1
|
Wang T, Xue L, Li C, Zhao D, Huan J, Han X, Song J, Wang L, Zhang H, Niu Q, Pan B, Yin J, Lu X. The interaction between plasma polymetals and lifestyle on cognitive dysfunction in occupational aluminum exposed workers: A cross-sectional study in China. Neurotoxicology 2024; 105:313-322. [PMID: 39577775 DOI: 10.1016/j.neuro.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE To investigate the interaction between plasma polymetallic exposure and lifestyle factors on cognitive function abnormalities in occupational aluminum workers. The aim is to develop a new occupational health management model that integrates lifestyle behaviors with occupational activities to comprehensively protect the health of these workers. METHOD 476 Participants were recruited from an aluminum factory in Shanxi, China. Cognitive functioning was assessed using the Montreal Cognitive Assessment Scale (MoCA). Plasma polymetallic levels were measured using ICP-MS. Logistic regression analyzed the relationship between nine plasma metals, lifestyle factors, and cognitive abnormalities. A 3D model validated the interaction between metals and analyzed the combined effects of plasma metals and lifestyle on MoCA scores. The Chi-squared Automatic Interaction Detector (CHAID) decision tree was used to identify factors influencing cognitive dysfunction. RESULTS High blood aluminum concentration (>47.85 μg/L), high blood lithium concentration(>3.15 μg/L), as well as sleep time(≤7 h and > 8 h), smoking, alcohol consumption, and length of mobile phone use(≥2 h) were risk factors for abnormal cognitive functioning. In addition aluminum and lithium have a multiplicative interaction on cognitive function(OR=1.86,95 %CI:1.14,3.050). There was an interaction between high plasma levels of aluminum and lithium and smoking on cognitive function in workers, and an interaction between high plasma levels of aluminum and lithium and sleep duration ≤7 or >8 h on cognitive function in workers. CONCLUSION The levels of blood metal elements aluminum and lithium, as well as sleep time, smoking, drinking, and length of mobile phone use, are risk factors for cognitive dysfunction in occupational aluminum workers. There are the synergetic effect to increase the risk of cognitive dysfunction between blood aluminum concentration ≥50.59μg/L and blood lithium concentration ≥3.44μg/L, sleep duration ≤7h& >8 h, smoking, drinking, mobile phone use ≥2 h.
Collapse
Affiliation(s)
- Tianshu Wang
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Lingshan Xue
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China; Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Chenyang Li
- The Second Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China
| | - Dan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Jiaping Huan
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Xiao Han
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China
| | - Baolong Pan
- Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), China
| | - Jinzhu Yin
- Sinopharm Tongmei General Hospital, Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Datong, Shanxi 037003, China.
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention,Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Spence H, Mengoa-Fleming S, Sneddon AA, McNeil CJ, Waiter GD. Associations between sex, systemic iron and inflammatory status and subcortical brain iron. Eur J Neurosci 2024; 60:5069-5085. [PMID: 39113267 DOI: 10.1111/ejn.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Brain iron increases in several neurodegenerative diseases are associated with disease progression. However, the causes of increased brain iron remain unclear. This study investigates relationships between subcortical iron, systemic iron and inflammatory status. Brain magnetic resonance imaging (MRI) scans and blood plasma samples were collected from cognitively healthy females (n = 176, mean age = 61.4 ± 4.5 years, age range = 28-72 years) and males (n = 152, mean age = 62.0 ± 5.1 years, age range = 32-74 years). Regional brain iron was quantified using quantitative susceptibility mapping. To assess systemic iron, haematocrit, ferritin and soluble transferrin receptor were measured, and total body iron index was calculated. To assess systemic inflammation, C-reactive protein (CRP), neutrophil:lymphocyte ratio (NLR), macrophage colony-stimulating factor 1 (MCSF), interleukin 6 (IL6) and interleukin 1β (IL1β) were measured. We demonstrated that iron levels in the right hippocampus were higher in males compared with females, while iron in the right caudate was higher in females compared with males. There were no significant associations observed between subcortical iron levels and blood markers of iron and inflammatory status indicating that such blood measures are not markers of brain iron. These results suggest that brain iron may be regulated independently of blood iron and so directly targeting global iron change in the treatment of neurodegenerative disease may have differential impacts on blood and brain iron.
Collapse
Affiliation(s)
- Holly Spence
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stephanie Mengoa-Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Jakubowski H, Sikora M, Bretes E, Perła-Kaján J, Utyro O, Wojtasz I, Kaźmierski R, Frankowski M, Zioła-Frankowska A. Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke. Life (Basel) 2024; 14:634. [PMID: 38792655 PMCID: PMC11122299 DOI: 10.3390/life14050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Objectives-Metallic elements and fibrin clot properties have been linked to stroke. We examined metallic and nonmetallic elements, fibrin clot lysis time (CLT), and maximum absorbance (Absmax) in relation to ischemic stroke. Design-A case-control study of ischemic stroke patients vs. healthy individuals. Subjects and Methods-Plasma and serum were collected from 260 ischemic stroke patients (45.0% women; age, 68 ± 12 years) and 291 healthy controls (59.7% women; age, 50 ± 17 years). Fibrin CLT and Absmax were measured using a validated turbidimetric assay. Serum elements were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). Data were analyzed by bivariate correlations and multiple or logistic regression. Results-In female stroke patients, copper, lithium, and aluminum were significantly lower compared with controls; in male stroke patients, potassium was lower, and beryllium was elevated. In female and male stroke patients, iron, zinc, nickel, calcium, magnesium, sodium, and silicon were significantly lower, while strontium was elevated. Positive correlations between fibrin clot properties and metals, observed in healthy controls, were lost in ischemic stroke patients. In multivariate regression analysis, fibrin CLT and/or Absmax was associated with zinc, calcium, potassium, beryllium, and silicon in stroke patients and with sodium, potassium, beryllium, and aluminum in controls. In logistic regression analysis, stroke was independently associated with lithium, nickel, beryllium, strontium, boron, and silicon and with sodium, potassium, calcium, and aluminum but not with fibrin CLT/Absmax. Conclusions-Various elements were associated with fibrin clot properties and the risk of ischemic stroke. Lithium, sodium, calcium, and aluminum abrogated the association of fibrin clot properties with ischemic stroke.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Marta Sikora
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, 61-704 Poznań, Poland;
| | - Ewa Bretes
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Olga Utyro
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | | | - Radosław Kaźmierski
- Department of Neurology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
- Department of Neurology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.F.); (A.Z.-F.)
| | | |
Collapse
|
4
|
An D, Xu Y. Environmental risk factors provoke new thinking for prevention and treatment of dementia with Lewy bodies. Heliyon 2024; 10:e30175. [PMID: 38707435 PMCID: PMC11068646 DOI: 10.1016/j.heliyon.2024.e30175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
In recent years, environmental factors have received attention in the pathogenesis of neurodegenerative diseases. Other than genetic factors, the identification of environmental factors and modifiable risk factors may create opportunities to delay the onset or slow the progression of Lewy body disease. Researchers have made significant progress in understanding environmental and modifiable risk factors over the past 30 years. To date, despite the increasing number of articles assessing risk factors for Lewy body disease, few reviews have focused on their role in its onset. In this review, we reviewed the literature investigating the relationship between Lewy body disease and several environmental and other modifiable factors. We found that some air pollutants, exposure to some metals, and infection with some microorganisms may increase the risk of Lewy body disease. Coffee intake and the Mediterranean diet are protective factors. However, it is puzzling that low educational levels and smoking may have some protective effects. In addition, we proposed specific protocols for subsequent research directions on risk factors for neurodegenerative diseases and improved methods. By conducting additional case-control studies, we could explore the role of these factors in the etiopathogenesis of Lewy body disease, establishing a foundation for strategies aimed at preventing and reducing the onset and burden of the disease.
Collapse
Affiliation(s)
- Dinghao An
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neurology Clinical Medical Center, Nanjing, China
| |
Collapse
|
5
|
Wang X, Wang B, Yang F, Shang K, Chen S, Zhang Y. Associations between plasma metal elements and risk of cognitive impairment among Chinese older adults. Front Aging Neurosci 2024; 16:1353286. [PMID: 38384934 PMCID: PMC10879289 DOI: 10.3389/fnagi.2024.1353286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background The relationship between plasma metal elements and cognitive function is unclear, especially in extremely older individuals. This present study aimed to explore the association between plasma metal concentrations and the risk of cognitive impairment (CI) in Chinese extremely older adults. Methods Individuals aged ≥90 years with plasm metal concentration data from the fifth wave of the 2008 Chinese Longitudinal Healthy Longevity Survey were included. Plasma selenium (Se), manganese (Mn), magnesium (Mg), calcium (Ca), iron (Fe), copper (Cu), and zinc (Zn) concentrations were measured using inductively coupled plasma optical emission spectroscopy. Cognitive function was assessed by the Chinese version of the mini-mental state examination. Results The study enrolled 408 participants. Participants with CI had significantly lower plasma Se, Mn, and Fe levels and higher Ca levels than those with normal cognitive function (p < 0.05). Plasma Se, Mn, Ca, and Fe concentrations were significantly associated with CI risk in both single- and multiple-element logistic regression models. Additionally, the multiple-element model results showed that the adjusted odds ratios for CI were 0.042 (95% confidence interval 0.016-0.109), 0.106 (0.044-0.255), 7.629 (3.211-18.124) and 0.092 (0.036-0.233) for the highest quartiles compared to the lowest quartiles of Se, Mn, Ca, and Fe, respectively. Moreover, subgroup analyses by age, sex, and body mass index suggested a consistent significant correlation (p < 0.05). Conclusion Therefore, decreased plasma Se, Mn, and Fe and increased plasma Ca levels were associated with CI risk in Chinese older adults. These findings are of great significance for the development of programs to delay cognitive decline in the elderly.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Fuwen Yang
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaijian Shang
- Department of Emergency Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shaowei Chen
- Department of Hematology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Zhang
- School of Public Health, Department of Epidemiology, Shanxi Medical University, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry Education, Taiyuan, China
| |
Collapse
|
6
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
7
|
Mateo D, Marquès M, Torrente M. Metals linked with the most prevalent primary neurodegenerative dementias in the elderly: A narrative review. ENVIRONMENTAL RESEARCH 2023; 236:116722. [PMID: 37487923 DOI: 10.1016/j.envres.2023.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The ageing population has been steadily increasing worldwide, leading to a higher risk of cognitive decline and dementia. Environmental toxicants, particularly metals, have been identified as modifiable risk factors for cognitive impairment. Continuous exposure to metals occurs mainly through dietary sources, with older adults being particularly vulnerable. However, imbalances in the gut microbiota, known as dysbiosis, have also been associated with dementia. A literature review was conducted to explore the potential role of metals in the development of cognitive decline and the most prevalent primary neurodegenerative dementias, as well as their interaction with the gut microbiota. High levels of iron (Fe) and copper (Cu) are associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD), while low selenium (Se) levels are linked to poor cognitive status. Parkinson's disease dementia (PDD) is associated with elevated levels of iron (Fe), manganese (Mn), and zinc (Zn), but the role of copper (Cu) remains unclear. The relationship between metals and Lewy body dementia (LBD) requires further investigation. High aluminium (Al) exposure is associated with frontotemporal dementia (FTD), and elevated selenium (Se) levels may be linked to its onset. Challenges in comparing studies arise from the heterogeneity of metal analysis matrices and analytical techniques, as well as the limitations of small study cohorts. More research is needed to understand the influence of metals on cognition through the gut microbiota (GMB) and its potential relevance in the development of these diseases.
Collapse
Affiliation(s)
- David Mateo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain
| | - Margarita Torrente
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain; Department of Psychology, CRAMC (Research Center for Behaviour Assessment), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, Crta. de Valls s/n, 43007, Tarragona, Catalonia, Spain; Institute Lerin Neurocognitive, Alzheimer and other Neurocognitive Disorders Association, Av. D'Antoni Planas i Marca, 13, 43205, Reus, Catalonia, Spain.
| |
Collapse
|
8
|
Wang S, Xue Y, Zhang J, Meng H, Zhang J, Li X, Zhang Z, Li H, Pan B, Lu X, Zhang Q, Niu Q. Interaction between aluminum exposure and ApoEε4 gene on cognitive function of in-service workers. CHEMOSPHERE 2023; 323:138282. [PMID: 36868418 DOI: 10.1016/j.chemosphere.2023.138282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The occurrence and development of cognitive impairment, the early stage of AD, may be affected both by factors of environmental (aluminum exposure) and genetic (ApoEε4 gene). But whether there is an interaction between the two factors on cognitive function is still unknown. To explore the interaction between the two factors on cognitive function of in-service workers. A total of 1121 in-service workers in a large aluminum factory were investigated in Shanxi Province. Cognitive function was assessed by the Mini-mental State Examination (MMSE), the clock-drawing test (CDT), the Digit Span Test (DST, including DSFT and DSBT), the fuld object memory evaluation (FOM), and the verbal fluency task (VFT). The plasma-Al (p-Al) concentrations were measured by inductively coupled plasma-mass spectrometry (ICP-MS) as an internal exposure indicator, and the participants were divided into four Al exposure groups according to the quartile of p-Al concentrations, namely Q1, Q2, Q3, and Q4. ApoE genotype was determined by Ligase Detection Reaction (LDR). The multiplicative model was fitted using non-conditional logistic regression and additive model was fitted using crossover analysis to analyze the interaction between p-Al concentrations and the ApoEε4 gene. Finally, a dose-response relationship between p-Al concentrations and cognitive impairment was observed, with the p-Al concentrations increased, cognitive function performance gradually becomes worse (Ptrend<0.05), and the risk of cognitive impairment gradually increases (Ptrend<0.05), mainly in executive/visuospatial impairment, auditory memory impairment (particularly the working memory impairment). And ApoEε4 gene may be a risk factor for cognitive impairment, while no association between the ApoEε2 gene and cognitive impairment is observed. Additionally, an additive but no multiplicative interaction between p-Al concentrations and ApoEε4 gene is observed, and when the two factors work together, the risk of cognitive impairment further increased, of which 44.2% can be attributed to the interaction effect.
Collapse
Affiliation(s)
- Shanshan Wang
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yingjun Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jintao Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Huaxing Meng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jingsi Zhang
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaoyan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhuoran Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Occupational Health, School of Public Health, Jining Medical University, Jining, Shandong, 272000, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi, 030001, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazards and Health Damage of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazards and Health Damage of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazards and Health Damage of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
9
|
Jakubowski H. Proteomic Exploration of Paraoxonase 1 Function in Health and Disease. Int J Mol Sci 2023; 24:7764. [PMID: 37175471 PMCID: PMC10178420 DOI: 10.3390/ijms24097764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
High-density lipoprotein (HDL) exhibits cardio- and neuro-protective properties, which are thought to be promoted by paraoxonase 1 (PON1), a hydrolytic enzyme associated with an HDL subfraction also enriched with an anticoagulant protein (PROS1) and amyloid beta-transport protein clusterin (CLU, APOJ). Reduced levels of PON1 activity, characterized biochemically by elevated levels of homocysteine (Hcy)-thiolactone, oxidized lipids, and proteins modified by these metabolites in humans and mice, are associated with pathological abnormalities affecting the cardiovascular system (atherothrombosis) and the central nervous system (cognitive impairment, Alzheimer's disease). The molecular bases of these abnormalities have been largely unknown. Proteomic and metabolic studies over the past decade have significantly contributed to our understanding of PON1 function and the mechanisms by which PON1 deficiency can lead to disease. Recent studies discussed in this review highlight the involvement of dysregulated proteostasis in the pro-oxidative, pro-atherothrombotic, and pro-amyloidogenic phenotypes associated with low PON1 activity.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Cheng BJ, Sheng J, Wang HL, Wang Y, Cao HJ, Li XD, Zhou TT, Meng XL, Nie HH, Wang SF, Zhang DM, Chen GM, Tao FB, Yang LS. Selenium attenuates the association of co-exposure to arsenic, cadmium, and lead with cognitive function among Chinese community-dwelling older adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36377-36391. [PMID: 36547832 DOI: 10.1007/s11356-022-24783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The effects of interactions between the toxic and essential metal mixtures on cognitive function are poorly understood. This study aims to identify the joint association of arsenic (As), cadmium (Cd), and lead (Pb) with cognitive function in older adults and the moderating role of selenium (Se), zinc (Zn), and copper (Cu) in this association. This study included 1000 community-dwelling older adults. Cognitive function was assessed by the Mini-Mental State Examination (MMSE). Blood concentrations of As, Cd, Pb, Se, Zn, and Cu were measured using inductively coupled plasma mass spectrometry. Linear regression and Bayesian kernel machine regression (BKMR) models were applied to assess the individual and joint associations of As, Cd, and Pb with cognitive function and to examine whether Se, Zn, and Cu (individually and as a mixture) modified these associations. In the adjusted single-metal models, both Cd (β = - 0.37, 95% CI: - 0.73 to - 0.01) and Pb (β = - 0.44, 95% CI: - 0.86 to - 0.02) were associated with MMSE scores, while Se (β = 0.71, 95% CI: 0.30 to 1.13) exhibited a positive relationship with MMSE scores. Univariate exposure-response functions from BKMR models showed similar results. Moreover, the toxic metal mixture (As, Cd, and Pb) exhibited a significant negative association with MMSE scores in a dose-response pattern, with Pb being the greatest contributor within the mixture. The negative association of Pb alone or the toxic metal mixture with MMSE scores became weaker at higher concentrations of Se within its normal range, especially when Se levels were greater than the median (89.18 μg/L). Our findings support that Se can attenuate the negative associations of exposure to single Pb or the As, Cd, and Pb mixtures with cognitive function. Future prospective studies are needed to replicate our findings.
Collapse
Affiliation(s)
- Bei-Jing Cheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Hong-Li Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuan Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hong-Juan Cao
- Lu'an Center for Disease Control and Prevention, Lu'an, 237008, Anhui, China
| | - Xiu-De Li
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Lu'an Center for Disease Control and Prevention, Lu'an, 237008, Anhui, China
| | - Ting-Ting Zhou
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Hefei Center for Disease Control and Prevention, Hefei, 230051, Anhui, China
| | - Xiang-Long Meng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huan-Huan Nie
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Su-Fang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dong-Mei Zhang
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Gui-Mei Chen
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Lin-Sheng Yang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Zhao Y, Dong X, Chen B, Zhang Y, Meng S, Guo F, Guo X, Zhu J, Wang H, Cui H, Li S. Blood levels of circulating methionine components in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14:934070. [PMID: 35936764 PMCID: PMC9354989 DOI: 10.3389/fnagi.2022.934070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCirculating methionine components have been reported to be associated with Alzheimer’s disease (AD) and mild cognitive impairment (MCI), although outcomes are not always consistent.Materials and methodsDatabase searching was conducted using PubMed, Embase, Cochrane Library, and Web of Science from inception to 26 December 2021. In this study, two reviewers independently identified eligible articles and extracted the data. We used Joanna Briggs Institute (JBI) Critical Appraisal tools to assess the overall quality of the included studies. STATA software was employed to perform meta-analysis evaluating the standardized mean difference (SMD) with its 95% confidence intervals (CIs) using random-effects models. Evidence quality was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria.ResultsTotally, 30 observational studies were eligible for inclusion. Compared with cognitively normal controls, patients with AD had increased homocysteine (Hcy) levels in the blood [standardized mean difference (SMD) = 0.59, 95% confidence interval [CI]: 0.36–0.82, P = 0.000], plasma (SMD = 0.39, 95% CI: 0.23–0.55, P = 0.000), and serum (SMD = 1.56, 95% CI: 0.59–2.95, P = 0.002). Patients with MCI were not significantly different from controls (SMD = 0.26, 95% CI: –0.07–0.58, P = 0.127). Patients with AD or MCI did not significantly differ from controls of blood vitamin B12 levels, AD (SMD = –0.05, 95% CI: –0.19–0.08, P = 0.440), or MCI (SMD = 0.01, 95% CI: –0.16–0.17, P = 0.94). Some cohort studies have suggested that higher Hcy, methionine, and S-adenosylmethionine levels may accelerate cognitive decline in patients with MCI or AD, and vitamin B12 deficiency is a risk factor for the disease; however, the results of other studies were inconsistent. According to the GRADE system, all these outcomes scored very low to low quality, and no high-quality evidence was found.ConclusionOnly Hcy levels in the plasma and serum were found to be inversely related to the risk of AD. However, due to the low quality of supporting these results, high-quality studies are needed to verify these findings.Systematic Review Registrationhttp://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022308961.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xinyi Dong
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Bingyu Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Sijia Meng
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Guo
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Jialei Zhu
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Haoyue Wang
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- Huixian Cui,
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Sha Li,
| |
Collapse
|
12
|
Qian T, Zhao L, Pan X, Sang S, Xu Y, Wang C, Zhong C, Fei G, Cheng X. Association Between Blood Biochemical Factors Contributing to Cognitive Decline and B Vitamins in Patients With Alzheimer's Disease. Front Nutr 2022; 9:823573. [PMID: 35265656 PMCID: PMC8898888 DOI: 10.3389/fnut.2022.823573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Background Malnutrition, metabolism stress, inflammation, peripheral organs dysfunction, and B vitamins deficiency significantly contribute to the progression and mortality of Alzheimer's disease (AD). However, it is unclear which blood biochemical indicators are most closely related to cognitive decline and B vitamins deficiency (thiamine, folate, vitamin B12) in patients with AD. Methods This was a cross-sectional study of 206 AD patients recruited from six hospitals in China. Thiamine diphosphate (TDP), the bioactive form of thiamine, was measured by high-performance liquid chromatography fluoroscopy (HPLC) at a single center. Levels of biochemical indicators (except TDP) were measured by regular and standard laboratory tests in each hospital. Pearson's rank correlation analysis was used to assess relationships between B vitamins and biochemical indicators. T-test was used to compare the difference between ApoE ε4 and non-ApoE ε4 groups. Differences were considered statistically significant as P < 0.05. Results Among the biochemical results, in AD population, malnutrition indicators (erythrocyte, hemoglobin, serum albumin, and total protein) were most significantly associated with cognitive function, as was free triiodothyronine (FT3) levels which had been observed in previous study. Malnutrition and FT3 levels depend on age but not apolipoprotein E (ApoE) genotype. Meanwhile, Among the B vitamins, TDP was the most significantly associated with malnutrition indicators and FT3. Conclusion Our results indicated that TDP reduction could be a modifiable risk factor for malnutrition and FT3 that contributed to cognitive decline in AD patients. Correcting thiamine metabolism could serve as an optional therapy target for AD treatment.
Collapse
Affiliation(s)
- Ting Qian
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yangqi Xu
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Changpeng Wang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|