1
|
Lu D, Zhang W, Li R, Tan S, Zhang Y. Targeting necroptosis in Alzheimer's disease: can exercise modulate neuronal death? Front Aging Neurosci 2025; 17:1499871. [PMID: 40161268 PMCID: PMC11950841 DOI: 10.3389/fnagi.2025.1499871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/15/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and neuronal degeneration. Emerging evidence implicates necroptosis in AD pathogenesis, driven by the RIPK1-RIPK3-MLKL pathway, which promotes neuronal damage, inflammation, and disease progression. Exercise, as a non-pharmacological intervention, can modulate key inflammatory mediators such as TNF-α, HMGB1, and IL-1β, thereby inhibiting necroptotic signaling. Additionally, exercise enhances O-GlcNAc glycosylation, preventing Tau hyperphosphorylation and stabilizing neuronal integrity. This review explores how exercise mitigates necroptosis and neuroinflammation, offering novel therapeutic perspectives for AD prevention and management.
Collapse
Affiliation(s)
- Donglei Lu
- Tianjin Key Laboratory of Sports and Health Integration and Health Promotion, Tianjin, China
| | - Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyu Li
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Sijie Tan
- Tianjin Key Laboratory of Sports and Health Integration and Health Promotion, Tianjin, China
| | - Yan Zhang
- Tianjin Shengzhi Sports Technology Co., Ltd., Tianjin, China
| |
Collapse
|
2
|
Wang S, Xu H, Liu G, Chen L. Non-pharmacological treatment of Alzheimer's disease: an update. Front Aging Neurosci 2025; 17:1527242. [PMID: 40018518 PMCID: PMC11865074 DOI: 10.3389/fnagi.2025.1527242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs memory, cognitive function, and the ability to perform daily tasks. The pathological features of AD include β-amyloid plaques, neurofibrillary tangles, and neuronal loss. Current AD treatments target pathological changes but often fail to noticeably slow disease progression and can cause severe complications, limiting their effectiveness. In addition to therapies targeting the core pathology of AD, a more comprehensive approach may be needed for its treatment. In recent years, non-pharmacological treatments such as physical therapy, exercise therapy, cell therapy, and nanoparticles have shown great potential in mitigating disease progression and alleviating clinical symptoms. This article reviews recent advances in non-pharmacological treatment approaches for AD, highlighting their contributions to AD management and facilitating the exploration of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shaofen Wang
- West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Haochen Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guangdong Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Limei Chen
- West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Liu S, Zhang R, Hallajzadeh J. Role of exercise on ncRNAs and exosomal ncRNAs in preventing neurodegenerative diseases: a narrative review. Mol Med 2025; 31:51. [PMID: 39920595 PMCID: PMC11803956 DOI: 10.1186/s10020-025-01091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Engaging in activity has proven to have beneficial effects on different facets of well-being, such as conditions related to the deterioration of the nervous system. Non-coding RNAs (ncRNAs) and exosomal ncRNAs associated with vesicles have been recognized as influencers of gene expression and cell signaling, potentially contributing to the positive impact of physical activity on neurodegenerative conditions. It is hypothesized that exercise-induced changes in ncRNA expression may regulate key processes involved in neuroprotection, including neuroinflammation, oxidative stress, protein aggregation, and synaptic function. Exercise has shown promise in preventing neurodegenerative diseases (NDs), and ncRNAs and exosomal ncRNAs are emerging as potential mediators of these benefits. In review, we explored how ncRNAs and exosomal ncRNAs play a role in enhancing the impacts of activity on neurodegenerative disorders for future treatments. Research studies, both preclinical and clinical, that have documented the use of various exercises and their effects on ncRNAs and exosomal ncRNAs for the treatment of NDs have been compiled and enlisted from the PubMed database, spanning the time period from the year 2000 up to the current time. Studies show that manipulating specific ncRNAs or harnessing exercise-induced changes in ncRNA expression and exosomal cargo could potentially be utilized as therapeutic strategies for preventing or treating NDs. In conclusion, studies suggest that various exercise modalities, including aerobic, resistance, and high-intensity interval training, can modulate the expression of ncRNAs and exosomal ncRNAs in the context of NDs. The altered ncRNA profiles may contribute to the neuroprotective and therapeutic effects observed with exercise interventions. However, more research is needed to fully understand the underlying mechanisms and to further explore the potential of exercise-induced ncRNA signatures as biomarkers and therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shangwu Liu
- Department of Physical Education, Lyuliang University, Lishi, 033000, Shanxi, China
| | - Runhong Zhang
- Department of Physical Education, Lyuliang University, Lishi, 033000, Shanxi, China.
| | - Jamal Hallajzadeh
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
4
|
Azarfarin M, Moradikor N, Salatin S, Sarailoo M, Dadkhah M. Stress-related neurodegenerative diseases: Molecular mechanisms implicated in neurodegeneration and therapeutic strategies. PROGRESS IN BRAIN RESEARCH 2025; 291:253-288. [PMID: 40222783 DOI: 10.1016/bs.pbr.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Chronic stress is a striking cause of major neurodegenerative diseases disorders (NDDs). These diseases share several common mechanisms regarding to disease pathology, in spite of they have various properties and clinical manifestations. NDDs are defined by progressive cognitive decline, and stress contribute to the promotion and progression of disease. In addition, various pathways such as production of reactive oxygen species (ROS), mitochondrial dysfunction, and neurodegeneration are the main crucial hallmarks to develop common NDDs, resulting in neuronal cell death. Although the exact mechanisms of NDDs are underexplored, the potential neuroprotective critical role of such therapies in neuronal loss the treatment of NDDs are not clear. In this regard, researchers investigate the neuroprotective effects of targeting underlying cascade to introduce a promising therapeutic option to NDDs. Herein, we provide an overview of the role of non-pharmacological treatments against oxidative stress, mitochondrial symbiosis, and neuroinflammation in NDDs, mainly discussing the music, diet, and exercise effects of targeting pathways.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Sara Salatin
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sarailoo
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Neuroscience Research Group, Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2025; 36:1-25. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
6
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
7
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Zhang R, Liu S, Mousavi SM. Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms. Mol Neurobiol 2024; 61:6279-6299. [PMID: 38286967 DOI: 10.1007/s12035-024-03970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one's ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual's physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain's neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body-brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.
Collapse
Affiliation(s)
- Runhong Zhang
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China.
| | - Shangwu Liu
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China
| | | |
Collapse
|
9
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Xie J, Luo Y, Wei L, Fan H, Wang Y, Wang Q, Zou Y, Luo Y, Tang Y. Effects of environmental enrichment on GLUT expression in the visual cortex of amblyopic rats. Brain Res 2024; 1836:148933. [PMID: 38604554 DOI: 10.1016/j.brainres.2024.148933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE To investigate the potential changes of glucose metabolism and glucose transporter protein (GLUT) in the visual cortex of formally deprived amblyopic rats, as well as the effects of enriched environments on the levels of nerve conduction and glucose metabolism in the visual cortex of amblyopic rats. METHODS 36 rats were randomly divided into three groups: CON + SE (n = 12), MD + SE (n = 12) and MD + EE (n = 12). The right eyelids of both MD + SE and MD + EE groups were sutured. After successful modelling, the MD + EE group was maintained in an enriched environment, and the other two groups were kept in the same environment. Pattern visual evoked potentials (PVEP) was used to confirm models' effect, glucose metabolism was analyzed by Micro-PET/CT (18F-FDG), and the protein as well as mRNA expression levels of GLUT were detected by Western Blot and quantitative RT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction) analyses, site of GLUT expression by immunofluorescence (IF). RESULTS After suture modelling, both the MD + EE and MD + SE groups objective visual nerve conduction function decreased, the glucose metabolism in the visual cortex was markedly lower. After the enriched environment intervention, it recovered in the MD + EE group. The expression levels of GLUT1 and GLUT3 were increased in the MD + EE group in comparison with the MD + SE group. GLUT1 was primarily expressed on astrocytes and endothelial cells, but GLUT3 was mainly expressed on neurons. CONCLUSION Enrichment of the environment exhibited a therapeutic effect on amblyopia, which could be related to the enhancement of glucose metabolism and GLUT expression in the visual cortex.
Collapse
Affiliation(s)
- Juan Xie
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China; Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Yue Luo
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Lingjun Wei
- Department of Ophthalmology, Zhoukou Central Hospital, Zhoukou, China
| | - Haobo Fan
- Department of Optometry and Pediatric Ophthalmology, Ineye Hospital of Chengdu University of TCM, Chengdu, China
| | - Ying Wang
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Qian Wang
- Department of Ophthalmology, Yulin First Hospital, Yulin, China
| | - Yunchun Zou
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China; Department of Optometry, North Sichuan Medical College, Nanchong, China.
| | - Yuehan Luo
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Yangyu Tang
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
11
|
Lu Y, Li M, Zhuang Y, Lin Z, Nie B, Lei J, Zhao Y, Zhao H. Combination of fMRI and PET reveals the beneficial effect of three-phase enriched environment on post-stroke memory deficits by enhancing plasticity of brain connectivity between hippocampus and peri-hippocampal cortex. CNS Neurosci Ther 2024; 30:e14466. [PMID: 37752881 PMCID: PMC10916434 DOI: 10.1111/cns.14466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
AIM The three-phase enriched environment (EE) intervention paradigm has been shown to improve learning and memory function after cerebral ischemia, but the neuronal mechanisms are still unclear. This study aimed to investigate the hippocampal-cortical connectivity and the metabolic interactions between neurons and astrocytes to elucidate the underlying mechanisms of EE-induced memory improvement after stroke. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham surgery and housed in standard environment or EE for 30 days. Memory function was examined by Morris water maze (MWM) test. Magnetic resonance imaging (MRI) was conducted to detect the structural and functional changes. [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) was conducted to detect brain energy metabolism. PET-based brain connectivity and network analysis was performed to study the changes of hippocampal-cortical connectivity. Astrocyte-neuron metabolic coupling, including gap junction protein connexin 43 (Cx43), glucose transporters (GLUTs), and monocarboxylate transporters (MCTs), was detected by histological studies. RESULTS Our results showed EE promoted memory function improvement, protected structure integrity, and benefited energy metabolism after stroke. More importantly, EE intervention significantly increased functional connectivity between the hippocampus and peri-hippocampal cortical regions, and specifically regulated the level of Cx43, GLUTs and MCTs in the hippocampus and cortex. CONCLUSIONS Our results revealed the three-phase enriched environment paradigm enhanced hippocampal-cortical connectivity plasticity and ameliorated post-stroke memory deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical transformation of EE.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Mingcong Li
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Yuming Zhuang
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Ziyue Lin
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Jianfeng Lei
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Yuanyuan Zhao
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Hui Zhao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| |
Collapse
|
12
|
Huang B, Chen K, Li Y. Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 2023; 15:1194559. [PMID: 37614470 PMCID: PMC10442561 DOI: 10.3389/fnagi.2023.1194559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Aerobic exercise has emerged as a promising intervention for mild cognitive impairment (MCI), a precursor to dementia. The therapeutic benefits of aerobic exercise are multifaceted, encompassing both clinical and molecular domains. Clinically, aerobic exercise has been shown to mitigate hypertension and type 2 diabetes mellitus, conditions that significantly elevate the risk of MCI. Moreover, it stimulates the release of nitric oxide, enhancing arterial elasticity and reducing blood pressure. At a molecular level, it is hypothesized that aerobic exercise modulates the activation of microglia and astrocytes, cells crucial to brain inflammation and neurogenesis, respectively. It has also been suggested that aerobic exercise promotes the release of exercise factors such as irisin, cathepsin B, CLU, and GPLD1, which could enhance synaptic plasticity and neuroprotection. Consequently, regular aerobic exercise could potentially prevent or reduce the likelihood of MCI development in elderly individuals. These molecular mechanisms, however, are hypotheses that require further validation. The mechanisms of action are intricate, and further research is needed to elucidate the precise molecular underpinnings and to develop targeted therapeutics for MCI.
Collapse
Affiliation(s)
- Baiqing Huang
- Sports Institute, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Ying Li
- Sports Institute, Yunnan Minzu University, Kunming, China
| |
Collapse
|
13
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
14
|
Santiago JA, Potashkin JA. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Front Aging Neurosci 2023; 15:1185671. [PMID: 37304072 PMCID: PMC10250655 DOI: 10.3389/fnagi.2023.1185671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Neurodegenerative diseases have reached alarming numbers in the past decade. Unfortunately, clinical trials testing potential therapeutics have proven futile. In the absence of disease-modifying therapies, physical activity has emerged as the single most accessible lifestyle modification with the potential to fight off cognitive decline and neurodegeneration. In this review, we discuss findings from epidemiological, clinical, and molecular studies investigating the potential of lifestyle modifications in promoting brain health. We propose an evidence-based multidomain approach that includes physical activity, diet, cognitive training, and sleep hygiene to treat and prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
15
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Widjaya MA, Cheng YJ, Kuo YM, Liu CH, Cheng WC, Lee SD. Transcriptomic Analyses of Exercise Training in Alzheimer's Disease Cerebral Cortex. J Alzheimers Dis 2023; 93:349-363. [PMID: 36970901 DOI: 10.3233/jad-221139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Research reported exercise could reduce Alzheimer's disease (AD) symptoms in human and animals. However, the molecular mechanism of exercise training via transcriptomic analysis was unclear especially in AD in the cortex area. OBJECTIVE Investigate potential significant pathways in the cortex area that were affected by exercise during AD. METHODS RNA-seq analysis, differential expressed genes, functional enrichment analysis, and GSOAP clustering analysis were performed in the isolated cerebral cortex from eight 3xTg AD mice (12 weeks old) randomly and equally divided into control (AD) and exercise training (AD-EX) group. Swimming exercise training in AD-EX group was conducted 30 min/day for 1 month. RESULTS There were 412 genes significant differentially expressed in AD-EX group compared to AD group. Top 10 upregulated genes in AD-EX group against AD group mostly correlated with neuroinflammation, while top 10 downregulated genes mostly had connection with vascularization, membrane transport, learning memory, and chemokine signal. Pathway analysis revealed the upregulated interferon alpha beta signaling in AD-EX had association with cytokines delivery in microglia cells compared to AD and top 10 upregulated genes involved in interferon alpha beta were Usp18, Isg15, Mx1, Mx2, Stat1, Oas1a, and Irf9; The downregulated extracellular matrix organization in AD-EX had correlation with Aβ and neuron cells interaction and Vtn was one of the top 10 downregulated genes involved in this pathway. CONCLUSION Exercise training influenced 3xTg mice cortex through interferon alpha beta signaling upregulation and extracellular matrix organization downregulation based on transcriptomics analysis.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung, Tainan, Taiwan
| | - Chia-Hsin Liu
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Sun L, Liu T, Liu J, Gao C, Zhang X. Physical exercise and mitochondrial function: New therapeutic interventions for psychiatric and neurodegenerative disorders. Front Neurol 2022; 13:929781. [PMID: 36158946 PMCID: PMC9491238 DOI: 10.3389/fneur.2022.929781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Psychiatric and neurodegenerative diseases, including major depression disorder (MDD), bipolar disorder, and Alzheimer's disease, are a burden to society. Deficits of adult hippocampal neurogenesis (AHN) have been widely considered the main hallmark of psychiatric diseases as well as neurodegeneration. Herein, exploring applicable targets for improving hippocampal neural plasticity could provide a breakthrough for the development of new treatments. Emerging evidence indicates the broad functions of mitochondria in regulating cellular behaviors of neural stem cells, neural progenitors, and mature neurons in adulthood could offer multiple neural plasticities for behavioral modulation. Normalizing mitochondrial functions could be a new direction for neural plasticity enhancement. Exercise, a highly encouraged integrative method for preventing disease, has been indicated to be an effective pathway to improving both mitochondrial functions and AHN. Herein, the relative mechanisms of mitochondria in regulating neurogenesis and its effects in linking the effects of exercise to neurological diseases requires a systematic summary. In this review, we have assessed the relationship between mitochondrial functions and AHN to see whether mitochondria can be potential targets for treating neurological diseases. Moreover, as for one of well-established alternative therapeutic approaches, we summarized the evidence to show the underlying mechanisms of exercise to improve mitochondrial functions and AHN.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- College of P.E and Sport, Beijing Normal University, Beijing, China
| | - Tianbiao Liu
- College of P.E and Sport, Beijing Normal University, Beijing, China
| | - Jingqi Liu
- College of P.E and Sport, Beijing Normal University, Beijing, China
| | - Chong Gao
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, Zhejiang University City College, Hangzhou, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
18
|
Li H, Su W, Dang H, Han K, Lu H, Yue S, Zhang H. Exercise Training for Mild Cognitive Impairment Adults Older Than 60: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 88:1263-1278. [PMID: 35811527 PMCID: PMC9484098 DOI: 10.3233/jad-220243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background: The prevalence of mild cognitive impairment (MCI) continues to increase due to population aging. Exercise has been a supporting health strategy that may elicit beneficial effects on cognitive function and prevent dementia. Objective: This study aimed to examine the effects of aerobic, resistance, and multimodal exercise training on cognition in adults aged > 60 years with MCI. Methods: We searched the Cochrane Library, PubMed, and Embase databases and ClinicalTrials.gov (https://clinicaltrials.gov) up to November 2021, with no language restrictions. We included all published randomized controlled trials (RCTs) comparing the effect of exercise programs on cognitive function with any other active intervention or no intervention in participants with MCI aged > 60 years. Results: Twelve RCTs were included in this review. Meta-analysis results revealed significant improvements in resistance training on measures of executive function (p < 0.05) and attention (p < 0.05); no significant differences were observed between aerobic exercise and controls on any of the cognitive comparisons. Conclusion: Exercise training had a small beneficial effect on executive function and attention in older adults with MCI. Larger studies are required to examine the effects of exercise and the possible moderators.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Wenlong Su
- China Rehabilitation Research Center, Beijing, China
| | - Hui Dang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Kaiyue Han
- China Rehabilitation Research Center, Beijing, China
| | - Haitao Lu
- China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
19
|
Song Y, Liu Z, Zhu X, Hao C, Hao W, Wu S, Yang J, Lu X, Jin C. Metformin alleviates the cognitive impairment caused by aluminum by improving energy metabolism disorders in mice. Biochem Pharmacol 2022; 202:115140. [PMID: 35700760 DOI: 10.1016/j.bcp.2022.115140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Long-term exposure to environmental aluminum was found to be related to the occurrence and development of neurodegenerative diseases. Energy metabolism disorders, one of the pathological features of neurodegenerative diseases, may occur in the early stage of the disease and are of potential intervention significance. Here, sub-chronic aluminum exposure mouse model was established, and metformin was used to intervene. We found that sub-chronic aluminum exposure decreased the protein levels of phosphorylation AMPK (p-AMPK), glucose transporter 1 (GLUT1) and GLUT3, taking charge of glucose uptake in the brain, reduced the levels of lactate shuttle-related proteins monocarboxylate transporter 4 (MCT4) and MCT2, as well as lactate content in the cerebral cortex, while increased hypoxia-inducible factor-1α (HIF-1α) level to drive downstream pyruvate dehydrogenase kinase 1 (PDK1) expression, thereby inhibiting pyruvate dehydrogenase (PDH) activity, and ultimately led to ATP depletion, neuronal death, and cognitive dysfunction. However, metformin could rescue these injuries. Thus, it came to a conclusion that aluminum could damage glucose uptake, interfere with astrocyte-neuron lactate shuttle (ANLS), interrupt the balance in energy metabolism, and resulting in cognitive function, while metformin has a neuroprotective effect against the disorder of energy metabolism caused by aluminum in mice.
Collapse
Affiliation(s)
- Yushuai Song
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Ziyue Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaoying Zhu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
20
|
The feasibility and efficacy of the home-based exercise programs in patients with cognitive impairment: A pilot study. Geriatr Nurs 2022; 45:108-117. [PMID: 35395598 DOI: 10.1016/j.gerinurse.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the feasibility and efficacy of home-based aerobic and resistance exercise interventions for geriatric individuals with cognitive impairment. METHODS Fourteen participants with cognitive impairment were allocated to either the aerobic group (n = 8) or the resistance group (n = 6), after which they implemented a two-month home-based training program. Feasibility and efficacy outcomes were evaluated. A semi-structured interview was performed after the intervention. RESULTS All fourteen participants completed the two-month training program. The adherence rate was 0.94 for the aerobic group and 0.96 for the resistance group. No adverse events occurred. The results revealed a trend of group×time interaction effect on delayed recall. Significant group×time interaction effects were revealed on simple physical performance and body composition. Semi-structured interviews identified four motivators for participating in this program, four facilitators for and three barriers to keeping exercising, and some perceived benefits. CONCLUSION Home-based aerobic and resistance exercise programs are feasible for geriatric individuals with cognitive impairment. The efficacy needs to be further examined.
Collapse
|
21
|
Fang Y, Chen C, Zhong Q, Wang L, Gui Z, Zhu J, Manyande A, Xu F, Wang J, Zhang Z. Influence of Cerebral Glucose Metabolism by Chronic Pain-Mediated Cognitive Impairment in Adolescent Rats. Mol Neurobiol 2022; 59:3635-3648. [PMID: 35355195 DOI: 10.1007/s12035-022-02816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Chronic pain during adolescence can lead to mental health disorders in adulthood, but the underlying mechanism is still unclear. Furthermore, the homeostasis of cerebral glucose metabolism and neurotransmitter metabolic kinetics are closely associated with cognitive development and pain progression. The present study investigated changes in cognitive function and glucose metabolism in adult rats, which had experienced chronic pain during their adolescence. Here, spared nerve injury (SNI) surgery was conducted in 4-week-old male rats. Mechanical nociceptive reflex thresholds were analyzed, and SNI chronic pain (SNI-CP) animals were screened. Based on animal behavioral tests (open field, three-chambered social, novel object recognition and the Y maze), the SNI-CP animals showed learning and memory impairment and anxiety-like behaviors, compared to SNI no chronic pain (SNI-NCP) animals. The cerebral glucose metabolism in the prefrontal cortex and hippocampus of adult SNI-CP animals was decreased with positron emission tomography/computed tomography. GABA2 and Glu4 levels in the metabolic kinetics study were significantly decreased in the hippocampus, frontal cortex, and temporal cortex, and the expression of GLUT3 and GLUT4 was also significantly downregulated in the prefrontal cortex and hippocampus of adult rats in the SNI-CP group. These findings suggest that the rats which suffered chronic pain during adolescence have lower cerebral glucose metabolism in the cortex and hippocampus, which could be related to cognitive function during the development of the central nervous system.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Chang Chen
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Qi Zhong
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Lirong Wang
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China
| | - Jinpiao Zhu
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Brentford, TW8 9GA, Middlesex, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China.
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Zongze Zhang
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
22
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
23
|
Zhang SS, Zhu L, Peng Y, Zhang L, Chao FL, Jiang L, Xiao Q, Liang X, Tang J, Yang H, He Q, Guo YJ, Zhou CN, Tang Y. Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. J Neuroinflammation 2022; 19:34. [PMID: 35123512 PMCID: PMC8817568 DOI: 10.1186/s12974-022-02401-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background The role of physical exercise in the prevention of Alzheimer’s disease (AD) has been widely studied. Microglia play an important role in AD. Triggering receptor expressed in myeloid cells 2 (TREM2) is expressed on microglia and is known to mediate microglial metabolic activity and brain glucose metabolism. However, the relationship between brain glucose metabolism and microglial metabolic activity during running exercise in APP/PS1 mice remains unclear. Methods Ten-month-old male APP/PS1 mice and wild-type mice were randomly divided into sedentary groups or running groups (AD_Sed, WT_Sed, AD_Run and WT_Run, n = 20/group). Running mice had free access to a running wheel for 3 months. Behavioral tests, [18]F-FDG-PET and hippocampal RNA-Seq were performed. The expression levels of microglial glucose transporter (GLUT5), TREM2, soluble TREM2 (sTREM2), TYRO protein tyrosine kinase binding protein (TYROBP), secreted phosphoprotein 1 (SPP1), and phosphorylated spleen tyrosine kinase (p-SYK) were estimated by western blot or ELISA. Immunohistochemistry, stereological methods and immunofluorescence were used to investigate the morphology, proliferation and activity of microglia. Results Long-term voluntary running significantly improved cognitive function in APP/PS1 mice. Although there were few differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) showed enriched glycometabolic pathways in APP/PS1 running mice. Running exercise increased FDG uptake in the hippocampus of APP/PS1 mice, as well as the protein expression of GLUT5, TREM2, SPP1 and p-SYK. The level of sTREM2 decreased in the plasma of APP/PS1 running mice. The number of microglia, the length and endpoints of microglial processes, and the ratio of GLUT5+/IBA1+ microglia were increased in the dentate gyrus (DG) of APP/PS1 running mice. Running exercise did not alter the number of 5-bromo-2′-deoxyuridine (BrdU)+/IBA1+ microglia but reduced the immunoactivity of CD68 in the hippocampus of APP/PS1 mice. Conclusions Running exercise inhibited TREM2 shedding and maintained TREM2 protein levels, which were accompanied by the promotion of brain glucose metabolism, microglial glucose metabolism and morphological plasticity in the hippocampus of AD mice. Microglia might be a structural target responsible for the benefits of running exercise in AD. Promoting microglial glucose metabolism and morphological plasticity modulated by TREM2 might be a novel strategy for AD treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02401-5.
Collapse
|
24
|
Orozco CA, González-Giraldo Y, Bonilla DA, Forero DA. An in silico analysis of genome-wide expression profiles of the effects of exhaustive exercise identifies heat shock proteins as the key players. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
26
|
Lu J, Liu L, Chen J, Zhi J, Li J, Li L, Jiang Z. The Involvement of lncRNA HOTAIR/miR-130a-3p Axis in the Regulation of Voluntary Exercise on Cognition and Inflammation of Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2022; 37:15333175221091424. [PMID: 35442818 PMCID: PMC10581116 DOI: 10.1177/15333175221091424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related neurodegenerative disease and exercises might mitigate the progression of AD. This investigation aimed to manifest the potential mechanism of exercises in AD. METHODS Morris water maze (MWM) test was conducted to evaluate the cognitive function in APP/PS1 mice. Quantitative real-time PCR was performed to detect the expression of HOTAIR and miR-130a-3p. The enzyme-linked immunosorbent assay was applied to appraise the concentration of IL-1β, IL-6, and TNF-α. A luciferase report experiment was implemented to substantiate the relationship between miR-130a-3p and HOTAIR. RESULTS Exercises contributed to the elevated expression of HOTAIR. The findings of MWM implied HOTAIR inhibited the impacts of voluntary exercises on escape latency, distance moved, percentage of time spent in the target quadrant, platform crossing times, and inflammation. MiR-130a-3p mediated the function of HOTAIR on cognitive ability and inflammation. CONCLUSION HOTAIR participated in the regulation of exercises on AD by sponging miR-130a-3p.
Collapse
Affiliation(s)
- Jianxia Lu
- School of Rehabilitation, Jiangsu Vocational College of Medicine, Yancheng, China
- Department of Rehabilitation Medicine, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Lihua Liu
- Department of Rehabilitation Medicine, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Jurong Hospital Affiliated to Jiangsu University, Jurong People’s Hospital, Jiangsu, China
| | - Jin Chen
- School of Rehabilitation, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Juan Zhi
- School of Rehabilitation, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jiabin Li
- Department of Neurology, Jurong Hospital Affiliated to Jiangsu University, Jurong People’s Hospital, Jiangsu, China
| | - Le Li
- School of Rehabilitation, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Zhongli Jiang
- Department of Rehabilitation Medicine, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Zhao N, Xu B. The beneficial effect of exercise against Alzheimer's disease may result from improved brain glucose metabolism. Neurosci Lett 2021; 763:136182. [PMID: 34418507 DOI: 10.1016/j.neulet.2021.136182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
The potential of physical exercise as an intervention for Alzheimer's disease (AD) has been extensively reported. In fact, a number of studies have highlighted improvements in β-amyloid (Aβ) peptide and hyperphosphorylated tau (p-tau) as critical mechanisms in exercise-induced beneficial neurological outcomes. However, no therapeutic management have been proven to be effective in humans. Recent evidence has shown that AD may be a metabolic disease related to glucose metabolic dysfunction in the brain. In this regard, some of the mechanisms responsible for the beneficial effects of physical exercise in the pathology of AD appear to be related to alterations in glucose metabolism. Therefore, we propose that the neuroprotective effect of physical exercise against AD through synergetic improvement in brain glucose metabolism and its pathophysiology. The novel perspective presented here partly explains the failure of Aβ/tau-based therapeutic approaches and provides evidence for brain glucose metabolism as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Bo Xu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| |
Collapse
|
28
|
Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel) 2021; 10:antiox10091479. [PMID: 34573112 PMCID: PMC8468973 DOI: 10.3390/antiox10091479] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of Alzheimer's disease involves β amyloid (Aβ) accumulation known to induce synaptic dysfunction and neurodegeneration. The brain's vulnerability to oxidative stress (OS) is considered a crucial detrimental factor in Alzheimer's disease. OS and Aβ are linked to each other because Aβ induces OS, and OS increases the Aβ deposition. Thus, the answer to the question "which comes first: the chicken or the egg?" remains extremely difficult. In any case, the evidence for the primary occurrence of oxidative stress in AD is attractive. Thus, evidence indicates that a long period of gradual oxidative damage accumulation precedes and results in the appearance of clinical and pathological AD symptoms, including Aβ deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. Moreover, oxidative stress plays a crucial role in the pathogenesis of many risk factors for AD. Alzheimer's disease begins many years before its symptoms, and antioxidant treatment can be an important therapeutic target for attacking the disease.
Collapse
|
29
|
Abstract
UNLABELLED Exercise is associated with higher cognitive function and is a promising intervention to reduce the risk of dementia. With advancing age, there are changes in the vasculature that have important clinical implications for brain health and cognition. Primary aging and vascular risk factors are associated with increases in arterial stiffness and pulse pressure, and reductions in peripheral vascular function. OBJECTIVE The purpose is to discuss the epidemiological, observational, and mechanistic evidence regarding the link between age-related changes in vascular health and brain health. METHODS We performed a literature review and integrated with our published data. RESULTS Epidemiological evidence suggests a link between age-related increases in arterial stiffness and lower cognitive function, which may be mediated by cerebral vascular function, including cerebral vasoreactivity and cerebral pulsatility. Age-associated impairments in central arterial stiffness and peripheral vascular function have been attenuated or reversed through lifestyle behaviors such as exercise. Greater volumes of habitual exercise and higher cardiorespiratory fitness are associated with beneficial effects on both peripheral vascular health and cognition. Yet, the extent to which exercise directly influences cerebral vascular function and brain health, as well as the associated mechanisms remains unclear. CONCLUSION Although there is evidence that exercise positively impacts cerebral vascular function, more research is necessary in humans to optimize experimental protocols and address methodological limitations and physiological considerations. Understanding the impact of exercise on cerebral vascular function is important for understanding the association between exercise and brain health and may inform future intervention studies that seek to improve cognition.
Collapse
|
30
|
Tan ZX, Dong F, Wu LY, Feng YS, Zhang F. The Beneficial Role of Exercise on Treating Alzheimer's Disease by Inhibiting β-Amyloid Peptide. Mol Neurobiol 2021; 58:5890-5906. [PMID: 34415486 DOI: 10.1007/s12035-021-02514-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is associated with a very large burden on global healthcare systems. Thus, it is imperative to find effective treatments of the disease. One feature of AD is the accumulation of neurotoxic β-amyloid peptide (Aβ). Aβ induces multiple pathological processes that are deleterious to nerve cells. Despite the development of medications that target the reduction of Aβ to treat AD, none has proven to be effective to date. Non-pharmacological interventions, such as physical exercise, are also being studied. The benefits of exercise on AD are widely recognized. Experimental and clinical studies have been performed to verify the role that exercise plays in reducing Aβ deposition to alleviate AD. This paper reviewed the various mechanisms involved in the exercise-induced reduction of Aβ, including the regulation of amyloid precursor protein cleaved proteases, the glymphatic system, brain-blood transport proteins, degrading enzymes and autophagy, which is beneficial to promote exercise therapy as a means of prevention and treatment of AD and indicates that exercise may provide new therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
31
|
Vasconcelos-Filho FSL, da Rocha Oliveira LC, de Freitas TBC, de Pontes PADS, Rocha-E-Silva RCD, Godinho WDN, Chaves EMC, da Silva CGL, Soares PM, Ceccatto VM. Effect of involuntary chronic physical exercise on beta-amyloid protein in experimental models of Alzheimer's disease: Systematic review and meta-analysis. Exp Gerontol 2021; 153:111502. [PMID: 34339821 DOI: 10.1016/j.exger.2021.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
The excessive deposition of β-amyloid proteins (Aβ) is directly correlated with the establishment and development of Alzheimer's Disease (AD). Current treatments for AD only reduce symptoms instead of acting on Aβ, the primary etiological agent. Hence, the anti-amyloid effect of regular exercise has been widely investigated as an alternative therapy. This systematic review and meta-analysis examined the anti-amyloid effect of regular physical exercise in animal models of AD. The search was conducted on the electronic databases Pubmed, Embase, Scopus and Web of Science without data limitation and using the following describers: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated using the SYRCLE's tool. Meta-analyses were conducted using models of random continuous effects. A total of 36 studies were selected and most used: transgenic mice (n = 29), treadmill training, duration of 12 weeks (interval of 4 to 28 weeks), rate of 60 min/day (interval of 30 min and up until free access) and speed of 12 m/min (interval of 3.2 to 32 m/min). The hippocampus and cortex were the most frequently investigated regions. Meta-analysis demonstrated a decrease in Aβ with greater effect in unspecified isoforms Meta-analysis demonstrated a decrease in Aβ with greater effect in unspecified isoforms (N = 4; SMD = -2.71, IC 95%: -3.59, -1.84, p < 0.00001, Q2 = 3.38, I2 = 11%) and Aβ1-42 (N = 21; SMD = -1.94, IC 95%: -2.37, -1.51, p < 0.00001, Q2 = 33,37, I2 = 40%). Concerning training, greater effect was found with: 1) swimming (N = 4; SMD = -1.98, IC 95%: -3,28 - -0,68, p = 0.003, Q2 = 9.74, I2 = 69%), 2) moderate intensity (N = 4; SMD = -2.03, IC 95%: -3.31 - -0.75, p < 0.005, Q2 = 12.68, I2 = 76%); 3) duration up to six weeks (N = 6; N = 6; SMD = -2.35, IC 95%: -3.15 - -1.55, p < 0.00001, Q2 = 8.38, I2 = 40%); 4) young animals (SMD = -2.00, IC 95%: -2.59 - -1.42, p < 0.00001, Q2 = 24.90, I2 = 52%); 5) in the amygdala region (N = 1; SMD = -8.56, IC 95%: -12.88 - -4.23, p = 0.0001) and females (N = 4; SMD = -2.14, IC 95%: -3.48 - -0.79, p = 0.002, Q2 = 10.31, I2 = 71%). However, the reduction of Aβ was associated with decrease of amyloidogenic pathway and increase of non-amyloidogenic. Hence, regular physical exercise demonstrated anti-amyloid effect in experimental models of AD through positive alterations in APP processing through different signaling pathways.
Collapse
Affiliation(s)
- Francisco Sérgio Lopes Vasconcelos-Filho
- Pró-reitoria de Cultura, Universidade Federal do Cariri, Juazeiro do Norte, Ceará, Brazil; Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
| | - Lucas Christyan da Rocha Oliveira
- Departamento de Ciências da Saúde, Faculdade de Medicina, Universidade Federal Rural do Semi-árido, Mossoró, Rio Grande do Norte, Brazil
| | | | | | | | - Welton Daniel Nogueira Godinho
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Edna Maria Camelo Chaves
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Paula Matias Soares
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Vânia Marilande Ceccatto
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
32
|
Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22158142. [PMID: 34360906 PMCID: PMC8348194 DOI: 10.3390/ijms22158142] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
The most common cause of dementia, especially in elderly people, is Alzheimer’s disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer’s disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations.
Collapse
|
33
|
Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, Saravia F, Beauquis J. Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Front Neurosci 2021; 15:653651. [PMID: 33967682 PMCID: PMC8102834 DOI: 10.3389/fnins.2021.653651] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Overnutrition and modern diets containing high proportions of saturated fat are among the major factors contributing to a low-grade state of inflammation, hyperglycemia and dyslipidemia. In the last decades, the global rise of type 2 diabetes and obesity prevalence has elicited a great interest in understanding how changes in metabolic function lead to an increased risk for premature brain aging and the development of neurodegenerative disorders such as Alzheimer's disease (AD). Cognitive impairment and decreased neurogenic capacity could be a consequence of metabolic disturbances. In these scenarios, the interplay between inflammation and insulin resistance could represent a potential therapeutic target to prevent or ameliorate neurodegeneration and cognitive impairment. The present review aims to provide an update on the impact of metabolic stress pathways on AD with a focus on inflammation and insulin resistance as risk factors and therapeutic targets.
Collapse
Affiliation(s)
- Angeles Vinuesa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Pomilio
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amal Gregosa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Bentivegna
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jessica Presa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina Bellotto
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
34
|
Vasconcelos-Filho FSL, da Rocha Oliveira LC, de Freitas TBC, de Pontes PADS, da Rocha-E-Silva RC, Chaves EMC, da Silva CGL, Soares PM, Ceccatto VM. Neuroprotective mechanisms of chronic physical exercise via reduction of β-amyloid protein in experimental models of Alzheimer's disease: A systematic review. Life Sci 2021; 275:119372. [PMID: 33745893 DOI: 10.1016/j.lfs.2021.119372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 12/09/2022]
Abstract
AIMS Alzheimer's disease (AD) is the most common irreversible chronic neurodegenerative disease. It is characterized by the abnormal accumulation of β-amyloid protein (Aβ), which triggers homeostatic breakage in several physiological systems. However, the effect of chronic exercise on the formation of Aβ as an alternative therapy has been investigated. This systematic review examines the antiamyloid effect of different types and intensities of exercise, seeking to elucidate its neuroprotective mechanisms. MAIN METHODS The research was conducted in the electronic databases Pubmed, Embase, Scopus and Web of Science, using the following descriptors: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated through SYRCLE's Risk of Bias for experimental studies. KEY FINDINGS 2268 articles were found, being 36 included in the study. A higher frequency of use of mice with genetic alterations was identified for the Alzheimer's disease (AD) model (n = 29). It was used as chronic training: treadmill running (n = 24), voluntary running wheel (n = 7), swimming (n = 4) and climbing (n = 2). The hippocampus and the cortex were the most investigated regions. However, physiological changes accompanied by the reduction of Aβ and associated with AD progression were verified. It is concluded that exercise reduces the production of Aβ in models of animals with AD. SIGNIFICANCE Nevertheless, this effect contributes to the improvement of several physiological aspects related to Aβ and that contribute to neurological impairment in AD.
Collapse
Affiliation(s)
- Francisco Sérgio Lopes Vasconcelos-Filho
- Pró-reitoria de Cultura, Universidade Federal do Cariri, Juazeiro do Norte, Ceará, Brazil; Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
| | - Lucas Christyan da Rocha Oliveira
- Departamento de Ciências da Saúde, Faculdade de Medicina, Universidade Federal Rural do Semi-árido, Mossoró, Rio Grande do Norte, Brazil
| | | | | | | | - Edna Maria Camelo Chaves
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Paula Matias Soares
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Vânia Marilande Ceccatto
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
35
|
Zhou H, Wang X, Lin J, Zhao Z, Chang C. Distribution of Cadherin in the Parahippocampal Area of Developing Domestic Chicken Embryos. Exp Neurobiol 2020; 29:11-26. [PMID: 32122105 PMCID: PMC7075654 DOI: 10.5607/en.2020.29.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal formation is important in spatial learning and memory. Members of the cadherin superfamily are observed in the neural system with diverse spatial and temporal expression patterns and are involved in many biological processes. To date, the avian hippocampal formation is not well understood. In this study, we examined the expression of cadherin mRNA in chicken and mouse brains to investigate the morphological and cytoarchitectural bases of hippocampal formation. Profiles of the spatiotemporal expression of cadherin mRNAs in the developing chicken embryonic parahippocampal area (APH) are provided, and layer-specific expression and spatiotemporal expression were observed in different subdivisions of the APH. That fact that some cadherins (Cdh2, Cdh8, Pcdh8 and Pcdh10) showed conserved regional expression both in the hippocampus and entorhinal cortex of mice and the hippocampal formation of chickens partially confirmed the structural homology proposed by previous scientists. This study indicates that some cadherins can be used as special markers of the avian hippocampal formation.
Collapse
Affiliation(s)
- He Zhou
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Department of General and Visceral Surgery, Goethe-University Hospital, Frankfurt am Main 60596, Germany
| | - XiaoFan Wang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China
| | - JunTang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453000, China
| | - Ze Zhao
- School of Law, Shanghai University of Finance and Economics, Shanghai 200000, China
| | - Cheng Chang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Birth Defect Prevention Key Laboratory, National Health Commission of the People's Republic of China, Zhengzhou 450000, China.,Center of Cerebral Palsy Surgical Research and Treatment, ZhengZhou University, Zhengzhou 450000, China
| |
Collapse
|