1
|
Zhou J, Han X, Wei Z, Liu Y, Xu J, Xu M, Xia T, Cheng X, Gu X. Deciphering the CREB-NR2B axis: Unraveling the crosstalk of insulin and TGF-β signalling in ameliorating postoperative cognitive dysfunction. Life Sci 2025; 370:123574. [PMID: 40122334 DOI: 10.1016/j.lfs.2025.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a significant postoperative complication, particularly in the elderly, linked to inflammation-mediated neural dysfunction. Insulin resistance and disruptions in transforming growth factor beta (TGF-β) signalling are associated with cognitive decline in aging, yet their roles in POCD are not fully understood. Here, we demonstrated that both insulin and TGF-β pathways were disrupted in POCD mouse models, with recombinant insulin and TGF-β treatments improving cognitive outcomes. These treatments reversed neuroinflammation in vitro, while CREB knockdown abrogated the protective effects, both in vivo and in vitro. Mechanistically, CREB was found to mediate the protective effects of insulin and TGF-β in POCD by directly regulating the expression of the cognitive-related protein NR2B. Altogether, our study identifies a key molecular target involved in the critical signalling pathways associated with POCD, offering promising therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
- Jiawen Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xue Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Ziqi Wei
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Yujia Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Jiyan Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Minhui Xu
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xiaolei Cheng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Ma L, Jasem HJ, Gu WJ, Zeng Q, Wang X, Liu XD. Postoperative neurocognitive disorders in the elderly: how can we stop the harm? A literature review. Front Med (Lausanne) 2025; 12:1525639. [PMID: 40115783 PMCID: PMC11922869 DOI: 10.3389/fmed.2025.1525639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Postoperative neurocognitive disorders (PND) represent a significant challenge affecting patients undergoing surgical procedures, particularly in the elderly population. These disorders can lead to profound impairments in cognitive function, impacting memory, attention, and overall quality of life. Despite ongoing research efforts to identify risk factors and improve management strategies, PND remains underdiagnosed and poorly understood, complicating postoperative recovery and rehabilitation. This review aims to explore the recent advancement in the literature about PND, focusing on the underlying mechanisms, risk factors, and potential therapeutic approaches. We highlight recent advancements in the understanding of neuroinflammation, and it is implications for novel therapies to prevent PND. By synthesizing the latest research, we hope to provide insights that could lead to improved outcomes for patients at risk for PND and foster a shift towards more effective preventive measures in such population.
Collapse
Affiliation(s)
- Ling Ma
- Department of Anesthesiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- Labor Health and Occupational Disease Teaching and Research Office, School of Public Health, China Medical University, Shenyang, China
| | - Huthaifa Jasem Jasem
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wan Jun Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Zeng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Dan Liu
- Labor Health and Occupational Disease Teaching and Research Office, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wrba JC, Lupu L, Braumüller S, Neff TA, Halbgebauer R, Palmer A, Huber-Lang M. Effects of anesthesia with sevoflurane on outcome parameters in murine experimental studies. Eur J Trauma Emerg Surg 2024; 50:3281-3287. [PMID: 38980394 PMCID: PMC11666620 DOI: 10.1007/s00068-024-02583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Multiple murine studies modelling the immuno-pathophysiological consequences of trauma, shock, burn or sepsis were performed during the last decades. Almost every animal model requires anesthesia for practical and ethical reasons. Furthermore, often, corresponding control groups involve untreated animals without or with a limited exposure to anesthetics. However, the influences of anesthetic drugs on immuno-pathophysiological reactions remain insufficiently investigated. Therefore, we aimed to closer characterize the anesthetic impact exemplified by sevoflurane on the organ performance in mice and thereby investigate the influence of anesthesia itself on major outcome parameters in animal studies. METHODS C57/BL6 mice were subjected either to 270 min of sevoflurane narcosis or directly euthanized. Plasma, BAL-fluids, lungs, kidneys, liver and intestine were collected and examined for immunological, functional and morphological changes. RESULTS Systemic levels of the cytokine keratinocyte chemoattractant (KC) were raised in the narcosis group, while concentrations of high mobility group box protein 1 (HMGB-1) as a major inflammatory marker were reduced. In the lungs, levels of HMGB-1 and interleukin 6 (IL-6) were reduced. In contrast, systemic concentrations of intestinal fatty acid binding-protein (i-FABP) as an intestinal damage marker were elevated. Furthermore, liver-type fatty acid binding-protein (L-FABP) levels were lower in the narcosis animals, and inflammatory markers were reduced in liver tissues. Anesthesia also ameliorated the inflammatory reaction in renal tissues, while plasma levels of urea and creatinine were elevated, reflecting either dehydration and/or impaired renal function. CONCLUSION As anesthesia with sevoflurane exhibited distinct effects in different organs, it is difficult to predict its specific impact on targets of interest in in vivo studies. Therefore, further studies are required to clarify the effects of different anesthetic drugs. Overall, the inclusion of a control group subjected to the same anesthesia protocol as the experimental groups of interest seems helpful to precisely define the inherent impact of the anesthetic when investigating immuno-pathophysiologic conditions in vivo.
Collapse
Affiliation(s)
- Jonas C Wrba
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, University Hospital of Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
- Department of Trauma, Orthopedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, University Hospital of Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, University Hospital of Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Thomas A Neff
- Department of Anaesthesia and Intensive Care Medicine, Cantonal Hospital of Muensterlingen, Münsterlingen, Switzerland
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, University Hospital of Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, University Hospital of Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, University Hospital of Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Yu W, Zhu Z, Tang F. Emerging Insights into Postoperative Neurocognitive Disorders: The Role of Signaling Across the Gut-Brain Axis. Mol Neurobiol 2024; 61:10861-10882. [PMID: 38801630 PMCID: PMC11584502 DOI: 10.1007/s12035-024-04228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
The pathophysiological regulatory mechanisms in postoperative neurocognitive disorders (PNCDs) are intricately complex. Currently, the pathogenesis of PNCDs has not been fully elucidated. The mechanism involved may include a variety of factors, such as neuroinflammation, oxidative stress, and neuroendocrine dysregulation. Research into the gut microbiota-induced regulations on brain functions is increasingly becoming a focal point of exploration. Emerging evidence has shown that intestinal bacteria may play an essential role in maintaining the homeostasis of various physiological systems and regulating disease occurrence. Recent studies have confirmed the association of the gut-brain axis with central nervous system diseases. However, the regulatory effects of this axis in the pathogenesis of PNCDs remain unclear. Therefore, this paper intends to review the bidirectional signaling and mechanism of the gut-brain axis in PNCDs, summarize the latest research progress, and discuss the possible mechanism of intestinal bacteria affecting nervous system diseases. This review is aimed at providing a scientific reference for predicting the clinical risk of PNCD patients and identifying early diagnostic markers and prevention targets.
Collapse
Affiliation(s)
- Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
5
|
Feng H, Zhang Z, Lyu W, Kong X, Li J, Zhou H, Wei P. The Effects of Appropriate Perioperative Exercise on Perioperative Neurocognitive Disorders: a Narrative Review. Mol Neurobiol 2024; 61:4663-4676. [PMID: 38110646 PMCID: PMC11236851 DOI: 10.1007/s12035-023-03864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Perioperative neurocognitive disorders (PNDs) are now considered the most common neurological complication in older adult patients undergoing surgical procedures. A significant increase exists in the incidence of post-operative disability and mortality in patients with PNDs. However, no specific treatment is still available for PNDs. Recent studies have shown that exercise may improve cognitive dysfunction-related disorders, including PNDs. Neuroinflammation is a key mechanism underlying exercise-induced neuroprotection in PNDs; others include the regulation of gut microbiota and mitochondrial and synaptic function. Maintaining optimal skeletal muscle mass through preoperative exercise is important to prevent the occurrence of PNDs. This review summarizes current clinical and preclinical evidence and proposes potential molecular mechanisms by which perioperative exercise improves PNDs, providing a new direction for exploring exercise-mediated neuroprotective effects on PNDs. In addition, it intends to provide new strategies for the prevention and treatment of PNDs.
Collapse
Affiliation(s)
- Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Zheng Zhang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Haipeng Zhou
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China.
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China.
| |
Collapse
|
6
|
Zhang S, Liu C, Sun J, Li Y, Lu J, Xiong X, Hu L, Zhao H, Zhou H. Bridging the Gap: Investigating the Link between Inflammasomes and Postoperative Cognitive Dysfunction. Aging Dis 2023; 14:1981-2002. [PMID: 37450925 PMCID: PMC10676784 DOI: 10.14336/ad.2023.0501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a cluster of cognitive problems that may arise after surgery. POCD symptoms include memory loss, focus inattention, and communication difficulties. Inflammasomes, intracellular multiprotein complexes that control inflammation, may have a significant role in the development of POCD. It has been postulated that the NLRP3 inflammasome promotes cognitive impairment by triggering the inflammatory response in the brain. Nevertheless, there are many gaps in the current literature to understand the underlying pathophysiological mechanisms and develop future therapy. This review article underlines the limits of our current knowledge about the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome and POCD. We first discuss inflammasomes and their types, structures, and functions, then summarize recent evidence of the NLRP3 inflammasome's involvement in POCD. Next, we propose a hypothesis that suggests the involvement of inflammasomes in multiple organs, including local surgical sites, blood circulation, and other peripheral organs, leading to systemic inflammation and subsequent neuronal dysfunction in the brain, resulting in POCD. Research directions are then discussed, including analyses of inflammasomes in more clinical POCD animal models and clinical trials, studies of inflammasome types that are involved in POCD, and investigations into whether inflammasomes occur at the surgical site, in circulating blood, and in peripheral organs. Finally, we discuss the potential benefits of using new technologies and approaches to study inflammasomes in POCD. A thorough investigation of inflammasomes in POCD might substantially affect clinical practice.
Collapse
Affiliation(s)
- Siyu Zhang
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jintao Sun
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Yang Li
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Hongmei Zhou
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| |
Collapse
|
7
|
Wen J, Li Z, Zuo Z. Postoperative Learning and Memory Dysfunction Is More Severe in Males But Is Not Persistent and Transmittable to Next Generation in Young Adult Rats. J Neurosurg Anesthesiol 2023; 35:429-437. [PMID: 35605917 DOI: 10.1097/ana.0000000000000856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) affects numerous patients each year and is associated with poor outcomes. Currently, the duration of POCD is not known. This preclinical study determined whether POCD was persistent, different between sexes and transmittable to the next generation. METHODS Two-month-old Sprague-Dawley rats had left carotid artery exposure under isoflurane anesthesia and their learning and memory were assessed from 5 days, 2 months, and 4 months after surgery. Rats with or without surgery were mated when they were 4 or 6 months old, and the learning and memory of the offspring were tested at 2 months of age. RESULTS Males exposed to surgery took a longer time to identify the target box after training sessions in a Barnes maze and had less freezing behavior in context-related fear conditioning than control rats when the tests were started 5 days after surgery. Similarly, female rats had a poorer performance than control rats in the Barnes maze test from 5 days after surgery. However, these poorer performances were not observed when the tests were administered 2 or 4 months after surgery. The offspring of rats with surgery had a performance similar to that of the offspring of control rats. CONCLUSIONS Our results suggest that both male and female rats develop POCD but that the learning and memory dysfunction appears to be more severe in male rats. POCD may not be persistent and does not transmit to the next generation.
Collapse
Affiliation(s)
- Jing Wen
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
8
|
Xu F, Wang Y, Han L, Deng D, Ding Y, Ma L, Zhang Q, Chen X. PEX5R/Trip8b-HCN2 channel regulating neuroinflammation involved in perioperative neurocognitive disorders. Cell Biosci 2022; 12:156. [PMID: 36104739 PMCID: PMC9476339 DOI: 10.1186/s13578-022-00892-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Clinical and animal studies demonstrated that neuroinflammation from anesthesia (sevoflurane) is the main contributor to cause perioperative neurocognitive disorders (PND). Recently, it was reported that microglia respond to hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which was the target of sevoflurane. Whether HCN channels are involved in the induction of neuroinflammation after sevoflurane exposure is still unclear. Results Sevoflurane exposure had increased cognitive dysfunction and anxiety-like behaviors in rats. Rats inhaled with sevoflurane had activated microglia and increased neuroinflammation (IL-1β, IL-6, and TNF-α) in the hippocampus. RNA sequencing identified 132 DEGs (86 up-regulated and 46 down-regulated DEGs [differentially expressed genes]) in the hippocampus of PND rats. RNA-sequencing also uncovered that sevoflurane exposure down-regulates HCN2 expression. Pathway and process enrichment analysis suggests DEGs are mainly enriched in regulation of system process, positive regulation of glutamate secretion, secretion, regulation of synaptic transmission, regulation of nervous system process, behavior, negative regulation of sodium ion transport, and learning or memory. We validated that sevoflurane exposure can down-regulate the levels of PEX5R/Trip8b (an interaction partner and auxiliary subunit of HCN channels) and HCN1-4 channels in the hippocampus of PND rats. We used immunofluorescence staining to identify that HCN2 co-labels with neurons (Neun), astrocytes (GFAP), and microglia (iba1). We observed that the co-labeling of HCN2 with neurons or microglia decreased in the hippocampus and cortex after sevoflurane exposure. Blocking HCN2 by ZD7288 treatment further activated microglia and aggravated sevoflurane exposure-induced anxiety-like behavior, cognitive impairment, and neuroinflammation. Conclusions We concluded that sevoflurane exposure can induce an increased level of neuroinflammation, microglial activation, cognitive dysfunction, and anxiety-like behaviors in rats. HCN2 channel, as the target of sevoflurane action, mediates this process. HCN2 might be a target for the treatment and prevention of sevoflurane-induced PND. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00892-6.
Collapse
|
9
|
Lu B, Yuan H, Mo L, Sun D, Liu R, Zhou H, Zhai X, Wang R, Chen J, Meng B. Effects of different types of non-cardiac surgical trauma on hippocampus-dependent memory and neuroinflammation. Front Behav Neurosci 2022; 16:950093. [PMID: 36035019 PMCID: PMC9399929 DOI: 10.3389/fnbeh.2022.950093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Older individuals have been reported to suffer from cognitive disorders after surgery. Various types of surgical trauma have been used to establish postoperative cognitive dysfunction (POCD) animal models in preclinical studies. However, few comparative analyses of these animal models were conducted. Methods Tibial surgery, abdominal surgery, and extended abdominal surgery were performed on aged ICR mice to establish POCD models. Behavioral tests included open field, novel object recognition, fear conditioning, and Morris water maze tests. The Z-score methodology was adopted to obtain a comprehensive and integrated memory performance profile. The changes in hippocampal neuroinflammation were analyzed by ELISA, PCR, and immunofluorescence. Results In this study, we found that each type of non-cardiac surgical trauma has a different effects on locomotor activity. Tibial and extended abdominal surgeries led to more significant cognitive impairment than abdominal surgery. Inflammatory cytokines peaked on postoperative day 1 and decreased to control levels on days 3 and 7. Hippocampal neuroinflammation indicators between the three surgery types on postoperative day 1 had no statistical differences. Conclusion Overall, the type and intensity of non-cardiac surgical trauma can affect cognitive behavioral outcomes and central inflammation. The shortcomings and emerging issues of POCD animal research methods need to be further studied and solved.
Collapse
Affiliation(s)
- Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Lan Mo
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Daofan Sun
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Rongjun Liu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Han Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Ruichun Wang
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junping Chen,
| | - Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Bo Meng,
| |
Collapse
|
10
|
Peng L, Liu S, Xu J, Xie W, Fang X, Xia T, Gu X. Metformin alleviates prolonged isoflurane inhalation induced cognitive decline via reducing neuroinflammation in adult mice. Int Immunopharmacol 2022; 109:108903. [PMID: 35709590 PMCID: PMC9190296 DOI: 10.1016/j.intimp.2022.108903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
With the widespread use of volatile anesthetic agents in the prolonged sedation for COVID-19 pneumonia and ARDS, there is an urgent need to investigate the effects and treatments of lengthy low-concentration inhaled anesthetics exposure on cognitive function in adults. Previous studies showed that general anesthetics dose- and exposure length-dependently induced neuroinflammatory response and cognitive decline in neonatal and aging animals. The anti-diabetes drug metformin has anti-neuroinflammation effects by modulating microglial polarization and inhibiting astrocyte activation. In this study, we demonstrated that the inhalation of 1.3% isoflurane (a sub-minimal alveolar concentration, sub-MAC) for 6 h impaired recognition of novel objects from Day 1 to Day3 in adult mice. Prolonged sub-MAC isoflurane exposure also triggered typically reactive microglia and A1-like astrocytes in the hippocampus of adult mice on Day 3 after anesthesia. In addition, prolonged isoflurane inhalation switched microglia into a proinflammatory M1 phenotype characterized by elevated CD68 and iNOS as well as decreased arginase-1 and IL-10. Metformin pretreatment before anesthesia enhanced cognitive performance in the novel object test. The positive cellular modifications promoted by metformin pretreatment included the inhibition of reactive microglia and A1-like astrocytes and the polarization of microglia into M2 phenotype in the hippocampus of adult mice. In conclusion, prolonged sub-MAC isoflurane exposure triggered significant hippocampal neuroinflammation and cognitive decline in adult mice which can be alleviated by metformin pretreatment via inhibiting reactive microglia and A1-like astrocytes and promoting microglia polarization toward anti-inflammatory phenotype in the hippocampus.
Collapse
Affiliation(s)
- Liangyu Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Shuai Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Jiyan Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Wenjia Xie
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Xin Fang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China
| | - Tianjiao Xia
- Medical School of Nanjing University, Nanjing 210093, Jiangsu, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
11
|
Cheng Y, Shi L, Mao H, Xue Z, Liu S, Qiu Z, Zhang L, Jiang H. The Effect of Sevoflurane Anesthesia on the Biomarkers of Neural Injury in the Prefrontal Cortex of Aged Marmosets. Front Aging Neurosci 2022; 14:918640. [PMID: 35847680 PMCID: PMC9281875 DOI: 10.3389/fnagi.2022.918640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background Surgery under general anesthesia leads to neural injury, especially in older patients. Sevoflurane anesthesia without surgery for 2 h does not induce neural injury, however, whether prolonger sevoflurane anesthesia without surgery has the same consequence is still unknown. Methods In the present study, aged marmosets were exposed to a clinical concentration of sevoflurane (1.5–2%) for 6 h to access the effects of prolonged sevoflurane anesthesia on the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), Caspase3 activity and myelin formation in the brain. Results Sevoflurane anesthesia did not alter the expression of IL-6 (120.1 ± 2.21 vs. 120.8 ± 2.25, p = 0.74), TNF-α (189.3 ± 31.35 vs. 218.7 ± 21.47, p = 0.25) and Caspase3 (57.35 ± 1.54 vs. 58.67 ± 1.19, p = 0.53) in the prefrontal cortex (PFC) of aged marmosets. The amount of MBP expression (60.99 ± 6.21 vs. 58.91 ± 2.71, p = 0.77) did not change following sevoflurane exposure. Conclusion Sevoflurane anesthesia did not increase the levels of IL-6 and TNF-α, activated the the expression of Caspase3, and induced myelination deficits in the PFC of aged marmosets.
Collapse
Affiliation(s)
- Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Shi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoli Mao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Liu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zilong Qiu
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lei Zhang
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hong Jiang
| |
Collapse
|
12
|
Valdelievre T, Zuo Z. Do We Have Measures to Reduce Post-operative Cognitive Dysfunction? Front Neurosci 2022; 16:850012. [PMID: 35720718 PMCID: PMC9201331 DOI: 10.3389/fnins.2022.850012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
|
13
|
Wang XQ, Li H, Li XN, Yuan CH, Zhao H. Gut-Brain Axis: Possible Role of Gut Microbiota in Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 13:745774. [PMID: 35002672 PMCID: PMC8727913 DOI: 10.3389/fnagi.2021.745774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - He Li
- Department of Anesthesiology, Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Nan Li
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Cong-Hu Yuan
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Hang Zhao
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| |
Collapse
|
14
|
Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry 2021; 26:7167-7187. [PMID: 34663905 PMCID: PMC8873004 DOI: 10.1038/s41380-021-01291-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Postoperative cognitive dysfunction (POCD) affects the outcome of millions of patients each year. Aging is a risk factor for POCD. Here, we showed that surgery induced learning and memory dysfunction in adult mice. Transplantation of feces from surgery mice but not from control mice led to learning and memory impairment in non-surgery mice. Low intensity exercise improved learning and memory in surgery mice. Exercise attenuated surgery-induced neuroinflammation and decrease of gut microbiota diversity. These exercise effects were present in non-exercise mice receiving feces from exercise mice. Exercise reduced valeric acid, a gut microbiota product, in the blood. Valeric acid worsened neuroinflammation, learning and memory in exercise mice with surgery. The downstream effects of exercise included attenuating growth factor decrease, maintaining astrocytes in the A2 phenotypical form possibly via decreasing C3 signaling and improving neuroplasticity. Similar to these results from adult mice, exercise attenuated learning and memory impairment in old mice with surgery. Old mice receiving feces from old exercise mice had better learning and memory than those receiving control old mouse feces. Surgery increased blood valeric acid. Valeric acid blocked exercise effects on learning and memory in old surgery mice. Exercise stabilized gut microbiota, reduced neuroinflammation, attenuated growth factor decrease and preserved neuroplasticity in old mice with surgery. These results provide direct evidence that gut microbiota alteration contributes to POCD development. Valeric acid is a mediator for this effect and a potential target for brain health. Low intensity exercise stabilizes gut microbiota in the presence of insult, such as surgery.
Collapse
|