1
|
Luijendijk MJ, Tesselaar MET, van Rossum HH, van Faassen M, Korse CM, Verbeek WHM, Spruit JR, Scheelings PC, Hooghiemstra EH, Kema IP, Ruhé HG, Schagen SB, de Vries FE. Psychiatric and cognitive function in patients with serotonin producing neuroendocrine tumors. Transl Psychiatry 2025; 15:176. [PMID: 40399262 PMCID: PMC12095550 DOI: 10.1038/s41398-025-03272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/27/2024] [Accepted: 02/07/2025] [Indexed: 05/23/2025] Open
Abstract
Cognitive and psychiatric problems are common in cancer patients, but literature on patients with neuroendocrine tumors (NET) is scarce. In a subset of these patients, the tumor produces serotonin, causing physical symptoms known as carcinoid syndrome. This peripheral overproduction of serotonin may cause central depletion of its precursor tryptophan, potentially resulting in cognitive and psychiatric problems. Therefore, we investigated cognitive and psychiatric function in patients with a serotonin overproduction and the association with this serotonin overproduction. Eighty-one patients with a serotonin-producing metastatic ileal NET underwent standardized neuropsychological and psychiatric assessment. Blood and urine samples were collected to determine concentrations of serotonin, its precursor tryptophan, and metabolite (5-HIAA). Multivariate normative comparison was applied to determine the prevalence of cognitive impairment. Separate linear regressions of serotonin, tryptophan, and 5-HIAA concentrations on cognitive function, depressive symptoms, and anxiety symptoms were performed, corrected for age, sex, education, and/or duration of illness. We found an 11% prevalence of cognitive impairment and a 20% prevalence of psychiatric disorders. Cognitive function was not related to measures of peripheral serotonin production. Unexpectedly, depressive symptoms were significantly associated with lower serum serotonin concentrations and elevated serum tryptophan concentrations. Cognitive symptoms of anxiety were also associated with elevated tryptophan concentrations. Concluding, cognitive or psychiatric problems occur in a minority of patients with NET and cannot be explained by tryptophan depletion following tumor-related serotonin production.
Collapse
Affiliation(s)
- Maryse J Luijendijk
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Margot E T Tesselaar
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Huub H van Rossum
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Catharina M Korse
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wieke H M Verbeek
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jocelyn R Spruit
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pernilla C Scheelings
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eva H Hooghiemstra
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Henricus G Ruhé
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Brain and Cognition Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Froukje E de Vries
- Department of Psychiatry, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Kirazli O, Ozkan M, Verimli U, Gulhan R, Arman A, Sehirli US. The effect of growth hormone on motor findings and dendrite morphology in an experimental Parkinson's disease model. Anat Sci Int 2025; 100:79-87. [PMID: 39085683 DOI: 10.1007/s12565-024-00790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Approaches for the induction of neurogenesis and neuronal recovery through several modalities are gaining popularity in Parkinson's disease (PD). Growth hormone (GH) seems to have a role in the reversal of neural function following brain injury as well as in normal brain development and function; therefore, the use of GH may represent a feasible strategy in the management of PD. This experimental study aimed to evaluate the effect of growth hormone on motor function and dendrite morphology in rats with 6-hydroxydopamine (6-OHDA)-induced PD model. Thirty-six Sprague Dawley rats were included and randomly allocated into one of the six study groups: two controls and four treatment groups that received daily subcutaneous growth hormone injections for 21 days, 1, 2, and 3 months. PD model was induced through unilateral 6-OHDA injection to the nigrostriatal pathway. The following assessments were made: apomorphine rotation test, stepping test, and tissue examinations for tyrosine hydroxylase and dendrite morphology. The apomorphine rotation test and the stepping test confirmed the presence of PD. These tests as well as dendritic spine density/number and length assessments showed improvement in PD findings over time with GH administration. Findings of this study suggest that GH administration may improve dendrite morphology and motor function in the PD model, which may translate into symptom relief and quality of life improvement in patients with PD. Such potential benefits should be tested in robust clinical studies.
Collapse
Affiliation(s)
- Ozlem Kirazli
- Department of Anatomy, Marmara University School of Medicine, Marmara Universitesi Tip Fakultesi Anatomi Anabilim Dali, Basibuyuk, Maltepe, 34854, Istanbul, Turkey.
| | - Mazhar Ozkan
- Department of Anatomy, Namik Kemal University School of Medicine, Tekirdaǧ, Turkey
| | - Ural Verimli
- Department of Anatomy, Marmara University School of Medicine, Marmara Universitesi Tip Fakultesi Anatomi Anabilim Dali, Basibuyuk, Maltepe, 34854, Istanbul, Turkey
| | - Rezzan Gulhan
- Department of Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ahmet Arman
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Umit Suleyman Sehirli
- Department of Anatomy, Marmara University School of Medicine, Marmara Universitesi Tip Fakultesi Anatomi Anabilim Dali, Basibuyuk, Maltepe, 34854, Istanbul, Turkey
| |
Collapse
|
3
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
4
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
5
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
6
|
G N S HS, Marise VLP, Rajalekshmi SG, Burri RR, Krishna Murthy TP. Articulating target-mining techniques to disinter Alzheimer's specific targets for drug repurposing. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106931. [PMID: 35724476 DOI: 10.1016/j.cmpb.2022.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Alzheimer's Disease (AD), an extremely progressive neurodegenerative disorder is an amalgamation of numerous intricate pathological networks. This century old disease is still an unmet medical condition owing to the modest efficacy of existing therapeutic agents in antagonizing the multi-targeted pathological pathways underlying AD. Given the paucity in AD specific drugs, fabricating comprehensive research strategies to envision disease specific targets to channelize and expedite drug discovery are mandated. However, the dwindling approval rates and stringent regulatory constraints concerning the approval of a new chemical entity is daunting the pharmaceutical industries from effectuating de novo research. To bridge the existing gaps in AD drug research, a promising contemporary way out could be drug repurposing. This drug repurposing investigation is intended to envisage AD specific targets and create drug libraries pertinent to the shortlisted targets via a series of avant-garde bioinformatics and computational strategies. METHODS Transcriptomic analysis of three AD specific datasets viz., GSE122063, GSE15222 and GSE5281 revealed significant Differentially Expressed Genes (DEGs) and subsequent Protein-Protein Interactions (PPI) network analysis captured crucial AD targets. Later, homology model was constructed through I-TASSER for a shortlisted target protein which lacked X-ray crystallographic structure and the built protein model was validated by molecular dynamic simulations. Further, drug library was created for the shortlisted target based on structural and side effect similarity with respective standard drugs. Finally, molecular docking, binding energy calculations and molecular dynamics studies were carried out to unravel the interactions exhibited by drugs from the created library with amino acids in active binding pocket of RGS4. RESULTS SST and RGS4 were shortlisted as potentially significant AD specific targets, however, the less explored target RGS4 was considered for further sequential analysis. Homology model constructed for RGS4 displayed best quality when validated through Ramachandran plot and ERRAT plot. Subsequent docking and molecular dynamics studies showcased substantial affinity demonstrated by three drugs viz., Ziprasidone, Melfoquine and Metaxalone from the created drug libraries, towards RGS4. CONCLUSION This virtual analysis forecasted the repurposable potential of Ziprasidone, Melfoquine and Metaxalone against AD based on their affinity towards RGS4, a key AD-specific target.
Collapse
Affiliation(s)
- Hema Sree G N S
- Pharmacological Modelling and Simulation Centre, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560094, India
| | - V Lakshmi Prasanna Marise
- Pharmacological Modelling and Simulation Centre, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560094, India; Department of Pharmacy Practice, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560094, India
| | - Saraswathy Ganesan Rajalekshmi
- Pharmacological Modelling and Simulation Centre, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560094, India; Department of Pharmacy Practice, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560094, India.
| | | | - T P Krishna Murthy
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, Karnataka 560054, India
| |
Collapse
|
7
|
Wei Z, Koya J, Reznik SE. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front Neurosci 2021; 15:687157. [PMID: 34349617 PMCID: PMC8326507 DOI: 10.3389/fnins.2021.687157] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for 60–70% of dementia and is the sixth leading cause of death in the United States. The pathogenesis of this debilitating disorder is still not completely understood. New insights into the pathogenesis of AD are needed in order to develop novel pharmacologic approaches. In recent years, numerous studies have shown that insulin resistance plays a significant role in the development of AD. Over 80% of patients with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance increases neuroinflammation, which promotes both amyloid β-protein deposition and aberrant tau phosphorylation. By increasing production of reactive oxygen species, insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β), which leads to increased tau phosphorylation. Both insulin and amyloid β-protein are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the basis for a strong association between T2DM and AD. This review highlights multiple pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several pharmacologic approaches to AD associated with insulin resistance are presented.
Collapse
Affiliation(s)
- Zenghui Wei
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Muñoz-Jiménez M, Zaarkti A, García-Arnés JA, García-Casares N. Antidiabetic Drugs in Alzheimer's Disease and Mild Cognitive Impairment: A Systematic Review. Dement Geriatr Cogn Disord 2021; 49:423-434. [PMID: 33080602 DOI: 10.1159/000510677] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Considering that Alzheimer's disease (AD) and diabetes mellitus share pathophysiological features and AD remains with no cure, antidiabetic drugs like intranasal insulin, glitazones, metformin, and liraglutide are being tested as a potential treatment. OBJECTIVE The aim of this systematic review was to assess the efficacy of antidiabetic drugs in patients with AD, mild cognitive impairment (MCI), or subjective cognitive complaints (SCCs). Cognition was studied as the primary outcome and modulation of AD biomarkers, and imaging was also assessed as a secondary outcome. METHODS We conducted a search in the electronic databases PubMed/MEDLINE, EMBASE, and Scopus seeking clinical trials evaluating the effect on cognition of antidiabetic drugs in patients with AD, MCI, or SCCs. RESULTS A total of 23 articles were found eligible. Intranasal regular insulin improved verbal memory in most studies, especially in apoE4- patients, but results in other cognitive domains were unclear. Detemir improved cognition after 2 months of treatment, but it did not after 4 months. Pioglitazone improved cognition in diabetic patients with AD or MCI in 3 clinical trials, but it is controversial as 2 other studies did not show effect. Metformin and liraglutide showed promising results, but further research is needed as just 2 clinical trials involved each of these drugs. Almost all drugs tested were shown to modulate AD biomarkers and imaging. CONCLUSIONS Intranasal insulin, pioglitazone, metformin, and liraglutide are promising drugs that could be useful in the treatment of AD. However, many questions remain to be answered in future studies, so no particular antidiabetic drug can currently be recommended to treat AD.
Collapse
Affiliation(s)
- Mario Muñoz-Jiménez
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Alí Zaarkti
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Juan Antonio García-Arnés
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain.,Department of Pharmacology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Natalia García-Casares
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain, .,Centro de Investigaciones, Médico-Sanitarias (C.I.M.ES), University of Málaga, Málaga, Spain, .,Instituto de Investigación, Biomédica de Málaga (I.B.I.M.A.), Málaga, Spain,
| |
Collapse
|
9
|
Jiang R, Wei H. Beneficial effects of octreotide in alcohol-induced neuropathic pain. Role of H 2S, BDNF, TNF-α and Nrf2. Acta Cir Bras 2021; 36:e360408. [PMID: 34076065 PMCID: PMC8184257 DOI: 10.1590/acb360408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To explore the role and molecular mechanisms of neuroprotective effects of
octreotide in alcohol-induced neuropathic pain. Methods Male Wistar rats were employed and were administered a chronic ethanol diet
containing 5% v/v alcohol for 28 days. The development of neuropathic pain
was assessed using von Frey hair (mechanical allodynia), pinprick
(mechanical hyperalgesia) and cold acetone drop tests (cold allodynia). The
antinociceptive effects of octreotide (20 and 40 µg·kg–1) were
assessed by its administration for 28 days in ethanol-treated rats. ANA-12
(0.25 and 0.50 mg·kg–1), brain-derived neurotrophic factor (BDNF)
receptor blocker, was coadministered with octreotide. The sciatic nerve was
isolated to assess the biochemical changes including hydrogen sulfide
(H2S), cystathionine β synthase (CBS), cystathionine γ lyase
(CSE), tumor necrosis factor-α (TNF-α), BDNF and nuclear factor erythroid
2-related factor 2 (Nrf2). Results Octreotide significantly attenuated chronic ethanol-induced neuropathic pain
and it also restored the levels of H2S, CBS, CSE, BDNF, Nrf2 and
decreased TNF-α levels. ANA-12 abolished the effects of octreotide on pain,
TNF-α, BDNF, Nrf2 without any significant effects on H2S, CBS,
CSE. Conclusions Octreotide may attenuate the behavioral manifestations of alcoholic
neuropathic pain, which may be due to an increase in H2S, CBS,
CSE, BDNF, Nrf2 and a decrease in neuroinflammation.
Collapse
|
10
|
Targeting impaired nutrient sensing with repurposed therapeutics to prevent or treat age-related cognitive decline and dementia: A systematic review. Ageing Res Rev 2021; 67:101302. [PMID: 33609776 DOI: 10.1016/j.arr.2021.101302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia is a debilitating syndrome that significantly impacts individuals over the age of 65 years. There are currently no disease-modifying treatments for dementia. Impairment of nutrient sensing pathways has been implicated in the pathogenesis of dementia, and may offer a novel treatment approach for dementia. AIMS This systematic review collates all available evidence for Food and Drug Administration (FDA)-approved therapeutics that modify nutrient sensing in the context of preventing cognitive decline or improving cognition in ageing, mild cognitive impairment (MCI), and dementia populations. METHODS PubMed, Embase and Web of Science databases were searched using key search terms focusing on available therapeutics such as 'metformin', 'GLP1', 'insulin' and the dementias including 'Alzheimer's disease' and 'Parkinson's disease'. Articles were screened using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The risk of bias was assessed using the Cochrane Risk of Bias tool v 2.0 for human studies and SYRCLE's risk of bias tool for animal studies. RESULTS Out of 2619 articles, 114 were included describing 31 different 'modulation of nutrient sensing pathway' therapeutics, 13 of which specifically were utilized in human interventional trials for normal ageing or dementia. Growth hormone secretagogues improved cognitive outcomes in human mild cognitive impairment, and potentially normal ageing populations. In animals, all investigated therapeutic classes exhibited some cognitive benefits in dementia models. While the risk of bias was relatively low in human studies, this risk in animal studies was largely unclear. CONCLUSIONS Modulation of nutrient sensing pathway therapeutics, particularly growth hormone secretagogues, have the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
|
11
|
Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, Choudhury H. Interlink Between Insulin Resistance and Neurodegeneration with an Update on Current Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:174-183. [PMID: 32418534 DOI: 10.2174/1871527319666200518102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lee Yuen Shin
- School of Health Sciences, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | | | - Vikram Rao
- School of Postgraduate Studies, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Deme P, Rojas C, Slusher BS, Rais R, Afghah Z, Geiger JD, Haughey NJ. Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1? Exp Neurol 2020; 327:113181. [PMID: 31930991 PMCID: PMC7233457 DOI: 10.1016/j.expneurol.2020.113181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.
Collapse
Affiliation(s)
- Pragney Deme
- The Johns Hopkins University School of Medicine, Department of Neurology, United States
| | - Camilo Rojas
- The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Raina Rais
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Zahra Afghah
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Jonathan D Geiger
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
13
|
Duron E, Vidal JS, Grousselle D, Gabelle A, Lehmann S, Pasquier F, Bombois S, Buée L, Allinquant B, Schraen-Maschke S, Baret C, Rigaud AS, Hanon O, Epelbaum J. Somatostatin and Neuropeptide Y in Cerebrospinal Fluid: Correlations With Amyloid Peptides Aβ 1-42 and Tau Proteins in Elderly Patients With Mild Cognitive Impairment. Front Aging Neurosci 2018; 10:297. [PMID: 30327597 PMCID: PMC6174237 DOI: 10.3389/fnagi.2018.00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
A combination of low cerebrospinal fluid (CSF) Amyloid β1–42 (Aβ1–42) and high Total-Tau (T-Tau) and Phosphorylated-Tau (P-Tau) occurs at a prodromal stage of Alzheimer’s disease (AD) and recent findings suggest that network abnormalities and interneurons dysfunction contribute to cognitive deficits. Somatostatin (SOM) and Neuropeptide Y (NPY) are two neuropeptides which are expressed in GABAergic interneurons with different fates in AD the former only being markedly affected. The aim of this study was to analyze CSF SOM, NPY and CSF Aβ1–42; T-Tau, P-Tau relationships in 43 elderly mild cognitively impairment (MCI) participants from the Biomarker of AmyLoïd pepTide and AlZheimer’s disease Risk (BALTAZAR) cohort. In these samples, CSF SOM and CSF Aβ1–42 on the one hand, and CSF NPY and CSF T-Tau and P-Tau on the other hand are positively correlated. CSF SOM and NPY concentrations should be further investigated to determine if they can stand for early AD biomarkers. Clinical Trial Registration: www.ClinicalTrials.gov, identifier #NCT01315639.
Collapse
Affiliation(s)
- Emmanuelle Duron
- AP-HP, Hôpital Broca, Service de Gériatrie, Paris, France.,Université Sorbonne Paris Cité, UMR-S894, INSERM Université Paris Descartes, Centre de Psychiatrie et Neuroscience, Paris, France.,APHP, Hôpital Paul Brousse, Service de Gériatrie du Dr Karoubi, Villejuif, France.,Université Paris-Sud 11, Centre de Recherche en Épidemiologie et Santé des Population- Depression et Antidépresseurs, INSERM UMR-1178, Le Kremlin-Bicêtre, France
| | - Jean-Sébastien Vidal
- AP-HP, Hôpital Broca, Service de Gériatrie, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Grousselle
- Université Sorbonne Paris Cité, UMR-S894, INSERM Université Paris Descartes, Centre de Psychiatrie et Neuroscience, Paris, France
| | - Audrey Gabelle
- Memory Research and Resources Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique, CHU Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Florence Pasquier
- University of Lille, INSERM 1171, CHU, Centre Mémoire (CMRR) Distalz, Lille, France
| | | | - Luc Buée
- University of Lille, INSERM 1171, CHU, Centre Mémoire (CMRR) Distalz, Lille, France
| | - Bernadette Allinquant
- Université Sorbonne Paris Cité, UMR-S894, INSERM Université Paris Descartes, Centre de Psychiatrie et Neuroscience, Paris, France
| | | | - Christiane Baret
- UF de Neurobiologie, Centre Biologie Pathologie du CHU-Lille, Lille, France
| | - Anne-Sophie Rigaud
- AP-HP, Hôpital Broca, Service de Gériatrie, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Olivier Hanon
- AP-HP, Hôpital Broca, Service de Gériatrie, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques Epelbaum
- Université Sorbonne Paris Cité, UMR-S894, INSERM Université Paris Descartes, Centre de Psychiatrie et Neuroscience, Paris, France.,MECADEV UMR 7179 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
14
|
Duron E, Vidal JS, Grousselle D, Gabelle A, Lehmann S, Pasquier F, Bombois S, Buée L, Allinquant B, Schraen-Maschke S, Baret C, Rigaud AS, Hanon O, Epelbaum J. Somatostatin and Neuropeptide Y in Cerebrospinal Fluid: Correlations With Amyloid Peptides Aβ1–42 and Tau Proteins in Elderly Patients With Mild Cognitive Impairment. Front Aging Neurosci 2018. [DOI: 10.3389/fnagi.2018.00297
expr 920238904 + 834128533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
15
|
Harvey S, Martinez-Moreno CG. Growth Hormone: Therapeutic Possibilities—An Overview. Int J Mol Sci 2018; 19:ijms19072015. [PMID: 29997315 PMCID: PMC6073347 DOI: 10.3390/ijms19072015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos G Martinez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
16
|
Mohammadi SF, Afarideh M, Mehrjardi HZ, Mirhadi S. Obesity and Density of the Crystalline Lens: Revisiting a Growing Dilemma. Biomed Hub 2017; 2:1-8. [PMID: 31988899 PMCID: PMC6945933 DOI: 10.1159/000454979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/06/2016] [Indexed: 11/19/2022] Open
Abstract
Background/Aims Obesity is believed to accelerate age-related cataractogenesis through various biomechanisms. On the contrary, there are also studies advocating the protective role of obesity against the cataract formation process. We investigate the correlation of body mass index (BMI) as a measure for obesity with crystalline optical lens density and opacity in a healthy adult population. Methods In a cross-sectional setting, 93 consecutive disease-free adult individuals who were working staff of a university-based hospital were assessed for the association between crystalline lens density and opalescence [measured by the objective Pentacam HR lens densitometry and subjective Lens Opacity Classification System III (LOCS III), respectively] with the degree of obesity as defined by BMI. Results LOCS III and crystalline lens density readings were positively correlated [Spearman rho CC (p value) = 0.224 (0.034)]. However, we found neither LOCS III nor crystalline lens density to be correlated with BMI [Spearman rho CC = -0.008 (p = 0.943) and -0.062 (p = 0.560), respectively]. Conclusions Results from the present study indicate a lack of association between obesity and densitometry of the crystalline in the adult population group. Further studies are required to confirm the order of causality and pathogenesis of this finding.
Collapse
Affiliation(s)
- Seyed-Farzad Mohammadi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Afarideh
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Z Mehrjardi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Mirhadi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zou S, Somvanshi RK, Kumar U. Somatostatin receptor 5 is a prominent regulator of signaling pathways in cells with coexpression of Cannabinoid receptors 1. Neuroscience 2016; 340:218-231. [PMID: 27984180 DOI: 10.1016/j.neuroscience.2016.10.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022]
Abstract
Endocannabinoids and somatostatin (SST) play critical roles in several pathophysiological conditions via binding to different receptor subtypes. Cannabinoid receptor 1 (CB1R) and somatostatin receptors (SSTRs) are expressed in several brain regions and share overlapping functions. Whether these two prominent members of G-protein-coupled receptor (GPCR) family interact with each other and constitute a functional receptor complex is not known. In the present study, we investigated the colocalization of CB1R and SSTR5 in rat brain, and studied receptor internalization, interaction and signal transduction pathways in HEK-293 cells cotransfected with human cannabinoid receptor 1 (hCB1R) and hSSTR5. Our results showed that CB1R and SSTR5 colocalized in rat brain cortex, striatum, and hippocampus. CB1R was expressed in SSTR5 immunoprecipitate prepared from the brain tissue lysate, indicating their association in a system where these receptors are endogenously expressed. In cotransfected HEK-293 cells, SSTR5 and CB1R existed in a constitutive heteromeric complex under basal condition, which was disrupted upon agonist treatments. Furthermore, concurrent receptor activation led to preferential formation of SSTR5 homodimer and dissociation of CB1R homodimer. We also discovered that second messenger cyclic adenosine monophosphate and downstream signaling pathways were modulated in a SSTR5-dominant and concentration-dependent manner in the presence of receptor-specific agonist. In conclusion, with predominant role of SSTR5, the functional consequences of crosstalk between SSTR5 and CB1R resulting in the regulation of receptor trafficking and signal transduction pathways open new therapeutic avenue in cancer biology and excitotoxicity.
Collapse
Affiliation(s)
- Shenglong Zou
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Salem L, Saleh N, Désaméricq G, Youssov K, Dolbeau G, Cleret L, Bourhis ML, Azulay JP, Krystkowiak P, Verny C, Morin F, Moutereau S, The French Huntington Study Group, Bachoud-Lévi AC, Maison P. Insulin-Like Growth Factor-1 but Not Insulin Predicts Cognitive Decline in Huntington's Disease. PLoS One 2016; 11:e0162890. [PMID: 27627435 PMCID: PMC5023180 DOI: 10.1371/journal.pone.0162890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/30/2016] [Indexed: 01/05/2023] Open
Abstract
Background Huntington's disease (HD) is one of several neurodegenerative disorders that have been associated with metabolic alterations. Changes in Insulin Growth Factor 1 (IGF-1) and/or insulin input to the brain may underlie or contribute to the progress of neurodegenerative processes. Here, we investigated the association over time between changes in plasma levels of IGF-1 and insulin and the cognitive decline in HD patients. Methods We conducted a multicentric cohort study in 156 patients with genetically documented HD aged from 22 to 80 years. Among them, 146 patients were assessed at least twice with a follow-up of 3.5 ± 1.8 years. We assessed their cognitive decline using the Unified Huntington’s Disease Rating Scale, and their IGF-1 and insulin plasmatic levels, at baseline and once a year during the follow-up. Associations were evaluated using a mixed-effect linear model. Results In the cross-sectional analysis at baseline, higher levels of IGF-1 and insulin were associated with lower cognitive scores and thus with a higher degree of cognitive impairment. In the longitudinal analysis, the decrease of all cognitive scores, except the Stroop interference, was associated with the IGF-1 level over time but not of insulin. Conclusions IGF-1 levels, unlike insulin, predict the decline of cognitive function in HD.
Collapse
Affiliation(s)
- Linda Salem
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Nadine Saleh
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Gaelle Désaméricq
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Katia Youssov
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Guillaume Dolbeau
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Unité de recherche clinique, Créteil, France
| | - Laurent Cleret
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Marie-Laure Bourhis
- AP-HP, Hôpital H. Mondor- A. Chenevier, Unité de recherche clinique, Créteil, France
| | - Jean-Philippe Azulay
- Hôpital de la Timone, Service de Neurologie et pathologie du mouvement, Marseille, France
| | | | - Christophe Verny
- CHU of Angers, Centre de référence des maladies neurogénétiques, service de neurologie, Angers, France
| | - Françoise Morin
- AP-HP-GHU NORD, Hôpital Avicenne, Etablissement Français du sang, Bobigny, France
| | - Stéphane Moutereau
- AP-HP, Hôpital H. Mondor- A. Chenevier, Département de Biochimie-Pharmaco-Toxicologie, Créteil, France
| | | | - Anne-Catherine Bachoud-Lévi
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
- * E-mail:
| | - Patrick Maison
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| |
Collapse
|
19
|
|
20
|
Chen F, Li L, Xu F, Sun Y, Du F, Ma X, Zhong C, Li X, Wang F, Zhang N, Li C. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration. Br J Pharmacol 2014; 170:440-57. [PMID: 23808355 DOI: 10.1111/bph.12285] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/07/2013] [Accepted: 06/24/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds' pharmacokinetics. EXPERIMENTAL APPROACH Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. KEY RESULTS Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. CONCLUSION AND IMPLICATIONS Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects.
Collapse
Affiliation(s)
- Feng Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China; Hainan Medical University, Haikou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVES To evaluate the cognitive performance of patients with carcinoid syndrome (CS) compared with population norms and cancer patients with non-neuroendocrine (non-NET) liver metastases. BACKGROUND The release of serotonin into the systemic circulation from metastatic small bowel neuroendocrine tumors (SB NET) causes CS. Many patients with CS followed in a multidisciplinary NET clinic seemed to exhibit a unique cognitive impairment. Because serotonin is known to influence a range of cognitive function, the question arouse as to whether cognitive impairment is another manifestation of CS. METHODS Patients were recruited from the multidisciplinary NET and the hepatobilary cancer clinics at the cancer center. The CS group consisted of patients with proven SB NETs metastatic to liver; the cancer comparison group consisted of patients with liver metastases from non-NET cancer. All completed a self-reported cognitive questionnaire and a battery of 6 standardized neurocognitive tests. Both groups were compared to age/sex/educational-matched norms. RESULTS Thirty-six patients with CS and 20 with non-NET metastases were enrolled. Patients with CS reported greater cognitive dysfunction in all cognitive domains than both norms and the comparison cancer group. On cognitive testing, patients with CS demonstrated weakness in initiation, processing speed, visual memory, cognitive efficiency, and delayed verbal recall compared with norms. Although the patients with non-NET cancer also demonstrated some cognitive dysfunction compared with norms, the patients with CS did significantly worse on delayed recall (P = 0.03) and marginally slower on speeded mental flexibility (P = 0.097) compared with patients with non-NET cancer. CONCLUSION This study confirmed our clinical observation that patients with CS suffer from cognitive impairment that is different from the non-NET cancer group and population norms.
Collapse
|
22
|
Morris JK, Burns JM. Insulin: an emerging treatment for Alzheimer's disease dementia? Curr Neurol Neurosci Rep 2013; 12:520-7. [PMID: 22791280 DOI: 10.1007/s11910-012-0297-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accumulating evidence indicates a role for metabolic dysfunction in the pathogenesis of Alzheimer's disease (AD). It is widely reported that Type 2 diabetes (T2D) increases the risk of developing AD, and several postmortem analyses have found evidence of insulin resistance in the AD brain. Thus, insulin-based therapies have emerged as potential strategies to slow cognitive decline in AD. The main methods for targeting insulin to date have been intravenous insulin infusion, intranasal insulin administration, and use of insulin sensitizers. These methods have elicited variable results regarding improvement in cognitive function. This review will discuss the rationale for targeting insulin signaling to improve cognitive function in AD, the results of clinical studies that have targeted insulin signaling, and what these results mean for future studies of the role of insulin-based therapies for AD.
Collapse
Affiliation(s)
- Jill K Morris
- Department of Neurology and Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS 66205, USA.
| | | |
Collapse
|
23
|
Telegdy G, Schally AV. Involvement of neurotransmitters in the action of growth hormone-releasing hormone antagonist on passive avoidance learning. Behav Brain Res 2012; 233:326-30. [PMID: 22640814 DOI: 10.1016/j.bbr.2012.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 11/15/2022]
Abstract
The antagonist MZ-4-71 of growth hormone-releasing hormone (GH-RH) has been shown to suppress the secretion of GH and insulin-like growth factor-1 (IGF-1), suggesting that this class of analogs could be used for the therapy of disorders characterized by excessive GH secretion. Numerous GH-RH antagonists has been synthetized and shown to suppress the growth of various tumors. MZ-4-71 facilitates the consolidation of passive avoidance learning. Beta-amyloid 25-35 impairs the consolidation of passive avoidance learning and MZ-4-71 fully blocks this impairment. However, little is known about the possible mechanism of action of GR-RH antagonists on these actions. In the present work, the possible effects of different neurotransmitters on the action of MZ-4-71 were studied in the memory consolidation of passive avoidance behavior. The involvement of cholinergic, serotonergic, dopaminergic, GABA-ergic, adrenergic and opiate receptors was tested. Mice were pretreated with a nonselective α-adrenergic receptor antagonist, phenoxybenzamine, a β-adrenergic receptor antagonist, propranolol, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a nonselective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a nonselective muscarinic acetylcholine receptor antagonist, atropine, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline, or a nonselective opioid receptor antagonist, naloxone. Atropine, methysergide, cyproheptadine and naloxone prevented the effects of MZ-4-71 on passive avoidance learning, whereas haloperidol, phenoxybenzamine, propranolol and bicuculline did not change the effects of MZ-4-71. The results demonstrate that the muscarinic acetylcholine receptor, the 5-HT1/5-HT2 serotonergic receptor and opioid receptors are involved as mediators in the action of MZ-4-71 on the consolidation of passive avoidance learning.
Collapse
Affiliation(s)
- Gyula Telegdy
- Department of Pathophysiology, Neuroscience Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
24
|
Tundo G, Ciaccio C, Sbardella D, Boraso M, Viviani B, Coletta M, Marini S. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD. PLoS One 2012; 7:e34376. [PMID: 22509294 PMCID: PMC3317975 DOI: 10.1371/journal.pone.0034376] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/01/2012] [Indexed: 11/22/2022] Open
Abstract
The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.
Collapse
Affiliation(s)
- Grazia Tundo
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Roma, Italy
| | - Chiara Ciaccio
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Roma, Italy
| | - Diego Sbardella
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Mariaserena Boraso
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Barbara Viviani
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Massimiliano Coletta
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Stefano Marini
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Roma, Italy
| |
Collapse
|
25
|
Namjoshi D, Stukas S, Wellington CL. ABCA1, apoE and apoA-I as potential therapeutic targets for treating Alzheimer’s disease. Neurodegener Dis Manag 2011. [DOI: 10.2217/nmt.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The association between apoE genotype and risk and age of onset for Alzheimer’s disease (AD) was first discovered in 1993. Innumerable studies since then have defined Aβ-dependent and Aβ-independent roles for apoE in AD pathogenesis. Although therapeutic approaches that specifically target apoE are not yet developed for AD, apoE may have a more fundamental role in brain physiology than previously appreciated. ApoE is the major apolipoprotein in the CNS, coordinating the uptake and delivery of lipids among various cell types in the brain. ApoE receives lipids from the membrane-bound cholesterol and phospholipid transporter ATP-binding cassette transporter A1 (ABCA1). Genetic and pharmacological methods to enhance ABCA1 activity generate lipid-rich apoE particles and provide cognitive and neuropathological benefits in animal models of AD. Recent studies on apoA-I, which is the major lipid acceptor for ABCA1 in peripheral tissues and is also present in the CNS, suggest that increasing apoA-I function may also have neuroprotective effects. In this article, we will discuss the potential of ABCA1, apoE and apoA-I as therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Dhananjay Namjoshi
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Sophie Stukas
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | |
Collapse
|