1
|
Thropp P, Phillips E, Jung Y, Thomas DL, Tosun D. Arterial spin labeling perfusion MRI in the Alzheimer's Disease Neuroimaging Initiative: Past, present, and future. Alzheimers Dement 2024; 20:8937-8952. [PMID: 39428971 DOI: 10.1002/alz.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
On the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI), this paper provides a comprehensive overview of the role of arterial spin labeling (ASL) magnetic resonance imaging (MRI) in understanding perfusion changes in the aging brain and the relationship with Alzheimer's disease (AD) pathophysiology and its comorbid conditions. We summarize previously used acquisition protocols, available data, and the motivation for adopting a multi-post-labeling delay (PLD) acquisition scheme in the latest ADNI MRI protocol (ADNI 4). We also detail the process of setting up this scheme on different scanners, emphasizing the potential of ASL imaging in future AD research. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) adopted multimodal arterial spin labeling magnetic resonance imaging (ASL MRI) to meet evolving biomarker requirements. The ADNI provides one of the largest multisite, multi-vendor ASL data collections. The ADNI 4 incorporates multi-post-labeling delay ASL techniques to jointly quantify cerebral blood flow and arterial transit time. ADNI 4 ASL MRI protocol is apt for detecting early Alzheimer's disease with cerebrovascular pathology.
Collapse
Affiliation(s)
- Pamela Thropp
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Eliana Phillips
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Youngkyoo Jung
- Department of Radiology, University of California Davis, Sacramento, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Bhattarai A, Holy EN, Wang Y, Spencer BA, Wang G, DeCarli C, Fan AP. Kinetic modeling of 18 F-PI-2620 binding in the brain using an image-derived input function with total-body PET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601764. [PMID: 39005369 PMCID: PMC11245027 DOI: 10.1101/2024.07.02.601764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Accurate quantification of tau binding from 18 F-PI-2620 PET requires kinetic modeling and an input function. Here, we implemented a non-invasive Image-derived input function (IDIF) derived using the state-of-the-art total-body uEXPLORER PET/CT scanner to quantify tau binding and tracer delivery rate from 18 F-PI-2620 in the brain. Additionally, we explored the impact of scan duration on the quantification of kinetic parameters. Total-body PET dynamic data from 15 elderly participants were acquired. Time-activity curves from the grey matter regions of interest (ROIs) were fitted to the two-tissue compartmental model (2TCM) using a subject-specific IDIF derived from the descending aorta. ROI-specific kinetic parameters were estimated for different scan durations ranging from 10 to 90 minutes. Logan graphical analysis was also used to estimate the total distribution volume (V T ). Differences in kinetic parameters were observed between ROIs, including significant reduction in tracer delivery rate (K 1 ) in the medial temporal lobe. All kinetic parameters remained relatively stable after the 60-minute scan window across all ROIs, with K 1 showing high stability after 30 minutes of scan duration. Excellent correlation was observed between V T estimated using 2TCM and Logan plot analysis. This study demonstrated the utility of IDIF with total-body PET in investigating 18 F-PI-2620 kinetics in the brain.
Collapse
|
3
|
Edwards L, Thomas KR, Weigand AJ, Edmonds EC, Clark AL, Brenner EK, Banks SJ, Gilbert PE, Nation DA, Delano-Wood L, Bondi MW, Bangen KJ. Pulse pressure and APOE ε4 dose interact to affect cerebral blood flow in older adults without dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100206. [PMID: 38328026 PMCID: PMC10847851 DOI: 10.1016/j.cccb.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
This study assessed whether the effect of vascular risk on cerebral blood flow (CBF) varies by gene dose of apolipoprotein (APOE) ε4 alleles. 144 older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative underwent arterial spin labeling and T1-weighted MRI, APOE genotyping, fluorodeoxyglucose positron emission tomography (FDG-PET), lumbar puncture, and blood pressure (BP) assessment. Vascular risk was assessed using pulse pressure (systolic BP - diastolic BP). CBF was examined in six AD-vulnerable regions: entorhinal cortex, hippocampus, inferior temporal cortex, inferior parietal cortex, rostral middle frontal gyrus, and medial orbitofrontal cortex. Linear regressions tested the interaction between APOE ε4 dose and pulse pressure on CBF in each region, adjusting for age, sex, cognitive classification, antihypertensive medication use, FDG-PET, reference CBF region, and AD biomarker positivity. There was a significant interaction between pulse pressure and APOE ɛ4 dose on CBF in the entorhinal cortex, hippocampus, and inferior parietal cortex, such that higher pulse pressure was associated with lower CBF only among ε4 homozygous participants. These findings demonstrate that the association between pulse pressure and regional CBF differs by APOE ε4 dose, suggesting that targeting modifiable vascular risk factors may be particularly important for those genetically at risk for AD.
Collapse
Affiliation(s)
- Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C. Edmonds
- Banner Alzheimer's Institute, Tucson, AZ, USA
- Departments of Neurology and Psychology, University of Arizona, Tucson, AZ, USA
| | - Alexandra L. Clark
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Paul E. Gilbert
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Daniel A. Nation
- Department of Psychology, University of California Irvine, Irvine, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Mu S, Lu W, Yu G, Zheng L, Qiu J. Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107904. [PMID: 37924768 DOI: 10.1016/j.cmpb.2023.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are widely-seen in the aging population, which are associated with cerebrovascular risk factors and age-related cognitive decline. At present, structural atrophy and functional alterations coexisted with WMHs lacks comprehensive investigation. This study developed a WMHs risk prediction model to evaluate WHMs according to Fazekas scales, and to locate potential regions with high risks across the entire brain. METHODS We developed a WMHs risk prediction model, which consisted of the following steps: T2 fluid attenuated inversion recovery (T2-FLAIR) image of each participant was firstly segmented into 1000 tiles with the size of 32 × 32 × 1, features from the tiles were extracted using the ResNet18-based feature extractor, and then a 1D convolutional neural network (CNN) was used to score all tiles based on the extracted features. Finally, a multi-layer perceptron (MLP) was constructed to predict the Fazekas scales based on the tile scores. The proposed model was trained using T2-FLAIR images, we selected tiles with abnormal scores in the test set after prediction, and evaluated their corresponding gray matter (GM) volume, white matter (WM) volume, fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF) via longitudinal and multi-sequence Magnetic Resonance Imaging (MRI) data analysis. RESULTS The proposed WMHs risk prediction model could accurately predict the Fazekas ratings based on the tile scores from T2-FLAIR MRI images with accuracy of 0.656, 0.621 in training data set and test set, respectively. The longitudinal MRI validation revealed that most of the high-risk tiles predicted by the WMHs risk prediction model in the baseline images had WMHs in the corresponding positions in the longitudinal images. The validation on multi-sequence MRI demonstrated that WMHs were associated with GM and WM atrophies, WM micro-structural and perfusion alterations in high-risk tiles, and multi-modal MRI measures of most high-risk tiles showed significant associations with Mini Mental State Examination (MMSE) score. CONCLUSION Our proposed WMHs risk prediction model can not only accurately evaluate WMH severities according to Fazekas scales, but can also uncover potential markers of WMHs across modalities. The WMHs risk prediction model has the potential to be used for the early detection of WMH-related alterations in the entire brain and WMH-induced cognitive decline.
Collapse
Affiliation(s)
- Si Mu
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai'an, Shandong, 271000, China
| | - Weizhao Lu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Guanghui Yu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Lei Zheng
- Department of Radiology, Rushan Hospital of Chinese Medicine, Rushan, Shandong, 264500, China.
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medicine Sciences, Tai'an, Shandong, 271000, China; Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| |
Collapse
|
5
|
Veitch DP, Weiner MW, Miller M, Aisen PS, Ashford MA, Beckett LA, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Nho KT, Nosheny R, Okonkwo O, Perrin RJ, Petersen RC, Rivera Mindt M, Saykin A, Shaw LM, Toga AW, Tosun D. The Alzheimer's Disease Neuroimaging Initiative in the era of Alzheimer's disease treatment: A review of ADNI studies from 2021 to 2022. Alzheimers Dement 2024; 20:652-694. [PMID: 37698424 PMCID: PMC10841343 DOI: 10.1002/alz.13449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer's disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and cognitive data, and biofluid samples. We used conventional search methods to identify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291 impactful studies. This review details how ADNI studies improved disease progression understanding and clinical trial efficiency. Advances in subject selection, detection of treatment effects, harmonization, and modeling improved clinical trials and plasma biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with individualized prediction algorithms available online. Studies supported the amyloid cascade, emphasized the importance of neuroinflammation, and detailed widespread heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and resilience. Biological subtypes were consistently observed. Generalizability of ADNI results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by enrolling a diverse cohort.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Melanie Miller
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Miriam A. Ashford
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Laurel A. Beckett
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Robert C. Green
- Division of GeneticsDepartment of MedicineBrigham and Women's HospitalBroad Institute Ariadne Labs and Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Kwangsik T. Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachel Nosheny
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Monica Rivera Mindt
- Department of PsychologyLatin American and Latino Studies InstituteAfrican and African American StudiesFordham UniversityNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine and the PENN Alzheimer's Disease Research CenterCenter for Neurodegenerative ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro ImagingInstitute of Neuroimaging and InformaticsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | |
Collapse
|
6
|
Nakhla MZ, Bangen KJ, Schiehser DM, Roesch S, Zlatar ZZ. Greater subjective cognitive decline severity is associated with worse memory performance and lower entorhinal cerebral blood flow in healthy older adults. J Int Neuropsychol Soc 2024; 30:1-10. [PMID: 36781410 PMCID: PMC10423746 DOI: 10.1017/s1355617723000115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
OBJECTIVE Subjective cognitive decline (SCD) is a potential early risk marker for Alzheimer's disease (AD), but its utility may vary across individuals. We investigated the relationship of SCD severity with memory function and cerebral blood flow (CBF) in areas of the middle temporal lobe (MTL) in a cognitively normal and overall healthy sample of older adults. Exploratory analyses examined if the association of SCD severity with memory and MTL CBF was different in those with lower and higher cardiovascular disease (CVD) risk status. METHODS Fifty-two community-dwelling older adults underwent magnetic resonance imaging, neuropsychological testing, and were administered the Everyday Cognition Scale (ECog) to measure SCD. Regression models investigated whether ECog scores were associated with memory performance and MTL CBF, followed by similar exploratory regressions stratified by CVD risk status (i.e., lower vs higher stroke risk). RESULTS Higher ECog scores were associated with lower objective memory performance and lower entorhinal cortex CBF after adjusting for demographics and mood. In exploratory stratified analyses, these associations remained significant in the higher stroke risk group only. CONCLUSIONS Our preliminary findings suggest that SCD severity is associated with cognition and brain markers of preclinical AD in otherwise healthy older adults with overall low CVD burden and that this relationship may be stronger for individuals with higher stroke risk, although larger studies with more diverse samples are needed to confirm these findings. Our results shed light on individual characteristics that may increase the utility of SCD as an early risk marker of cognitive decline.
Collapse
Affiliation(s)
- Marina Z. Nakhla
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, San Diego, CA
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Katherine J. Bangen
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Dawn M. Schiehser
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Scott Roesch
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, 92182
| | - Zvinka Z. Zlatar
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
7
|
Bangen KJ, Calcetas AT, Thomas KR, Wierenga C, Smith CN, Bordyug M, Brenner EK, Wing D, Chen C, Liu TT, Zlatar ZZ. Greater accelerometer-measured physical activity is associated with better cognition and cerebrovascular health in older adults. J Int Neuropsychol Soc 2023; 29:859-869. [PMID: 36789631 PMCID: PMC10425574 DOI: 10.1017/s1355617723000140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and regional cerebral blood flow (CBF) in older adults. METHOD Forty-three older adults without cognitive impairment underwent magnetic resonance imaging (MRI) and comprehensive neuropsychological assessment. Waist-worn accelerometers objectively measured PA for approximately one week. RESULTS Higher time spent in moderate to vigorous PA (MVPA) was uniquely associated with better memory and executive functioning after adjusting for all light PA. Higher MVPA was also uniquely associated with lower frontal WMH volume although the finding was no longer significant after additionally adjusting for age and accelerometer wear time. MVPA was not associated with CBF. Higher time spent in all light PA was uniquely associated with higher CBF but not with cognitive performance or WMH volume. CONCLUSIONS Engaging in PA may be beneficial for cerebrovascular health, and MVPA in particular may help preserve memory and executive function in otherwise cognitively healthy older adults. There may be differential effects of engaging in lighter PA and MVPA on MRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda T Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christine N Smith
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Einat K Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Sible IJ, Nation DA. Blood Pressure Variability and Cerebral Perfusion Decline: A Post Hoc Analysis of the SPRINT MIND Trial. J Am Heart Assoc 2023; 12:e029797. [PMID: 37301768 PMCID: PMC10356024 DOI: 10.1161/jaha.123.029797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Background Blood pressure variability (BPV) is predictive of cerebrovascular disease and dementia, possibly though cerebral hypoperfusion. Higher BPV is associated with cerebral blood flow (CBF) decline in observational cohorts, but relationships in samples with strictly controlled blood pressure remain understudied. We investigated whether BPV relates to change in CBF in the context of intensive versus standard antihypertensive treatment. Methods and Results In this post hoc analysis of the SPRINT MIND (Systolic Blood Pressure Intervention Trial-Memory and Cognition in Decreased Hypertension) trial, 289 participants (mean, 67.6 [7.6 SD] years, 38.8% women) underwent 4 blood pressure measurements over a 9-month period after treatment randomization (intensive versus standard) and pseudo-continuous arterial spin labeling magnetic resonance imaging at baseline and ≈4-year follow-up. BPV was calculated as tertiles of variability independent of mean. CBF was determined for whole brain, gray matter, white matter, hippocampus, parahippocampal gyrus, and entorhinal cortex. Linear mixed models examined relationships between BPV and change in CBF under intensive versus standard antihypertensive treatment. Higher BPV in the standard treatment group was associated with CBF decline in all regions (ß comparing the first versus third tertiles of BPV in whole brain: -0.09 [95% CI, -0.17 to -0.01]; P=0.03), especially in medial temporal regions. In the intensive treatment group, elevated BPV was related to CBF decline only in the hippocampus (ß, -0.10 [95% CI, -0.18, -0.01]; P=0.03). Conclusions Elevated BPV is associated with CBF decline, especially under standard blood pressure-lowering strategies. Relationships were particularly robust in medial temporal regions, consistent with prior work using observational cohorts. Findings highlight the possibility that BPV remains a risk for CBF decline even in individuals with strictly controlled mean blood pressure levels. Registration URL: http://clinicaltrials.gov. Identifier: NCT01206062.
Collapse
Affiliation(s)
- Isabel J. Sible
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA
- Department of Psychological ScienceUniversity of California IrvineIrvineCA
| |
Collapse
|
9
|
Brenner EK, Thomas KR, Weigand AJ, Edwards L, Edmonds EC, Bondi MW, Bangen KJ. Cognitive reserve moderates the association between cerebral blood flow and language performance in older adults with mild cognitive impairment. Neurobiol Aging 2023; 125:83-89. [PMID: 36868071 PMCID: PMC10824498 DOI: 10.1016/j.neurobiolaging.2023.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Higher cognitive reserve (CR) may offer protection from cognitive changes associated with reduced cerebral blood flow (CBF). We investigated CR as a moderator of the effect of CBF on cognition in older adults with mild cognitive impairment (MCI; N = 46) and those who are cognitively unimpaired (CU; N = 101). Participants underwent arterial spin labeling MRI, which was used to quantify CBF in 4 a priori regions. Estimated verbal intelligence quotient (VIQ) served as a proxy for CR. Multiple linear regressions examined whether VIQ moderated associations between CBF and cognition and whether this differed by cognitive status. Outcomes included memory and language performance. There were 3-way interactions (CBF*VIQ*cognitive status) on category fluency when examining hippocampal, superior frontal, and inferior frontal CBF. Follow-up analyses revealed that, within the MCI but not CU group, there were CBF*VIQ interactions on fluency in all a priori regions examined, where there were stronger, positive associations between CBF and fluency at higher VIQ. Conclusion: In MCI, higher CR plays a role in strengthening CBF-fluency associations.
Collapse
Affiliation(s)
- Einat K Brenner
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Kelsey R Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Alexandra J Weigand
- UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA
| | - Lauren Edwards
- UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA
| | - Emily C Edmonds
- Banner Alzheimer's Institute, Tucson, AZ, USA; Departments of Neurology and Psychology, University of Arizona, Tucson, AZ, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
10
|
Rimmele DL, Petersen EL, Schlemm E, Kessner SS, Petersen M, Mayer C, Cheng B, Zeller T, Waldeyer C, Behrendt CA, Gerloff C, Thomalla G. Association of Carotid Plaque and Flow Velocity With White Matter Integrity in a Middle-aged to Elderly Population. Neurology 2022; 99:e2699-e2707. [PMID: 36123124 DOI: 10.1212/wnl.0000000000201297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES It is uncertain whether there is an association of carotid plaques (CPs) and flow velocities with peak width mean diffusivity (PSMD) and white matter hyperintensities (WMH) independent of shared risk factors. We aimed to study this association controlling for biomarkers of inflammation and cardiac dysfunction and typical cardiovascular risk factors and spatial distribution. METHODS We included participants from the population-based Hamburg City Health Study, recruiting citizens between 45 and 74 years of age. Medical history was obtained from structured interviews and extended laboratory tests, physical examinations, MRI of the head, echocardiography, and abdominal and carotid ultrasound were performed. We performed multivariable regression analysis with PSMD and periventricular, deep, and total volume of WMH (pWMH, dWMH, tWMH) as dependent variables. PSMD was calculated as the difference between the 95th and 5th percentiles of MD values on the white skeleton in standard space. Volumes of WMH were determined by the application of a manually trained k-nearest neighbor segmentation algorithm. WMH measured within a distance of 1 cm from the surface of the lateral ventricles were defined as pWMH and above 1 cm as dWMH. RESULTS Two thousand six hundred twenty-three participants were included. The median age was 65 years, and 56% were women. Their median tWMH was 946 mm3(IQR:419, 2,164), PSMD 2.24 mm2/s × 10-4 (IQR: 2.04, 2.47), peak systolic velocity (PSV) of internal carotid arteries 0.70m/second (IQR:0.60, 0.81), and 35% had CPs. Adjusted for age, sex, high-sensitive CRP, NT-proBNP, and commonly measured cardiovascular risk and systemic hemodynamic factors, both CPs (B = 0.15; CI: 0.04, 0.26; p = 0.006) and low PSV (B = -0.49; CI: -0.87, -0.11; p = 0.012) were significantly associated with a higher tWMH and PSMD. Low PSV (B = -0.48; CI: -0.87, -0.1; p = 0.013) was associated with pWMH and the presence of CP with pWMH (B = 0.15; CI: 0.04, 0.26; p = 0.008) and dWMH (B = 0.42; CI: 0.11, 0.74; p < 0.009). DISCUSSION Low PSV and CP are associated with WMH and PSMD independent of cardiovascular risk factors and biomarkers of inflammation and cardiac dysfunction. This points toward pathophysiologic pathways underlying both large and small vessel disease beyond the common cardiovascular risk profile. TRIAL REGISTRATION INFORMATION The trial was submitted at clinicaltrials.gov, under NCT03934957 on January 4, 2019. The first participant was enrolled in February 2016.
Collapse
Affiliation(s)
- David Leander Rimmele
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany.
| | - Elina Larissa Petersen
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Eckhard Schlemm
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Simon S Kessner
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Marvin Petersen
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Carola Mayer
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Bastian Cheng
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Tanja Zeller
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Christoph Waldeyer
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Christian-Alexander Behrendt
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Christian Gerloff
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| | - Götz Thomalla
- From the Department of Neurology (D.L.R., E.S., S.S.K., M.P., C.M., B.C., C.G., G.T.) and Epidemiological Study Center (E.L.P.), University Medical Center Hamburg-Eppendorf, Hamburg; Departments of Cardiology (T.Z., C.W.) and Vascular Medicine (C.-A.B.), University Heart and Vascular Center UKE Hamburg; and German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Kiel/Lübeck (T.Z., C.W.), Germany
| |
Collapse
|
11
|
Weigand AJ, Hamlin AM, Breton J, Clark AL. Cerebral blood flow, tau imaging, and memory associations in cognitively unimpaired older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100153. [PMID: 36353072 PMCID: PMC9637859 DOI: 10.1016/j.cccb.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Objective Cerebral blood flow (CBF) has been independently linked to cognitive impairment and traditional Alzheimer's disease (AD) pathology (e.g., amyloid-beta [Aβ], tau) in older adults. However, less is known about the possible interactive effects of CBF, Aβ, and tau on memory performance. The present study examined whether CBF moderates the effect of Aβ and tau on objective and subjective memory within cognitively unimpaired (CU) older adults. Methods Participants included 54 predominately white CU older adults from the Alzheimer's Disease Neuroimaging Initiative. Multiple linear regression models examined meta-temporal CBF associations with (1) meta-temporal tau PET adjusting for cortical Aβ PET and (2) and cortical Aβ PET adjusting for tau PET. The CBF and tau meta region was an average of 5 distinct temporal lobe regions. CBF interactions with Aβ or tau PET on memory performance were also examined. Covariates for all models included age, sex, education, pulse pressure, APOE-ε4 positivity, and imaging acquisition date differences. Results CBF was significantly negatively associated with tau PET (t = -2.16, p = .04) but not Aβ PET (t = 0.98, p = .33). Results revealed a CBF by tau PET interaction such that there was a stronger effect of tau PET on objective (t = 2.51, p = .02) and subjective (t = -2.67, p = .01) memory outcomes among individuals with lower levels of CBF. Conclusions Cerebrovascular and tau pathologies may interact to influence cognitive performance. This study highlights the need for future vascular risk interventions, which could offer a scalable and cost-effective method for AD prevention.
Collapse
Affiliation(s)
- Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, United States
| | - Abbey M. Hamlin
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, 108 East Dean Keeton, SEA 3.234, Austin, TX 78712, United States
| | - Jordana Breton
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, 108 East Dean Keeton, SEA 3.234, Austin, TX 78712, United States
| | - Alexandra L. Clark
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, 108 East Dean Keeton, SEA 3.234, Austin, TX 78712, United States
| |
Collapse
|
12
|
Sun M, Wang YL, Li R, Jiang J, Zhang Y, Li W, Zhang Y, Jia Z, Chappell M, Xu J. Potential Diagnostic Applications of Multi-Delay Arterial Spin Labeling in Early Alzheimer’s Disease: The Chinese Imaging, Biomarkers, and Lifestyle Study. Front Neurosci 2022; 16:934471. [PMID: 35937865 PMCID: PMC9353523 DOI: 10.3389/fnins.2022.934471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background Cerebral blood flow (CBF) alterations are involved in the onset and progression of Alzheimer’s disease (AD) and can be a potential biomarker. However, CBF measured by single-delay arterial spin labeling (ASL) for discrimination of mild cognitive impairment (MCI, an early stage of AD) was lack of accuracy. Multi-delay ASL can not only provide CBF quantification but also provide arterial transit time (ATT). Unfortunately, the technique was scarcely applied to the diagnosis of AD. Here, we detected the utility of ASL with 1-delay and 7-delay in ten regions of interest (ROIs) to identify MCI and AD. Materials and Methods Pseudocontinuous ASL (pCASL) MRI was acquired on a 3T GE scanner in adults from the Chinese Imaging, Biomarkers, and Lifestyle (CIBL) Study of AD cohort, including 26 normal cognition (NC), 37 MCI, and 39 AD. Receiver operating characteristic (ROC) analyses with 1-delay and 7-delay ASL were performed for the identification of MCI and AD. The DeLong test was used to compare ROC curves. Results For CBF of 1-delay or 7-delay the AUCs showed moderate-high performance for the AD/NC and AD/MCI comparisons (AUC = 0.83∼0.96) (p < 0.001). CBF of 1-delay performed poorly in MCI/NC comparison (AUC = 0.69) (p < 0.001), but CBF of 7-delay fared well with an AUC of 0.79 (p < 0.001). The combination of CBF and ATT of 7-delay showed higher performance for AD/NC, AD/MCI, and MCI/NC comparisons with AUCs of 0.96, 0.89, and 0.89, respectively (p < 0.001). Furthermore, combination of CBF, ATT, sex, age, APOE ε4, and education improved further the accuracy (p < 0.001). In subgroups analyses, there were no significant differences in CBF of 7-delay ASL for identification of AD or MCI between age subgroups (p > 0.05). Conclusion The combination of CBF and ATT with 7-delay ASL showed higher performance for identification of MCI than CBF of 1-delay, when adding to sex, age, APOE ε4 carrier status, and education years, the diagnostic performance was further increased, presenting a potential imaging biomarker in early AD.
Collapse
Affiliation(s)
- Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Li Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runzhi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanling Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Michael Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jun Xu,
| |
Collapse
|
13
|
Holmqvist SL, Thomas KR, Brenner EK, Edmonds EC, Calcetas A, Edwards L, Bordyug M, Bangen KJ. Longitudinal Intraindividual Cognitive Variability Is Associated With Reduction in Regional Cerebral Blood Flow Among Alzheimer's Disease Biomarker-Positive Older Adults. Front Aging Neurosci 2022; 14:859873. [PMID: 35875798 PMCID: PMC9300445 DOI: 10.3389/fnagi.2022.859873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/06/2022] [Indexed: 02/03/2023] Open
Abstract
Intraindividual variability (IIV) across neuropsychological measures within a single testing session is a promising marker predictive of cognitive decline and development of Alzheimer's disease (AD). We have previously shown that greater IIV is cross-sectionally associated with reduced cerebral blood flow (CBF), but not with cortical thickness or brain volume, in older adults without dementia who were amyloid beta (Aβ) positive. However, there is little known about the association between change in IIV and CBF over time. Therefore, we examined 12-month longitudinal change in IIV and interactions of IIV and AD biomarker status on changes in regional CBF. Fifty-three non-demented Alzheimer's Disease Neuroimaging Initiative (ADNI) participants underwent lumbar puncture to obtain cerebrospinal fluid (CSF) at baseline and neuropsychological testing and magnetic resonance imaging (MRI) exams at baseline and 12-month follow-up evaluation. IIV was calculated as the intraindividual standard deviation across 6 demographically-corrected neuropsychological measures. Pulsed arterial spin labeling (ASL) MRI was acquired to quantify CBF and FreeSurfer-derived a priori CBF regions of interest (ROIs) were examined. AD biomarker positivity was determined using a published CSF p-tau/Aβ ratio cut-score. Change scores were calculated for IIV, CBF, and mean neuropsychological performance from baseline to 12 months. Hierarchical linear regression models showed that after adjusting for age and gender, there was a significant interaction between IIV change and biomarker-positivity (p-tau/Aβ+) for change in entorhinal and hippocampal CBF but not for the other ROIs. Specifically, increases in IIV were associated with reductions in entorhinal and hippocampal CBF among individuals who were biomarker-positive (n = 21). In contrast, there were no significant associations between change in IIV and CBF among those who were biomarker-negative (n = 32). Findings remained similar when analyses were performed adjusting for change in mean level of neuropsychological performance. Changes in IIV may be sensitive to changes in regional hypoperfusion in AD-vulnerable regions among AD biomarker-positive individuals, above and beyond demographics and mean neuropsychological performance. These findings provide further evidence supporting IIV as a potential marker of cerebrovascular brain changes in individuals at risk for dementia.
Collapse
Affiliation(s)
- Sophia L. Holmqvist
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Emily C. Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Amanda Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Katherine J. Bangen,
| |
Collapse
|
14
|
Li TR, Yao YX, Jiang XY, Dong QY, Yu XF, Wang T, Cai YN, Han Y. β-Amyloid in blood neuronal-derived extracellular vesicles is elevated in cognitively normal adults at risk of Alzheimer's disease and predicts cerebral amyloidosis. Alzheimers Res Ther 2022; 14:66. [PMID: 35550625 PMCID: PMC9097146 DOI: 10.1186/s13195-022-01010-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
Abstract
Background Blood biomarkers that can be used for preclinical Alzheimer’s disease (AD) diagnosis would enable trial enrollment at a time when the disease is potentially reversible. Here, we investigated plasma neuronal-derived extracellular vesicle (nEV) cargo in patients along the Alzheimer’s continuum, focusing on cognitively normal controls (NCs) with high brain β-amyloid (Aβ) loads (Aβ+). Methods The study was based on the Sino Longitudinal Study on Cognitive Decline project. We enrolled 246 participants, including 156 NCs, 45 amnestic mild cognitive impairment (aMCI) patients, and 45 AD dementia (ADD) patients. Brain Aβ loads were determined using positron emission tomography. NCs were classified into 84 Aβ− NCs and 72 Aβ+ NCs. Baseline plasma nEVs were isolated by immunoprecipitation with an anti-CD171 antibody. After verification, their cargos, including Aβ, tau phosphorylated at threonine 181, and neurofilament light, were quantified using a single-molecule array. Concentrations of these cargos were compared among the groups, and their receiver operating characteristic (ROC) curves were constructed. A subset of participants underwent follow-up cognitive assessment and magnetic resonance imaging. The relationships of nEV cargo levels with amyloid deposition, longitudinal changes in cognition, and brain regional volume were explored using correlation analysis. Additionally, 458 subjects in the project had previously undergone plasma Aβ quantification. Results Only nEV Aβ was included in the subsequent analysis. We focused on Aβ42 in the current study. After normalization of nEVs, the levels of Aβ42 were found to increase gradually across the cognitive continuum, with the lowest in the Aβ− NC group, an increase in the Aβ+ NC group, a further increase in the aMCI group, and the highest in the ADD group, contributing to their diagnoses (Aβ− NCs vs. Aβ+ NCs, area under the ROC curve values of 0.663; vs. aMCI, 0.857; vs. ADD, 0.957). Furthermore, nEV Aβ42 was significantly correlated with amyloid deposition, as well as longitudinal changes in cognition and entorhinal volume. There were no differences in plasma Aβ levels among NCs, aMCI, and ADD individuals. Conclusions Our findings suggest the potential use of plasma nEV Aβ42 levels in diagnosing AD-induced cognitive impairment and Aβ+ NCs. This biomarker reflects cortical amyloid deposition and predicts cognitive decline and entorhinal atrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01010-x.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yun-Xia Yao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xue-Yan Jiang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Qiu-Yue Dong
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian-Feng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ting Wang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yan-Ning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
15
|
Sible IJ, Yew B, Dutt S, Li Y, Blanken AE, Jang JY, Ho JK, Marshall AJ, Kapoor A, Gaubert A, Bangen KJ, Sturm VE, Shao X, Wang DJ, Nation DA. Selective vulnerability of medial temporal regions to short-term blood pressure variability and cerebral hypoperfusion in older adults. NEUROIMAGE. REPORTS 2022; 2:100080. [PMID: 35784272 PMCID: PMC9249026 DOI: 10.1016/j.ynirp.2022.100080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood pressure variability is an emerging risk factor for stroke, cognitive impairment, and dementia, possibly through links with cerebral hypoperfusion. Recent evidence suggests visit-to-visit (e.g., over months, years) blood pressure variability is related to cerebral perfusion decline in brain regions vulnerable to Alzheimer's disease. However, less is known about relationships between short-term (e.g., < 24 hours) blood pressure variability and regional cerebral perfusion, and whether these relationships may differ by age. We investigated short-term blood pressure variability and concurrent regional cerebral microvascular perfusion in a sample of community-dwelling older adults without history of dementia or stroke and healthy younger adults. Blood pressure was collected continuously during perfusion MRI. Cerebral blood flow was determined for several brain regions implicated in cerebrovascular dysfunction in Alzheimer's disease. Elevated systolic blood pressure variability was related to lower levels of concurrent cerebral perfusion in medial temporal regions: hippocampus (β = -.60 [95% CI -.90, -.30]; p < .001), parahippocampal gyrus (β = -.57 [95% CI -.89, -.25]; p = .001), entorhinal cortex (β = -.42 [95% CI -.73, -.12]; p = .009), and perirhinal cortex (β = -.37 [95% CI -.72, -.03]; p = .04), and not in other regions, and in older adults only. Findings suggest a possible age-related selective vulnerability of the medial temporal lobes to hypoperfusion in the context of short-term blood pressure fluctuations, independent of average blood pressure, white matter hyperintensities, and gray matter volume, which may underpin the increased risk for dementia associated with elevated BPV.
Collapse
Affiliation(s)
- Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA,Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Katherine J. Bangen
- Research Service, Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA,Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Virginia E. Sturm
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Xingfeng Shao
- Laboratory of Functional MRI Technology, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Danny J. Wang
- Laboratory of Functional MRI Technology, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA,Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA,Corresponding Author: Daniel A. Nation, Ph.D., Associate Professor, University of California Irvine, Department of Psychological Science, 4201 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7085, Phone: (949) 824-9339,
| |
Collapse
|
16
|
Tu MC, Chung HW, Hsu YH, Yang JJ, Wu WC. Stage-Dependent Cerebral Blood Flow and Leukoaraiosis Couplings in Subcortical Ischemic Vascular Disease and Alzheimer's Disease. J Alzheimers Dis 2022; 86:729-739. [PMID: 35124651 PMCID: PMC9028753 DOI: 10.3233/jad-215405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Alzheimer’s disease (AD) and subcortical ischemic vascular disease (SIVD) have both been associated with white matter hyperintensities (WMHs) and altered cerebral blood flow (CBF) although the etiology of AD is still unclear. Objective: To test the hypothesis that CBF and WMHs have differential effects on cognition and that the relationship between CBF and WMHs changes with the subtypes and stages of dementia. Methods: Forty-two patients with SIVD, 50 patients with clinically-diagnosed AD, and 30 cognitively-normal subjects were included. Based on the Clinical Dementia Rating (CDR), the patients were dichotomized into early-stage (CDR = 0.5) and late-stage (CDR = 1 or 2) groups. CBF and WMH metrics were derived from magnetic resonance imaging and correlated with cognition. Results: Hierarchical linear regression revealed that CBF metrics had distinct contribution to global cognition, memory, and attention, whereas WMH metrics had distinct contribution to executive function (all p < 0.05). In SIVD, the WMHs in frontotemporal areas correlated with the CBF in bilateral thalami at the early stage; the correlation then became between the WMHs in basal ganglia and the CBF in frontotemporal areas at the late stage. A similar corticosubcortical coupling was observed in AD but involved fewer areas. Conclusion: A stage-dependent coupling between CBF and WMHs was identified in AD and SIVD, where the extent of cortical WMHs correlated with subcortical CBF for CDR = 0.5, whereas the extent of subcortical WMHs correlated with cortical CBF for CDR = 1–2.
Collapse
Affiliation(s)
- Min-Chien Tu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Taichung Tzu Chi Hospital, Taichung, Taiwan.,Department of Neurology, Tzu Chi University, Hualien, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan.,Center for Innovative Research on Aging Society, National Chung Cheng University, Chiayi, Taiwan
| | - Jir-Jei Yang
- Department of Radiology, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Wen-Chau Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| |
Collapse
|