1
|
Vanbrabant K, Rasking L, Vangeneugden M, Bové H, Ameloot M, Vanmierlo T, Schins RPF, Cassee FR, Plusquin M. Impact on murine neurodevelopment of early-life exposure to airborne ultrafine carbon nanoparticles. Part Fibre Toxicol 2024; 21:51. [PMID: 39633442 PMCID: PMC11619103 DOI: 10.1186/s12989-024-00612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The effects of ultrafine particle (UFP) inhalation on neurodevelopment, especially during critical windows of early life, remain largely unexplored. The specific time windows during which exposure to UFP might be the most detrimental remain poorly understood. Here, we studied early-life exposure to clean ultrafine carbonaceous particles (UFPC) and neurodevelopment and central nervous system function in offspring.Pregnant wild-type C57BL/6J mice were either sham-exposed (HEPA-filtered air) or exposed to clean ultrafine carbonaceous particles at a concentration of 438 ± 72 μg/m³ (mean ± SD) and a count median diameter of 49 ± 2 nm (CMD ± GSD) via whole-body exposure for four hours per day. For prenatal exposure, mice were exposed for two consecutive days in two exposure periods, while the postnatal exposure was conducted for four consecutive days in two exposure periods. The mice were divided into four groups: (i) sham, (ii) only prenatal exposure, (iii) only postnatal exposure, and (iv) both prenatal and postnatal exposure. Neurodevelopmental behaviour was assessed throughout the life of the offspring using a functional observation battery.Early-life UFPC-exposed offspring exhibited altered anxiety-related behaviour in the open field test, with exclusively postnatally exposed offspring (567 ± 120 s) spending significantly more time within the border zone of the arena compared to the sham group (402 ± 73 s), corresponding to an increase of approximately 41% (p < 0.05). The behavioural alterations remained unaffected by olfactory function or maternal behaviour. Mice with both prenatal and postnatal exposure did not show this effect. No discernible impact on developmental behavioural reflexes was evident.Early life exposure to UFPC, particularly during the early postnatal period, may lead to developmental neurotoxicity, potentially resulting in complications for the central nervous system later in life. The current data will support future studies investigating the possible effects and characteristics of nanoparticle-based toxicity.
Collapse
Affiliation(s)
- Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Maartje Vangeneugden
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Hannelore Bové
- Department of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, European Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Flemming R Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium.
| |
Collapse
|
2
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
4
|
Cai F, Xue S, Zhou Z, Zhang X, Kang Y, Zhang J, Zhang M. Exposure to coal dust exacerbates cognitive impairment by activating the IL6/ERK1/2/SP1 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174202. [PMID: 38925396 DOI: 10.1016/j.scitotenv.2024.174202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Coal dust (CD) is a common pollutant, and epidemiological surveys indicate that long-term exposure to coal dust not only leads to the occurrence of pulmonary diseases but also has certain impacts on cognitive abilities. However, there is little open-published literature on the effects and specific mechanisms of coal dust exposure on the cognition of patients with Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD). An animal model has been built in this study with clinical population samples to explore the changes in neuroinflammation and cognitive abilities with coal dust exposure. In the animal model, compared to C57BL/6 mice, APP/PS1 mice exposed to coal dust exhibited more severe cognitive impairment, accompanied by significantly elevated levels of neuroinflammatory factors Apolipoprotein E4 (AOPE4) and Interleukin-6 (IL6) in the hippocampus, and more severe neuronal damage. In clinical sample sequencing, it was found that there is significant upregulation of AOPE4, neutrophils, and IL6 expression in the peripheral blood of MCI patients compared to normal individuals. Mechanistically, cell experiments revealed that IL6 could promote the phosphorylation of ERK1/2 and enhance the expression of transcription factor SP1, thereby promoting AOPE4 expression. The results of this study suggest that coal dust can promote the upregulation of IL6 and AOPE4 in patients, exacerbating cognitive impairment.
Collapse
Affiliation(s)
- Fulin Cai
- The First Affiliated Hospital, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui University of Science and Technology, Huainan 232001, China
| | - Sheng Xue
- Anhui University of Science and Technology, Huainan 232001, China.
| | - Zan Zhou
- Department of Physiology, Shihezi University Medical College, Xinjiang, Shihezi 832000, China
| | - Xin Zhang
- Department of Blood Transfusion, The People's Hospital of Rizhao, Shandong, Rizhao 276800, China
| | - Yingjie Kang
- Department of Physiology, Shihezi University Medical College, Xinjiang, Shihezi 832000, China
| | - Jing Zhang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310000, China
| | - Mei Zhang
- The First Affiliated Hospital, Anhui University of Science and Technology, Huainan, Anhui, China
| |
Collapse
|
5
|
Park HH, Armstrong MJ, Gorin FA, Lein PJ. Air Pollution as an Environmental Risk Factor for Alzheimer's Disease and Related Dementias. MEDICAL RESEARCH ARCHIVES 2024; 12:5825. [PMID: 39822906 PMCID: PMC11736697 DOI: 10.18103/mra.v12i10.5825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Alzheimer's disease and related dementias are a leading cause of morbidity in our aging populations. Although influenced by genetic factors, fewer than 5% of Alzheimer's disease and related dementia cases are due solely to genetic causes. There is growing scientific consensus that these dementias arise from complex gene by environment interactions. The 2020 Lancet Commission on dementia prevention, intervention, and care identified 12 modifiable risk factors of dementia, including lifestyle, educational background, comorbidities, and environmental exposures to environmental contaminants. In this review, we summarize the current understanding and data gaps regarding the role(s) of environmental pollutants in the etiology of Alzheimer's disease and related dementias with a focus on air pollution. In addition to summarizing findings from epidemiological and experimental animal studies that link airborne exposures to environmental contaminants to increased risk and/or severity of Alzheimer's disease and related dementias, we discuss currently hypothesized mechanism(s) underlying these associations, including peripheral inflammation, neuroinflammation and epigenetic changes. Key data gaps in this rapidly expanding investigative field and approaches for addressing these gaps are also addressed.
Collapse
Affiliation(s)
- Heui Hye Park
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Matthew J. Armstrong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A. Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, and Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Mohammadzadeh M, Khoshakhlagh AH, Grafman J. Air pollution: a latent key driving force of dementia. BMC Public Health 2024; 24:2370. [PMID: 39223534 PMCID: PMC11367863 DOI: 10.1186/s12889-024-19918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Many researchers have studied the role of air pollutants on cognitive function, changes in brain structure, and occurrence of dementia. Due to the wide range of studies and often contradictory results, the present systematic review was conducted to try and clarify the relationship between air pollutants and dementia. To identify studies for this review, a systematic search was conducted in Scopus, PubMed, and Web of Science databases (without historical restrictions) until May 22, 2023. The PECO statement was created to clarify the research question, and articles that did not meet the criteria of this statement were excluded. In this review, animal studies, laboratory studies, books, review articles, conference papers and letters to the editors were avoided. Also, studies focused on the effect of air pollutants on cellular and biochemical changes (without investigating dementia) were also excluded. A quality assessment was done according to the type of design of each article, using the checklist developed by the Joanna Briggs Institute (JBI). Finally, selected studies were reviewed and discussed in terms of Alzheimer's dementia and non-Alzheimer's dementia. We identified 14,924 articles through a systematic search in databases, and after comprehensive reviews, 53 articles were found to be eligible for inclusion in the current systematic review. The results showed that chronic exposure to higher levels of air pollutants was associated with adverse effects on cognitive abilities and the presence of dementia. Studies strongly supported the negative effects of PM2.5 and then NO2 on the brain and the development of neurodegenerative disorders in old age. Because the onset of brain structural changes due to dementia begins decades before the onset of disease symptoms, and that exposure to air pollution is considered a modifiable risk factor, taking preventive measures to reduce air pollution and introducing behavioral interventions to reduce people's exposure to pollutants is advisable.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Zhang Y, Fu Y, Guan X, Wang C, Fu M, Xiao Y, Hong S, Zhou Y, Liu C, Zhong G, Wu T, You Y, Zhao H, Chen S, Wang Y, Guo H. Associations of ambient air pollution exposure and lifestyle factors with incident dementia in the elderly: A prospective study in the UK Biobank. ENVIRONMENT INTERNATIONAL 2024; 190:108870. [PMID: 38972114 DOI: 10.1016/j.envint.2024.108870] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Dementia is an important disease burden among the elderly, and its occurrence may be profoundly affected by environmental factors. Evidence of the relationship between air pollution and dementia is emerging, but the extent to which this can be offset by lifestyle factors remains ambiguous. METHODS This study comprised 155,828 elder adults aged 60 years and above in the UK Biobank who were dementia-free at baseline. Cox proportional hazard models were conducted to examine the associations of annual average levels of air pollutants in 2010, including nitrogen dioxide (NO2), nitrogen oxides (NOX), particulate matter (PM2.5, PM10, and PMcoarse) and lifestyle factors recorded at baseline [physical activity (PA), sleep patterns, or smoking status] with incident risk of dementia, and their interactions on both multiplicative and additive scales. RESULTS During a 12-year period of follow-up, 4,389 incidents of all-cause dementia were identified. For each standarddeviationincrease in ambient NO2, NOX or PM2.5, all-cause dementia risk increases by 1.07-fold [hazard ratio (HR) and 95 % confidence interval (CI) = 1.07 (1.04, 1.10)], 1.05-fold (95 % CI: 1.02, 1.08) and 1.07-fold (95 % CI: 1.04, 1.10), whereas low levels of PA, poor sleep patterns, and smoking are associated with an elevated risk of dementia [HR (95 % CI) = 1.17 (1.09, 1.26), 1.13 (1.00, 1.27), and 1.14 (1.07, 1.21), respectively]. Furthermore, these air pollutants show joint effects with low PA, poor sleep patterns, and smoking on the onset of dementia. The moderate to high levels of PA could significantly or marginally significantly modify the associations between NO2, NOX or PM2.5 (P-int = 0.067, 0.036, and 0.067, respectively) and Alzheimer's disease (AD), but no significant modification effects are found for sleep patterns or smoking status. CONCLUSION The increased exposures of NO2, NOX, or PM2.5 are associated with elevated risk of dementia among elderly UK Biobank population. These air pollutants take joint effects with low PA, poor sleep patterns, and smoking on the development of dementia. In addition, moderate to high levels of PA could attenuate the incident risk of AD caused by air pollution. Further prospective researches among other cohort populations are warranted to validate these findings.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Ye Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Yingqian You
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China.
| |
Collapse
|
8
|
Christensen GM, Li Z, Liang D, Ebelt S, Gearing M, Levey AI, Lah JJ, Wingo A, Wingo T, Hüls A. Association of PM 2.5 Exposure and Alzheimer Disease Pathology in Brain Bank Donors-Effect Modification by APOE Genotype. Neurology 2024; 102:e209162. [PMID: 38382009 DOI: 10.1212/wnl.0000000000209162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/07/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer disease (AD) and is hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. The APOE gene, a major genetic risk factor of AD, has been hypothesized to modify the association between PM2.5 and AD. However, little prior research exists to support these hypotheses. This study investigates the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. METHODS A cross-sectional study was conducted using brain tissue donors enrolled in the Emory Goizueta AD Research Center who died before 2020 (n = 224). Donors were assessed for AD pathology including the Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC) score. Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250 m. One-year, 3-year, and 5-year average PM2.5 concentrations before death were matched to participants' home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology and effect modification by APOE genotype, using adjusted ordinal logistic regression models. RESULTS Among the 224 participants, the mean age of death was 76 years, and 57% had at least 1 APOE ε4 copy. Traffic-related PM2.5 was significantly associated with the CERAD score for the 1-year exposure window (odds ratio [OR] 1.92; 95% CI 1.12-3.30) and the 3-year exposure window (OR 1.87; 95% CI 1.01-3.17). PM2.5 was also associated with higher Braak stage and ABC score albeit nonsignificantly. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for the CERAD score and 1-year exposure window, OR 2.31; 95% CI 1.36-3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. DISCUSSION Our study found traffic-related PM2.5 exposure was associated with the CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects β-amyloid deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this association.
Collapse
Affiliation(s)
- Grace M Christensen
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Zhenjiang Li
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Donghai Liang
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Stefanie Ebelt
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Marla Gearing
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Allan I Levey
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - James J Lah
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Aliza Wingo
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Thomas Wingo
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| | - Anke Hüls
- From the Department of Epidemiology (G.M.C., D.L., S.E., A.H.), Gangarosa Department of Environmental Health (Z.L., D.L., S.E., A.H.), Rollins School of Public Health, and Department of Pathology and Laboratory Medicine (M.G.), Emory University; Department of Neurology (M.G., A.I.L., J.J.L., T.W.), Emory University School of Medicine, Atlanta; Division of Mental Health (A.W.), Atlanta VA Medical Center, Decatur; Department of Psychiatry (A.W.), Emory University School of Medicine; and Department of Human Genetics (T.W.), Emory University, Atlanta, GA
| |
Collapse
|
9
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
10
|
Christensen GM, Li Z, Liang D, Ebelt S, Gearing M, Levey AI, Lah JJ, Wingo AP, Wingo TS, Huels A. Fine particulate air pollution and neuropathology markers of Alzheimer's disease in donors with and without APOE ε4 alleles - results from an autopsy cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288288. [PMID: 37066193 PMCID: PMC10104229 DOI: 10.1101/2023.04.07.23288288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Introduction Higher fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer's disease (AD). PM2.5 has been hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. A major genetic risk factor of AD, the apolipoprotein E (APOE) gene, has also been hypothesized to modify the association between PM2.5 and AD. However, little prior research exisits to support these hypotheses. Therefore, this paper aims to investigate the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. Methods Brain tissue donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (ADRC) who died before 2020 (n=224) were assessed for AD pathology including Braak Stage, Consortium to Establish a Registry for AD (CERAD) score, and the combined AD neuropathologic change (ABC score). Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250m. One-, 3-, and 5-year average PM2.5 concentrations prior to death were matched to participants home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology, as well as effect modification by APOE genotype, using adjusted ordinal logistic regression models. Results Traffic-related PM2.5 was significantly associated with CERAD score for the 1-year exposure window (OR: 1.92; 95% CI: 1.12, 3.30), and the 3-year exposure window (OR: 1.87; 95%-CI: 1.01, 3.17). PM2.5 had harmful, but non-significant associations on Braak Stage and ABC score. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for CERAD and 1-year exposure window, OR: 2.31; 95% CI: 1.36, 3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. Conclusions Our study found traffic-related PM2.5 exposure was associated with CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects Aβ deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this assocation.
Collapse
Affiliation(s)
- Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stefanie Ebelt
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Hajat A, Park C, Adam C, Fitzpatrick AL, Ilango SD, Leary C, Libby T, Lopez O, Semmens EO, Kaufman JD. Air pollution and plasma amyloid beta in a cohort of older adults: Evidence from the Ginkgo Evaluation of Memory study. ENVIRONMENT INTERNATIONAL 2023; 172:107800. [PMID: 36773564 PMCID: PMC9974914 DOI: 10.1016/j.envint.2023.107800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Air pollution has been linked to Alzheimer's disease and related dementias (ADRD), but the mechanisms connecting air pollution to ADRD have not been firmly established. Air pollution may cause oxidative stress and neuroinflammation and contribute to the deposition of amyloid beta (Aβ) in the brain. We examined the association between fine particulate matter<2.5 μm in diameter (PM2.5), particulate matter<10 μm in diameter (PM10), nitrogen dioxide (NO2), and plasma based measures of Aβ1-40, Aβ1-42 and Aβ1-42/Aβ1-40 using data from 3044 dementia-free participants of the Ginkgo Evaluation of Memory Study (GEMS). Air pollution exposures were estimated at residential addresses that incorporated address histories dating back to 1980, resulting in one-, five-, 10- and 20- year exposure averages. Aβ was measured at baseline (2000-2002) and then again at the end of the study (2007-2008) allowing for linear regression models to assess cross-sectional associations and linear random effects models to evaluate repeated measures. After adjustment for socio-demographic and behavioral covariates, we found small positive associations between each air pollutant and Aβ1-40 but no association with Aβ1-42 or the ratio measures in cross sectional analysis. In repeat measures analysis, we found larger positive associations between each air pollutant and all three outcomes. We observed a 4.43% (95% CI 3.26%, 5.60%) higher Aβ1-40 level, 9.73% (6.20%, 13.38%) higher Aβ1-42 and 1.57% (95% CI: 0.94%, 2.20%) higher Aβ1-42/Aβ1-40 ratio associated with a 2 µg/m3 higher 20-year average PM2.5. Associations with other air pollutants were similar. Our study contributes to the broader evidence base on air pollution and ADRD biomarkers by evaluating longer air pollution exposure averaging periods to better mimic disease progression and provides a modifiable target for ADRD prevention.
Collapse
Affiliation(s)
- Anjum Hajat
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA.
| | - Christina Park
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Claire Adam
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Annette L Fitzpatrick
- University of Washington, Department of Family Medicine, 4225 Roosevelt Ave NE Seattle, WA 98195, USA
| | - Sindana D Ilango
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Cindy Leary
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Tanya Libby
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Oscar Lopez
- University of Pittsburgh, Department of Neurology, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15123, USA
| | - Erin O Semmens
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Joel D Kaufman
- University of Washington, Department of Environmental and Occupational Health and Epidemiology, 4225 Roosevelt Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Semmens EO, Leary CS, Fitzpatrick AL, Ilango SD, Park C, Adam CE, DeKosky ST, Lopez O, Hajat A, Kaufman JD. Air pollution and dementia in older adults in the Ginkgo Evaluation of Memory Study. Alzheimers Dement 2023; 19:549-559. [PMID: 35436383 PMCID: PMC9576823 DOI: 10.1002/alz.12654] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Growing evidence implicates air pollution as a risk factor for dementia, but prior work is limited by challenges in diagnostic accuracy and assessing exposures in the decades prior to disease development. We evaluated the impact of long-term fine particulate matter (PM2.5 ) exposures on incident dementia (all-cause, Alzheimer's disease [AD], and vascular dementia [VaD]) in older adults. METHODS A panel of neurologists adjudicated dementia cases based on extensive neuropsychological testing and magnetic resonance imaging. We applied validated fine-scale air pollutant models to reconstructed residential histories to assess exposures. RESULTS An interquartile range increase in 20-year PM2.5 was associated with a 20% higher risk of dementia (95% confidence interval [CI]: 5%, 37%) and an increased risk of mixed VaD/AD but not AD alone. DISCUSSION Our findings suggest that air pollutant exposures over decades contribute to dementia and that effects of current exposures may be experienced years into the future.
Collapse
Affiliation(s)
- Erin O. Semmens
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Cindy S. Leary
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Sindana D. Ilango
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christina Park
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Claire E. Adam
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Steven T. DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anjum Hajat
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Departments of Environmental and Occupational Health Sciences and Medicine, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
14
|
Raichlen DA, Furlong M, Klimentidis YC, Sayre MK, Parra KL, Bharadwaj PK, Wilcox RR, Alexander GE. Association of Physical Activity with Incidence of Dementia Is Attenuated by Air Pollution. Med Sci Sports Exerc 2022; 54:1131-1138. [PMID: 35704438 PMCID: PMC9204780 DOI: 10.1249/mss.0000000000002888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Physical activity (PA) is recognized as one of the key lifestyle behaviors that reduces risk of developing dementia late in life. However, PA also leads to increased respiration, and in areas with high levels of air pollution, PA may increase exposure to pollutants linked with higher risk of developing dementia. Here, we investigate whether air pollution attenuates the association between PA and dementia risk. METHODS This prospective cohort study included 35,562 adults 60 yrs and older from the UK Biobank. Average acceleration magnitude (ACCave) from wrist-worn accelerometers was used to assess PA levels. Air pollution levels (NO, NO2, PM10, PM2.5, PM2.5-10, and PM2.5 absorbance) were estimated with land use regression methods. Incident all-cause dementia was derived from inpatient hospital records and death registry data. RESULTS In adjusted models, ACCave was associated with reduced risk of developing dementia (HR = 0.71, 95% confidence interval [CI] = 0.60-0.83), whereas air pollution variables were not associated with dementia risk. There were significant interactions between ACCave and PM2.5 (HRinteraction = 1.33, 95% CI = 1.13-1.57) and PM2.5 absorbance (HRinteraction = 1.24, 95% CI = 1.07-1.45) on incident dementia. At the lowest tertiles of pollution, ACCave was associated with reduced risk of incident dementia (HRPM 2.5 = 0.66, 95% CI = 0.49-0.91; HRPM 2.5 absorbance = 0.60, 95% CI = 0.44-0.81). At the highest tertiles of these pollutants, there was no significant association of ACCave with incident dementia (HRPM 2.5 = 0.88, 95% CI = 0.68-1.14; HRPM 2.5 absorbance = 0.79, 95% CI = 0.60-1.04). CONCLUSIONS PA is associated with reduced risk of developing all-cause dementia. However, exposure to even moderate levels of air pollution attenuates the benefits of PA on risk of dementia.
Collapse
Affiliation(s)
- David A Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, CA
| | - Melissa Furlong
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | | | - M Katherine Sayre
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, CA
| | - Kimberly L Parra
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | | | - Rand R Wilcox
- Department of Psychology, University of Southern California, CA
| | | |
Collapse
|
15
|
Parra KL, Alexander GE, Raichlen DA, Klimentidis YC, Furlong MA. Exposure to air pollution and risk of incident dementia in the UK Biobank. ENVIRONMENTAL RESEARCH 2022; 209:112895. [PMID: 35149105 PMCID: PMC8976829 DOI: 10.1016/j.envres.2022.112895] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Air pollution may cause inflammatory and oxidative stress damage to the brain, leading to neurodegenerative disease. The association between air pollution and dementia, and modification by apolipoprotein E genotype 4 (APOE-ε4) has yet to be fully investigated. OBJECTIVES To examine associations of air pollution with three types of incident dementias (Alzheimer's disease (AD), frontotemporal dementia (FTD), and vascular dementia (VAD)), and their potential modification by APOE-ε4 genotype. METHODS The UK Biobank enrolled >500,000 participants (2006-2010) with ongoing follow-up. We used annual averages of air pollution (PM2.5, PM10, PM2.5-10, PM2.5absorbance, NO2, NOX) for 2010 scaled to interquartile ranges (IQR). We included individuals aged ≥60 years, with no dementia diagnosis prior to January 1, 2010. Time to incident dementia and follow-up time were reported from baseline (January 01, 2010) to last censor event (death, last hospitalization, or loss to follow-up). Cox proportional hazard ratios (HR) and 95% confidence intervals (95% CI) were calculated to estimate the association of air pollutants and incident dementia, and modification of these associations by APOE-ε4. RESULTS Our sample included 187,194 individuals (including N = 680 AD, N = 377 VAD, N = 63 FTD) with a mean follow-up of 7.04 years. We observed consistent associations of PM2.5 with greater risk of all-cause dementia (HR = 1.17, 95% CI: 1.10, 1.24) and AD (HR = 1.17, 95% CI: 1.06, 1.29). NO2 was also associated with greater risk of any incident dementia (HR = 1.18, 95% CI: 1.10, 1.25), AD (HR = 1.15, 95% CI: 1.04, 1.28) and VAD (HR = 1.18, 95% CI: 1.03, 1.35). APOE-ε4 did not modify the association between any air pollutants and dementia. DISCUSSION PM2.5 and NO2 levels were associated with several types of dementia, and these associations were not modified by APOE-ε4. Findings from the UK Biobank support and extend to other epidemiological evidence for the potential association of air pollutants with detrimental brain health during aging.
Collapse
Affiliation(s)
- Kimberly L Parra
- Department of Epidemiology & Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA.
| | - Gene E Alexander
- Departments of Psychology and Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, BIO5 Institute, and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - David A Raichlen
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Yann C Klimentidis
- Department of Epidemiology & Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Melissa A Furlong
- Department of Community, Environment, and Policy, Division of Environmental Health Sciences, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| |
Collapse
|
16
|
A national cohort study (2000-2018) of long-term air pollution exposure and incident dementia in older adults in the United States. Nat Commun 2021; 12:6754. [PMID: 34799599 PMCID: PMC8604909 DOI: 10.1038/s41467-021-27049-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Air pollution may increase risk of Alzheimer’s disease and related dementias (ADRD) in the U.S., but the extent of this relationship is unclear. Here, we constructed two national U.S. population-based cohorts of those aged ≥65 from the Medicare Chronic Conditions Warehouse (2000–2018), combined with high-resolution air pollution datasets, to investigate the association of long-term exposure to ambient fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) with dementia and AD incidence, respectively. We identified ~2.0 million incident dementia cases (N = 12,233,371; dementia cohort) and ~0.8 million incident AD cases (N = 12,456,447; AD cohort). Per interquartile range (IQR) increase in the 5-year average PM2.5 (3.2 µg/m3), NO2 (11.6 ppb), and warm-season O3 (5.3 ppb) over the past 5 years prior to diagnosis, the hazard ratios (HRs) were 1.060 (95% confidence interval [CI]: 1.054, 1.066), 1.019 (95% CI: 1.012, 1.026), and 0.990 (95% CI: 0.987, 0.993) for incident dementias, and 1.078 (95% CI: 1.070, 1.086), 1.031 (95% CI: 1.023, 1.039), and 0.982 (95%CI: 0.977, 0.986) for incident AD, respectively, for the three pollutants. For both outcomes, concentration-response relationships for PM2.5 and NO2 were approximately linear. Our study suggests that exposures to PM2.5 and NO2 are associated with incidence of dementia and AD. Air pollution has been linked to neurodegenerative disease. Here the authors carried out a population-based cohort study to investigate the association between long-term exposure to PM2.5, NO2, and warm-season O3 on dementia and Alzheimer’s disease incidence in the United States.
Collapse
|