immune-related pathway characteristics. To overcome this problem, we performed a meta-analysis to identify significant and consistent immune-related AD pathways that are expressed in different AD mouse strains. Next-generation RNA sequencing (RNA-seq) and microarray datasets for the cortex of AD mice from different strains such as APP/PSEN1, APP/PS2, 3xTg, TREM, and 5xFAD were collected from the NCBI GEO database. Each dataset's quality control and normalization were already processed from each original study source using various methods depending on the high-throughput analysis platform (FastQC, median of ratios, RMA, between array normalization). Datasets were analyzed using DESeq2 for RNA-seq and GEO2R for microarray to identify differentially expressed (DE) genes. Significantly DE genes were meta-analyzed using Stouffer's method, with significant genes further analyzed for functional enrichment. Ten datasets representing 20 conditions were obtained from the NCBI GEO database, comprising 116 control and 120 AD samples. The DE analysis identified 284 significant DE genes. The meta-analysis identified three significantly enriched immune-related AD pathways: phagosome, the complement and coagulation cascade, and chemokine signaling. Phagosomes-related genes correlated with complement and immune system. Meanwhile, phagosomes and chemokine signaling genes overlapped with B cells receptors pathway genes indicating potential correlation between phagosome, chemokines, and adaptive immune system as well. The transcriptomic meta-analysis showed that AD is associated with immune-related pathways in the brain's cortex through the phagosome, complement and coagulation cascade, and chemokine signaling pathways. Interestingly, phagosome and chemokine signaling pathways had potential correlation with B cells receptors pathway.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Hsin Liu
- Cancer Biology and Precision Therapeutics Center, China Medical University and Academia Sinica China Medical University, Taichung, 40403, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, 406040, Taiwan.
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University and Academia Sinica China Medical University, Taichung, 40403, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
| |
Collapse
|
6
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
7
|
Cucos CA, Milanesi E, Dobre M, Musat IA, Manda G, Cuadrado A. Altered Blood and Brain Expression of Inflammation and Redox Genes in Alzheimer's Disease, Common to APP V717I × TAU P301L Mice and Patients. Int J Mol Sci 2022; 23:ijms23105799. [PMID: 35628609 PMCID: PMC9144576 DOI: 10.3390/ijms23105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Despite intensive research, the pathophysiology of Alzheimer’s disease (AD) is still not fully understood, and currently there are no effective treatments. Therefore, there is an unmet need for reliable biomarkers and animal models of AD to develop innovative therapeutic strategies addressing early pathologic events such as neuroinflammation and redox disturbances. The study aims to identify inflammatory and redox dysregulations in the context of AD-specific neuronal cell death and DNA damage, using the APPV717I× TAUP301L (AT) mouse model of AD. The expression of 84 inflammatory and 84 redox genes in the hippocampus and peripheral blood of double transgenic AT mice was evaluated against age-matched controls. A distinctive gene expression profile in the hippocampus and the blood of AT mice was identified, addressing DNA damage, apoptosis and thrombosis, complemented by inflammatory factors and receptors, along with ROS producers and antioxidants. Gene expression dysregulations that are common to AT mice and AD patients guided the final selection of candidate biomarkers. The identified inflammation and redox genes, common to AD patients and AT mice, might be valuable candidate biomarkers for preclinical drug development that could be readily translated to clinical trials.
Collapse
Affiliation(s)
- Catalina Anca Cucos
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Ioana Andreea Musat
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Gina Manda
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Correspondence: (G.M.); (A.C.)
| | - Antonio Cuadrado
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Correspondence: (G.M.); (A.C.)
| |
Collapse
|
8
|
Patten KT, Valenzuela AE, Wallis C, Harvey DJ, Bein KJ, Wexler AS, Gorin FA, Lein PJ. Hippocampal but Not Serum Cytokine Levels Are Altered by Traffic-Related Air Pollution in TgF344-AD and Wildtype Fischer 344 Rats in a Sex- and Age-Dependent Manner. Front Cell Neurosci 2022; 16:861733. [PMID: 35530180 PMCID: PMC9072828 DOI: 10.3389/fncel.2022.861733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Epidemiological studies have demonstrated that air pollution is a significant risk factor for age-related dementia, including Alzheimer's disease (AD). It has been posited that traffic-related air pollution (TRAP) promotes AD neuropathology by exacerbating neuroinflammation. To test this hypothesis, serum and hippocampal cytokines were quantified in male and female TgF344-AD rats and wildtype (WT) Fischer 344 littermates exposed to TRAP or filtered air (FA) from 1 to 15 months of age. Luminex™ rat 23-cytokine panel assays were used to measure the levels of hippocampal and serum cytokines in 3-, 6-, 10-, and 15-month-old rats (corresponding to 2, 5, 9, and 14 months of exposure, respectively). Age had a pronounced effect on both serum and hippocampal cytokines; however, age-related changes in hippocampus were not mirrored in the serum and vice versa. Age-related changes in serum cytokine levels were not influenced by sex, genotype, or TRAP exposure. However, in the hippocampus, in 3-month-old TgF344-AD and WT animals, TRAP increased IL-1ß in females while increasing TNF ɑin males. In 6-month-old animals, TRAP increased hippocampal levels of M-CSF in TgF344-AD and WT females but had no significant effect in males. At 10 and 15 months of age, there were minimal effects of TRAP, genotype or sex on hippocampal cytokines. These observations demonstrate that TRAP triggers an early inflammatory response in the hippocampus that differs with sex and age and is not reflected in the serum cytokine profile. The relationship of TRAP effects on cytokines to disease progression remains to be determined.
Collapse
Affiliation(s)
- Kelley T. Patten
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher Wallis
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
| | - Danielle J. Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Keith J. Bein
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Anthony S. Wexler
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, College of Engineering, University of California, Davis, Davis, CA, United States
- Land, Air and Water Resources, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Fredric A. Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Neurology, Davis School of Medicine, University of California, Sacramento, Sacramento, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Cardiac glycosides target barrier inflammation of the vasculature, meninges and choroid plexus. Commun Biol 2021; 4:260. [PMID: 33637884 PMCID: PMC7910294 DOI: 10.1038/s42003-021-01787-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Neuroinflammation is a key component of virtually all neurodegenerative diseases, preceding neuronal loss and associating directly with cognitive impairment. Neuroinflammatory signals can originate and be amplified at barrier tissues such as brain vasculature, surrounding meninges and the choroid plexus. We designed a high content screening system to target inflammation in human brain-derived cells of the blood-brain barrier (pericytes and endothelial cells) to identify inflammatory modifiers. Screening an FDA-approved drug library we identify digoxin and lanatoside C, members of the cardiac glycoside family, as inflammatory-modulating drugs that work in blood-brain barrier cells. An ex vivo assay of leptomeningeal and choroid plexus explants confirm that these drugs maintain their function in 3D cultures of brain border tissues. These results suggest that cardiac glycosides may be useful in targeting inflammation at border regions of the brain and offer new options for drug discovery approaches for neuroinflammatory driven degeneration.
Collapse
|
10
|
Molina-Martínez P, Corpas R, García-Lara E, Cosín-Tomás M, Cristòfol R, Kaliman P, Solà C, Molinuevo JL, Sánchez-Valle R, Antonell A, Lladó A, Sanfeliu C. Microglial Hyperreactivity Evolved to Immunosuppression in the Hippocampus of a Mouse Model of Accelerated Aging and Alzheimer's Disease Traits. Front Aging Neurosci 2021; 12:622360. [PMID: 33584248 PMCID: PMC7875867 DOI: 10.3389/fnagi.2020.622360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a risk factor for Alzheimer's disease (AD). We sought to study the glial derangement in AD using diverse experimental models and human brain tissue. Besides classical pro-inflammatory cytokines, we analyzed chitinase 3 like 1 (CHI3L1 or YKL40) and triggering receptor expressed on myeloid cells 2 (TREM2) that are increasingly being associated with astrogliosis and microgliosis in AD, respectively. The SAMP8 mouse model of accelerated aging and AD traits showed elevated pro-inflammatory cytokines and activated microglia phenotype. Furthermore, 6-month-old SAMP8 showed an exacerbated inflammatory response to peripheral lipopolysaccharide in the hippocampus and null responsiveness at the advanced age (for this strain) of 12 months. Gene expression of TREM2 was increased in the hippocampus of transgenic 5XFAD mice and in the cingulate cortex of autosomal dominant AD patients, and to a lesser extent in aged SAMP8 mice and sporadic early-onset AD patients. However, gene expression of CHI3L1 was increased in mice but not in human AD brain samples. The results support the relevance of microglia activation in the pathways leading to neurodegeneration and suggest diverse neuroinflammatory responses according to the AD process. Therefore, the SAMP8 mouse model with marked alterations in the dynamics of microglia activation and senescence may provide a complementary approach to transgenic mouse models for the study of the neuroinflammatory mechanisms underlying AD risk and progression.
Collapse
Affiliation(s)
- Patricia Molina-Martínez
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisa García-Lara
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Cosín-Tomás
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rosa Cristòfol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Perla Kaliman
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carme Solà
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Luis Molinuevo
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raquel Sánchez-Valle
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
11
|
Lacalle-Aurioles M, Cassel de Camps C, Zorca CE, Beitel LK, Durcan TM. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Front Cell Neurosci 2020; 14:594304. [PMID: 33281561 PMCID: PMC7689345 DOI: 10.3389/fncel.2020.594304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and mortality in children and young adults and has a profound impact on the socio-economic wellbeing of patients and their families. Initially, brain damage is caused by mechanical stress-induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can further aggravate disease pathology. Thus, TBI treatment requires prompt intervention to protect against neuronal and vascular degeneration. Rapid advances in the field of stem cells (SCs) have revolutionized the prospect of repairing brain function following TBI. However, more than that, SCs can contribute substantially to our knowledge of this multifaced pathology. Research, based on human induced pluripotent SCs (hiPSCs) can help decode the molecular pathways of degeneration and recovery of neuronal and glial function, which makes these cells valuable tools for drug screening. Additionally, experimental approaches that include hiPSC-derived engineered tissues (brain organoids and bio-printed constructs) and biomaterials represent a step forward for the field of regenerative medicine since they provide a more suitable microenvironment that enhances cell survival and grafting success. In this review, we highlight the important role of hiPSCs in better understanding the molecular pathways of TBI-related pathology and in developing novel therapeutic approaches, building on where we are at present. We summarize some of the most relevant findings for regenerative therapies using biomaterials and outline key challenges for TBI treatments that remain to be addressed.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Camille Cassel de Camps
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Designer Cathinones N-Ethylhexedrone and Buphedrone Show Different In Vitro Neurotoxicity and Mice Behaviour Impairment. Neurotox Res 2020; 39:392-412. [PMID: 32535718 DOI: 10.1007/s12640-020-00229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
N-Ethylhexedrone (NEH) and buphedrone (Buph) are emerging synthetic cathinones (SC) with limited information about their detrimental effects within central nervous system. Objectives: To distinguish mice behavioural changes by NEH and Buph and validate their differential harmful impact on human neurons and microglia. In vivo safety data showed the typical induced behaviour of excitation and stereotypies with 4-64 mg/kg, described for other SC. Buph additionally produced jumping and aggressiveness signs, while NEH caused retropulsion and circling. Transient reduction in body-weight gain was obtained with NEH at 16 mg/kg and induced anxiolytic-like behaviour mainly with Buph. Both drugs generated place preference shift in mice at 4 and 16 mg/kg, suggestive of abuse potential. In addition, mice withdrawn NEH displayed behaviour suggestive of depression, not seen with Buph. When tested at 50-400 μM in human nerve cell lines, NEH and Buph caused neuronal viability loss at 100 μM, but only NEH produced similar results in microglia, indicating different cell susceptibilities. NEH mainly induced microglial late apoptosis/necrosis, while Buph caused early apoptosis. NEH was unique in triggering microglia shorter/thicker branches indicative of cell activation, and more effective in increasing microglial lysosomal biogenesis (100 μM vs. 400 μM Buph), though both produced the same effect on neurons at 400 μM. These findings indicate that NEH and Buph exert neuro-microglia toxicities by distinct mechanisms and highlight NEH as a specific inducer of microglia activation. Buph and NEH showed in vivo/in vitro neurotoxicities but enhanced specific NEH-induced behavioural and neuro-microglia dysfunctionalities pose safety concerns over that of Buph.
Collapse
|
13
|
Trindade P, Loiola EC, Gasparotto J, Ribeiro CT, Cardozo PL, Devalle S, Salerno JA, Ornelas IM, Ledur PF, Ribeiro FM, Ventura ALM, Moreira JCF, Gelain DP, Porciúncula LO, Rehen SK. Short and long TNF‐alpha exposure recapitulates canonical astrogliosis events in human‐induced pluripotent stem cells‐derived astrocytes. Glia 2020; 68:1396-1409. [DOI: 10.1002/glia.23786] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pablo Trindade
- Instituto D'Or de Pesquisa e Ensino (IDOR) Rio de Janeiro Brazil
- Pós‐Graduação em Biologia Molecular e CelularUniversidade Federal do Estado do Rio de Janeiro Rio de Janeiro Brazil
| | | | - Juciano Gasparotto
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Camila Tiefensee Ribeiro
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Pablo Leal Cardozo
- Departamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Sylvie Devalle
- Instituto D'Or de Pesquisa e Ensino (IDOR) Rio de Janeiro Brazil
| | | | | | | | - Fabiola Mara Ribeiro
- Departamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | | | - José Claudio Fonseca Moreira
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Daniel Pens Gelain
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Lisiane Oliveira Porciúncula
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR) Rio de Janeiro Brazil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
14
|
Zhang L, Chen C, Mak MSH, Lu J, Wu Z, Chen Q, Han Y, Li Y, Pi R. Advance of sporadic Alzheimer's disease animal models. Med Res Rev 2019; 40:431-458. [DOI: 10.1002/med.21624] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Lili Zhang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Chen Chen
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Marvin SH Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic University, Hung Hom Hong Kong
| | - Junfeng Lu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Zeqing Wu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Qiuhe Chen
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic University, Hung Hom Hong Kong
- International Joint Laboratory<SYSU‐PolyU HK>of Novel Anti‐Dementia Drugs of GuangzhouGuangzhou China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co LtdGuangzhou China
| | - Rongbiao Pi
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
- International Joint Laboratory<SYSU‐PolyU HK>of Novel Anti‐Dementia Drugs of GuangzhouGuangzhou China
- National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐Sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
15
|
Haenseler W, Rajendran L. Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell-Derived Microglia. Stem Cells 2019; 37:724-730. [PMID: 30801863 PMCID: PMC6849818 DOI: 10.1002/stem.2995] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. stem cells2019;37:724–730
Collapse
Affiliation(s)
- Walther Haenseler
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland.,UK-Dementia Research Institute (UK-DRI), Maurice Wohl Basic & Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Computational translation of genomic responses from experimental model systems to humans. PLoS Comput Biol 2019; 15:e1006286. [PMID: 30629591 PMCID: PMC6343937 DOI: 10.1371/journal.pcbi.1006286] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/23/2019] [Accepted: 11/13/2018] [Indexed: 01/09/2023] Open
Abstract
The high failure rate of therapeutics showing promise in mouse models to translate to patients is a pressing challenge in biomedical science. Though retrospective studies have examined the fidelity of mouse models to their respective human conditions, approaches for prospective translation of insights from mouse models to patients remain relatively unexplored. Here, we develop a semi-supervised learning approach for inference of disease-associated human differentially expressed genes and pathways from mouse model experiments. We examined 36 transcriptomic case studies where comparable phenotypes were available for mouse and human inflammatory diseases and assessed multiple computational approaches for inferring human biology from mouse datasets. We found that semi-supervised training of a neural network identified significantly more true human biological associations than interpreting mouse experiments directly. Evaluating the experimental design of mouse experiments where our model was most successful revealed principles of experimental design that may improve translational performance. Our study shows that when prospectively evaluating biological associations in mouse studies, semi-supervised learning approaches, combining mouse and human data for biological inference, provide the most accurate assessment of human in vivo disease processes. Finally, we proffer a delineation of four categories of model system-to-human “Translation Problems” defined by the resolution and coverage of the datasets available for molecular insight translation and suggest that the task of translating insights from model systems to human disease contexts may be better accomplished by a combination of translation-minded experimental design and computational approaches. Empirical comparison of genomic responses in mouse models and human disease contexts is not sufficient for addressing the challenge of prospective translation from mouse models to human disease contexts. We address this challenge by developing a semi-supervised machine learning approach that combines supervised modeling of mouse datasets with unsupervised modeling of human disease-context datasets to predict human in vivo differentially expressed genes and enriched pathways. Semi-supervised training of a feed forward neural network was the most efficacious model for translating experimentally derived mouse biological associations to the human in vivo disease context. We find that computational generalization of signaling insights substantially improves upon direct generalization of mouse experimental insights and argue that such approaches can facilitate more clinically impactful translation of insights from preclinical studies in model systems to patients.
Collapse
|
17
|
Mitchell TC. A GRIM fate for human neutrophils in airway disease. J Leukoc Biol 2018; 104:657-659. [PMID: 30066961 DOI: 10.1002/jlb.5ce0418-162r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thomas C Mitchell
- Institute for Cellular Therapeutics and the Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|