1
|
Weiss A, Gilbert JW, Rivera Flores IV, Belgrad J, Ferguson C, Dogan EO, Wightman N, Mocarski K, Echeverria D, Harkins AL, Summers A, Bramato B, McHugh N, Furgal R, Yamada N, Cooper D, Monopoli K, Godinho BMDC, Hassler MR, Yamada K, Greer P, Henninger N, Brown RH, Khvorova A. RNAi-mediated silencing of SOD1 profoundly extends survival and functional outcomes in ALS mice. Mol Ther 2025:S1525-0016(25)00380-6. [PMID: 40349108 DOI: 10.1016/j.ymthe.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/11/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition, with 20% of familial and 2%-3% of sporadic cases linked to mutations in the cytosolic superoxide dismutase (SOD1) gene. Mutant SOD1 protein is toxic to motor neurons, making SOD1 gene suppression a promising approach, supported by preclinical data and the 2023 Federal Drug Administration (FDA) approval of the GapmeR ASO targeting SOD1, tofersen. Despite the approval of an ASO and the optimism it brings to the field, the pharmacodynamics and pharmacokinetics of therapeutic SOD1 modulation can be improved. Here, we developed a chemically stabilized divalent siRNA scaffold (di-siRNA) that effectively suppresses SOD1 expression in vitro and in vivo. With optimized chemical modification, it achieves remarkable CNS tissue permeation and SOD1 silencing in vivo. Administered intraventricularly, di-siRNASOD1 extended survival in SOD1-G93A ALS mice, increasing survival beyond that previously seen in these mice by ASO modalities, slowed disease progression according to the standard ALS preclinical endpoints, and attenuated ALS neuropathology. These properties offer an improved therapeutic strategy for SOD1-mediated ALS and may extend to other dominantly inherited neurological disorders.
Collapse
Affiliation(s)
- Alexandra Weiss
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - James W Gilbert
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Jillian Belgrad
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Chantal Ferguson
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Elif O Dogan
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas Wightman
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kit Mocarski
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ashley L Harkins
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Genetic & Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ashley Summers
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Raymond Furgal
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nozomi Yamada
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kathryn Monopoli
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ken Yamada
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paul Greer
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nils Henninger
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Psychiatry, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Dogan EO, Simonini SR, Bouley J, Weiss A, Brown RH, Henninger N. Genetic Ablation of Sarm1 Mitigates Disease Acceleration after Traumatic Brain Injury in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Ann Neurol 2025; 97:963-975. [PMID: 39791335 PMCID: PMC12011539 DOI: 10.1002/ana.27174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined. METHODS We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1G93A mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology. We subjected wild-type (n = 23), Sarm1 knockout (KO; n = 17), SOD1G93A (n = 19), and SOD1G93AxSarm1KO (n = 26) mice of both sexes to rTBI or sham surgery at age 64 days (62-68 days). Body weight and ALS-deficit score were serially assessed up to 17 weeks after surgery and histopathology assessed in layer V of the primary motor cortex at the study end point. RESULTS In sham injured SOD1G93A mice, genetic ablation of Sarm1 did not attenuate axonal loss, improve neurological deficits, or survival. The rTBI accelerated onset of G93A-SOD1 ALS, as indicated by accentuated body weight loss, earlier onset of hindlimb tremor, and shortened survival. The rTBI also triggered TDP-43 mislocalization, enhanced axonal and neuronal loss, microgliosis, and astrocytosis. Loss of Sarm1 significantly diminished the impact of rTBI on disease progression and rescued rTBI-associated neuropathology. INTERPRETATION SARM1-mediated axonal death pathway promotes pathogenesis after TBI in SOD1G93A mice suggesting that anti-SARM1 therapeutics are a viable approach to preserve neurological function in injury-accelerated G93A-SOD1 ALS. ANN NEUROL 2025;97:963-975.
Collapse
Affiliation(s)
- Elif O. Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean R. Simonini
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Conjard-Duplany A, Osseni A, Lamboux A, Mouradian S, Picard F, Moncollin V, Angleraux C, Dorel-Dubois T, Puccio H, Leblanc P, Galy B, Balter V, Schaeffer L, Gangloff YG. Muscle mTOR controls iron homeostasis and ferritinophagy via NRF2, HIFs and AKT/PKB signaling pathways. Cell Mol Life Sci 2025; 82:178. [PMID: 40293459 PMCID: PMC12037468 DOI: 10.1007/s00018-025-05695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Balanced mTOR activity and iron levels are crucial for muscle integrity, with evidence suggesting mTOR regulates cellular iron homeostasis. In this study, we investigated iron metabolism in muscle-specific mTOR knockout mice (mTORmKO) and its relation to their myopathy. The mTORmKO mice exhibited distinct iron content patterns across muscle types and ages. Slow-twitch soleus muscles initially showed reduced iron levels in young mice, which increased with the dystrophy progression but remained within control ranges. In contrast, the less affected fast-twitch muscles maintained near-normal iron levels from a young age. Interestingly, both mTORmKO muscle types exhibited iron metabolism markers indicative of iron excess, including decreased transferrin receptor 1 (TFR1) and increased levels of ferritin (FTL) and ferroportin (FPN) proteins. Paradoxically, these changes were accompanied by downregulated Ftl and Fpn mRNA levels, indicating post-transcriptional regulation. This discordant regulation resulted from disruption of key iron metabolism pathways, including NRF2/NFE2L2, HIFs, and AKT/PKB signaling. Mechanistically, mTOR deficiency impaired transcriptional regulation of iron-related genes mediated by NRF2 and HIFs. Furthermore, it triggered ferritin accumulation through two NRF2 mechanisms: (1) derepression of ferritin translation via suppression of the FBXL5-IRP axis, and (2) autophagosomal sequestration driven by NCOA4-dependent ferritin targeting to autophagosomes, coupled with age-related impairments of autophagy linked to chronic AKT/PKB activation. Three-week spermidine supplementation in older mTORmKO mice was associated with normalized AKT/PKB-FOXO signaling, increased endolysosomal FTL and reduced total FTL levels in the dystrophic soleus muscle. These findings underscore mTOR's crucial role in skeletal muscle iron metabolism and suggest spermidine as a potential strategy to address impaired ferritinophagy due to autophagy blockade in dystrophic muscle.
Collapse
Affiliation(s)
- Agnès Conjard-Duplany
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France.
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Aline Lamboux
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, UMR 5276, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, Lyon, Cedex 07, 69364, France
| | - Sandrine Mouradian
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Flavien Picard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Vincent Moncollin
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Céline Angleraux
- Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, AniRA-PBES, SFR Biosciences, Lyon, 69007, France
| | - Tiphaine Dorel-Dubois
- Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, AniRA-PBES, SFR Biosciences, Lyon, 69007, France
| | - Hélène Puccio
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Pascal Leblanc
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
- IB-Cancer Research Foundation, Science Park 2, 66123, Saarbrücken, Germany
| | - Vincent Balter
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, UMR 5276, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, Lyon, Cedex 07, 69364, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Yann-Gaël Gangloff
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France.
| |
Collapse
|
4
|
Zelic M, Blazier A, Pontarelli F, LaMorte M, Huang J, Tasdemir-Yilmaz OE, Ren Y, Ryan SK, Shapiro C, Morel C, Krishnaswami P, Levit M, Sood D, Chen Y, Gans J, Tang X, Hsiao-Nakamoto J, Huang F, Zhang B, Berry JD, Bangari DS, Gaglia G, Ofengeim D, Hammond TR. Single-cell transcriptomic and functional studies identify glial state changes and a role for inflammatory RIPK1 signaling in ALS pathogenesis. Immunity 2025; 58:961-979.e8. [PMID: 40132594 DOI: 10.1016/j.immuni.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron loss. Microglia and astrocyte-driven neuroinflammation is prominent in ALS, but the cell state dynamics and pathways driving disease remain unclear. We performed single-nucleus RNA sequencing of ALS spinal cords and identified altered glial cell states, including increased expression of inflammatory and glial activation markers. Many of these signals converged on the inflammation and cell death regulator receptor-interacting protein kinase 1 (RIPK1) and the necroptotic cell death pathway. In superoxide dismutase 1 (SOD1)G93A mice, blocking RIPK1 kinase activity delayed symptom onset and motor impairment and modulated glial responses. We used human induced pluripotent stem cell (iPSC)-derived motor neuron, astrocyte, and microglia tri-cultures to identify potential biomarkers that are secreted upon RIPK1 activation in vitro and modulated by RIPK1 inhibition in the cerebrospinal fluid (CSF) of people with ALS. These data reveal ALS-enriched glial populations associated with inflammation and suggest a deleterious role for neuroinflammatory signaling in ALS pathogenesis.
Collapse
Affiliation(s)
- Matija Zelic
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA 02141, USA.
| | - Anna Blazier
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA 02141, USA
| | | | - Michael LaMorte
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA 02141, USA
| | - Jeremy Huang
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA 02141, USA
| | | | - Yi Ren
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA 02141, USA
| | - Sean K Ryan
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA 02141, USA
| | - Cynthia Shapiro
- Sanofi, Global Discovery Pathology and Multimodal Imaging, Cambridge, MA 02141, USA
| | - Caroline Morel
- Sanofi, Global Discovery Pathology and Multimodal Imaging, Cambridge, MA 02141, USA
| | | | - Mikhail Levit
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA 02141, USA
| | - Disha Sood
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA 02141, USA
| | - Yao Chen
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA 02141, USA
| | - Joseph Gans
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA 02141, USA
| | - Xinyan Tang
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | | | - Fen Huang
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Bailin Zhang
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA 02141, USA
| | - James D Berry
- Healey Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dinesh S Bangari
- Sanofi, Global Discovery Pathology and Multimodal Imaging, Cambridge, MA 02141, USA
| | - Giorgio Gaglia
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA 02141, USA
| | | | | |
Collapse
|
5
|
Koehn LM, Steele JR, Schittenhelm RB, Nicolazzo JA. Sex-Specific Markers of Neuroinflammation and Neurodegeneration in the Spinal Cord Proteome of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. J Proteome Res 2025; 24:1956-1970. [PMID: 40117341 DOI: 10.1021/acs.jproteome.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has no cure. The underlying mechanistic details of sex differences in the ALS spinal cord, the site of disease onset, are not understood to an extent that could guide novel drug development. To address this, the spinal cords of 120-day-old wild-type (WT) and SOD1G93A (familial mouse model of ALS with mutant superoxide dismutase 1) mice were subjected to untargeted, quantitative proteomics using tandem mass tag acquisition on high-resolution mass spectrometric instrumentation. Compared to WT, both male and female SOD1G93A spinal cords exhibited an upregulation of neuroinflammatory cascades of both peripheral and central origins, as well as a downregulation of proteins reflective of death and dysfunction of cells within the spinal cord. However, female and male SOD1G93A mouse spinal cords exhibited sex-specific differences in proteins compared to respective WT that related to immune response, as well as cellular structure, function, and homeostasis. The proteomic datasets presented provide entire cohort and sex-specific spinal cord drug targets and disease biomarkers in the SOD1G93A mouse model of ALS that may guide future drug development and sex selection in preclinical study designs utilizing the SOD1G93A model.
Collapse
Affiliation(s)
- Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Hong Z, Yi S, Deng M, Zhong Y, Zhao Y, Li L, Zhou H, Xiao Y, Hu X, Niu L. Transcranial Focused Ultrasound Modifies Disease Progression in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:191-201. [PMID: 40030850 DOI: 10.1109/tuffc.2024.3525143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressively worsening neurodegenerative condition with very few treatment options available. Ultrasound neuromodulation offers promising benefits for treating neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. However, the effects and underlying mechanisms of ultrasound neuromodulation on ALS remain unclear. A head-mounted ultrasound neuromodulation system was developed to noninvasively stimulate the motor cortex of symptomatic mice carrying the G93A human SOD1 mutation (SOD $1^{\text {G93A}}$ ) for four weeks. Motor performance was assessed through the rotarod locomotor test, grip strength test, and open field test. In addition, the effect of ultrasound stimulation on the elastic modulus of gastrocnemius muscle atrophy was measured using real-time shear wave elastography (SWE). Subsequently, the brain tissues of the mice were harvested. Gastrocnemius morphology was examined using hematoxylin-eosin and Gomori aldehyde-fuchsin (GAF) staining. The number of neurons and the phenotype of microglia in the motor cortex were observed by immunohistochemical analysis. Ultrasound therapy delayed disease onset by 10.7% and increased the lifespan by 6.7% in SOD $1^{\text {G93A}}$ mice by reduction of neuronal loss and enhancement of M2 microglia in the motor cortex. Furthermore, we found significant improvements in motor function for ultrasound-treated mice. More importantly, ultrasound stimulation ameliorated gastrocnemius muscle atrophy in the SOD $1^{\text {G93A}}$ mice. These results revealed the neuroprotective effects of ultrasound against the disease pathogenesis of SOD $1^{\text {G93A}}$ mice. Transcranial ultrasound neuromodulation provides an innovative tool for the intervention and treatment of neurodegenerative diseases.
Collapse
|
7
|
Lee AJB, Bi S, Ridgeway E, Al-Hussaini I, Deshpande S, Krueger A, Khatri A, Tsui D, Deng J, Mitchell CS. Restoring Homeostasis: Treating Amyotrophic Lateral Sclerosis by Resolving Dynamic Regulatory Instability. Int J Mol Sci 2025; 26:872. [PMID: 39940644 PMCID: PMC11817447 DOI: 10.3390/ijms26030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has an interactive, multifactorial etiology that makes treatment success elusive. This study evaluates how regulatory dynamics impact disease progression and treatment. Computational models of wild-type (WT) and transgenic SOD1-G93A mouse physiology dynamics were built using the first-principles-based first-order feedback framework of dynamic meta-analysis with parameter optimization. Two in silico models were developed: a WT mouse model to simulate normal homeostasis and a SOD1-G93A ALS model to simulate ALS pathology dynamics and their response to in silico treatments. The model simulates functional molecular mechanisms for apoptosis, metal chelation, energetics, excitotoxicity, inflammation, oxidative stress, and proteomics using curated data from published SOD1-G93A mouse experiments. Temporal disease progression measures (rotarod, grip strength, body weight) were used for validation. Results illustrate that untreated SOD1-G93A ALS dynamics cannot maintain homeostasis due to a mathematical oscillating instability as determined by eigenvalue analysis. The onset and magnitude of homeostatic instability corresponded to disease onset and progression. Oscillations were associated with high feedback gain due to hypervigilant regulation. Multiple combination treatments stabilized the SOD1-G93A ALS mouse dynamics to near-normal WT homeostasis. However, treatment timing and effect size were critical to stabilization corresponding to therapeutic success. The dynamics-based approach redefines therapeutic strategies by emphasizing the restoration of homeostasis through precisely timed and stabilizing combination therapies, presenting a promising framework for application to other multifactorial neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert J. B. Lee
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sarah Bi
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Eleanor Ridgeway
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Irfan Al-Hussaini
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sakshi Deshpande
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Adam Krueger
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ahad Khatri
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dennis Tsui
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jennifer Deng
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Jiang SS, Nie HB, Hua S, Xie M, Xu RS. Preliminary Analysis of Potentially Overlapping Differentially Expressed Proteins in Both the Spinal Cord and Brain of SOD1 G93A Mice. Curr Protein Pept Sci 2025; 26:57-75. [PMID: 38984582 DOI: 10.2174/0113892037293525240621120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Proteomic elucidation is an essential step in improving our understanding of the biological properties of proteins in amyotrophic lateral sclerosis (ALS). METHODS Preliminary proteomic analysis was performed on the spinal cord and brain of SOD1 G93A (TG) and wild-type (WT) mice using isobaric tags for relative and absolute quantitation. RESULTS Partial up- and downregulated proteins showing significant differences between TG and WT mice were identified, of which 105 proteins overlapped with differentially expressed proteins in both the spinal cord and brain of progression mice. Bioinformatic analyses using Gene Ontology, a cluster of orthologous groups, and Kyoto Encyclopedia of Genes and Genomes pathway revealed that the significantly up- and downregulated proteins represented multiple biological functions closely related to ALS, with 105 overlapping differentially expressed proteins in the spinal cord and brain at the progression stage of TG mice closely related to 122 pathways. Differentially expressed proteins involved in a set of molecular functions play essential roles in maintaining neural cell survival. CONCLUSION This study provides additional proteomic profiles of TG mice, including potential overlapping proteins in both the spinal cord and brain that participate in pathogenesis, as well as novel insights into the up- and downregulation of proteins involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Shi-Shi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Hong-Bing Nie
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Shan Hua
- Department of Ultrasonography, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Meng Xie
- Health Management Center, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Ren-Shi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
9
|
Shelest O, Tindel I, Lauzon M, Dawson A, Ho R. Delineating sex-dependent and anatomic decline of motor functions in the SOD1G93A mouse model of amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628968. [PMID: 39763885 PMCID: PMC11702811 DOI: 10.1101/2024.12.17.628968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The transgenic SOD1G93A mouse model is the most widely used animal model of amyotrophic lateral sclerosis (ALS), a fatal disease of motor neuron degeneration. While genetic background influences onset and progression variability of motor dysfunction, the C57BL/6 background most reliably exhibits robust ALS phenotypes; thus, it is the most widely used strain in mechanistic studies. In this model, paresis begins in the hindlimbs and spreads rostrally to the forelimbs. Males experience earlier onset, greater disease severity, and shorter survival than females. However, the influence of sex on patterns of declining motor function between forelimbs and hindlimbs as well as among distinct, spinal-innervated muscle groups within each limb are not fully understood. To provide a higher resolution framework of degenerating motor function across the body, we conducted more comprehensive, limb-dependent and independent measures of motor decline over the course of disease. Subsequently, we compared the timing and intensity of these features across sex, and we consider to what extent these patterns are conserved in clinical observations from human ALS patients. We found male mice experienced earlier and less localized onset than females. We also report distinct motor features decline at different rates between sexes. Finally, mice showed differences in correlation between the decline of left- and right-side measures of the hindlimb. Consequently, our findings reinforce and refine the utility of the SOD1 mouse in modeling more highly resolved, sex-specific differences in ALS patient motor behavior. This may better guide preclinical studies in stratifying patients by sex and anatomical site of onset.
Collapse
Affiliation(s)
- Oksana Shelest
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ian Tindel
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marie Lauzon
- Biostatistics Shared Resource, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ashley Dawson
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ritchie Ho
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Li A, Dong L, Li X, Yi J, Ma J, Zhou J. ALDH3A1-mediated detoxification of reactive aldehydes contributes to distinct muscle responses to denervation and Amyotrophic Lateral Sclerosis progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626422. [PMID: 39677625 PMCID: PMC11642873 DOI: 10.1101/2024.12.02.626422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Different muscles exhibit varied susceptibility to degeneration in Amyotrophic Lateral Sclerosis (ALS), a fatal neuromuscular disorder. Extraocular muscles (EOMs) are particularly resistant to ALS progression and exploring the underlying molecular nature may deliver great therapeutic value. Reactive aldehyde 4-hydroxynonenal (HNE) is implicated in ALS pathogenesis and ALDH3A1 is an inactivation-resistant intracellular detoxifier of 4-HNE protecting eyes against UV-induced oxidative stress. Here we detected prominently higher levels of ALDH3A1 in mouse EOMs than other muscles under normal physiological conditions. In an ALS mouse model (hSOD1G93A) reaching end-stage, ALDH3A1 expression was sustained at high level in EOMs, whereas substantial upregulation of ALDH3A1 occurred in soleus and diaphragm. The upregulation was less pronounced in extensor digitorum longus (EDL) muscle, which endured the most severe pathological remodeling as demonstrated by unparalleled upregulation of a denervation marker ANKRD1 expression. Interestingly, sciatic nerve transection in wildtype mice induced ALDH3A1 and ANKRD1 expression in an inverse manner over muscle type and time. Adeno-associated virus enforced overexpression of ALDH3A1 protected myotubes from 4-HNE-induced DNA fragmentation, plasma membrane leakage and restored MG53-mediated membrane repair. Our data indicate that ALDH3A1 may contribute to distinct muscle resistance to ALS through detoxifying reactive aldehydes.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| |
Collapse
|
11
|
Huang L, Liu M, Tang J, Gong Z, Li Z, Yang Y, Zhang M. The role of ALDH2 rs671 polymorphism and C-reactive protein in the phenotypes of male ALS patients. Front Neurosci 2024; 18:1397991. [PMID: 39290715 PMCID: PMC11405379 DOI: 10.3389/fnins.2024.1397991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Background The aldehyde dehydrogenase 2 (ALDH2) rs671 (A) allele has been implicated in neurodegeneration, potentially through oxidative and inflammatory pathways. The study aims to investigate the effects of the ALDH2 rs671 (A) allele and high sensitivity C-reactive protein (hs-CRP) on the clinical phenotypes of amyotrophic lateral sclerosis (ALS) in male and female patients. Methods Clinical data and ALDH2 rs671 genotype of 143 ALS patients, including 85 males and 58 females, were collected from January 2018 to December 2022. All patients underwent assessment using the Chinese version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). Complete blood count and metabolic profiles were measured. Clinical and laboratory parameters were compared between carriers and non-carriers of the rs671 (A) allele in males and females, respectively. The significant parameters and rs671 (A) Allele were included in multivariate linear regression models to identify potential contributors to motor and cognitive impairment. Mediation analysis was employed to evaluate any mediation effects. Results Male patients carrying rs671 (A) allele exhibited higher levels of hs-CRP than non-carriers (1.70 mg/L vs. 0.50 mg/L, p = 0.006). The rs671 (A) allele was identified as an independent risk factor for faster disease progression only in male patients (β = 0.274, 95% CI = 0.048-0.499, p = 0.018). The effect of the rs671 (A) allele on the executive function in male patients was fully mediated by hs-CRP (Indirect effect = -1.790, 95% CI = -4.555--0.225). No effects of the rs671 (A) allele or hs-CRP were observed in female ALS patients. The effects of the ALDH2 rs671 (A) allele and the mediating role of hs-CRP in male patients remained significant in the sensitivity analyses. Conclusion The ALDH2 rs671 (A) allele contributed to faster disease progression and hs-CRP mediated cognitive impairment in male ALS patients.
Collapse
Affiliation(s)
- Lifang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mao Liu
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Jiahui Tang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yang
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Raffaele S, Nguyen N, Milanese M, Mannella FC, Boccazzi M, Frumento G, Bonanno G, Abbracchio MP, Bonifacino T, Fumagalli M. Montelukast improves disease outcome in SOD1 G93A female mice by counteracting oligodendrocyte dysfunction and aberrant glial reactivity. Br J Pharmacol 2024; 181:3303-3326. [PMID: 38751168 DOI: 10.1111/bph.16408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron (MN) loss and consequent muscle atrophy, for which no effective therapies are available. Recent findings reveal that disease progression is fuelled by early aberrant neuroinflammation and the loss of oligodendrocytes with neuroprotective and remyelinating properties. On this basis, pharmacological interventions capable of restoring a pro-regenerative local milieu and re-establish proper oligodendrocyte functions may be beneficial. EXPERIMENTAL APPROACH Here, we evaluated the in vivo therapeutic effects of montelukast (MTK), an antagonist of the oligodendroglial G protein-coupled receptor 17 (GPR17) and of cysteinyl-leukotriene receptor 1 (CysLT1R) receptors on microglia and astrocytes, in the SOD1G93A ALS mouse model. We chronically treated SOD1G93A mice with MTK, starting from the early symptomatic disease stage. Disease progression was assessed by behavioural and immunohistochemical approaches. KEY RESULTS Oral MTK treatment significantly extended survival probability, delayed body weight loss and ameliorated motor functionalityonly in female SOD1G93A mice. Noteworthy, MTK significantly restored oligodendrocyte maturation and induced significant changes in the reactive phenotype and morphological features of microglia/macrophages and astrocytes in the spinal cord of female SOD1G93A mice, suggesting enhanced pro-regenerative functions. Importantly, concomitant MN preservation has been detected after MTK administration. No beneficial effects were observed in male mice, highlighting a sex-based difference in the protective activity of MTK. CONCLUSIONS AND IMPLICATIONS Our results provide the first preclinical evidence indicating that repurposing of MTK, a safe and marketed anti-asthmatic drug, may be a promising sex-specific strategy for personalized ALS treatment.
Collapse
Affiliation(s)
- Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Nhung Nguyen
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca C Mannella
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giulia Frumento
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- Inter-University Center for the Promotion of the 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Biswas DD, Sethi R, Woldeyohannes Y, Scarrow ER, El Haddad L, Lee J, ElMallah MK. Respiratory pathology in the TDP-43 transgenic mouse model of amyotrophic lateral sclerosis. Front Physiol 2024; 15:1430875. [PMID: 39403566 PMCID: PMC11471906 DOI: 10.3389/fphys.2024.1430875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 03/28/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in death within 2-5 years of diagnosis. Respiratory failure is the most common cause of death in ALS. Mutations in the transactive response DNA binding protein 43 (TDP-43) encoded by the TARDBP gene are associated with abnormal cellular aggregates in neurons of patients with both familial and sporadic ALS. The role of these abnormal aggregates on breathing is unclear. Since respiratory failure is a major cause of death in ALS, we sought to determine the role of TDP-43 mutations on the respiratory motor unit in the Prp-hTDP-43A315T mouse model - a model that expresses human TDP-43 containing the A315T mutation. We assessed breathing using whole-body plethysmography, and investigated neuropathology in hypoglossal and phrenic respiratory motor units. Postmortem studies included quantification of hypoglossal and putative phrenic motor neurons, activated microglia and astrocytes in respiratory control centers, and assessment of hypoglossal and phrenic nerves of TDP43A315T mice. The male TDP43A315T mice display an early onset of rapid progression of disease, and premature death (less than 15 weeks) compared to control mice and compared to female TDP43A315T mice who die between 20 and 35 weeks of age. The TDP43A315T mice have progressive and profound breathing deficits at baseline and during a respiratory challenge. Histologically, hypoglossal and putative phrenic motor neurons of TDP43A315T mice are decreased and have increased microglial and astrocyte activation, indicating pronounced neurodegeneration and neuroinflammation. Further, there is axonopathy and demyelination in the hypoglossal and phrenic nerve of TDP43A315T mice. Thus, the TDP-43A315T mice have significant respiratory pathology and neuropathology, which makes them a useful translatable model for the study of novel therapies on breathing in ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mai K. ElMallah
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
14
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
Weiss A, Gilbert JW, Flores IVR, Belgrad J, Ferguson C, Dogan EO, Wightman N, Mocarski K, Echeverria D, Summers A, Bramato B, McHugh N, Furgal R, Yamada N, Cooper D, Monopoli K, Godinho BM, Hassler MR, Yamada K, Greer P, Henninger N, Brown RH, Khvorova A. RNAi-mediated silencing of SOD1 profoundly extends survival and functional outcomes in ALS mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599943. [PMID: 38979291 PMCID: PMC11230209 DOI: 10.1101/2024.06.20.599943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition, with 20% of familial and 2-3% of sporadic cases linked to mutations in the cytosolic superoxide dismutase (SOD1) gene. Mutant SOD1 protein is toxic to motor neurons, making SOD1 gene lowering a promising approach, supported by preclinical data and the 2023 FDA approval of the GapmeR ASO targeting SOD1, tofersen. Despite the approval of an ASO and the optimism it brings to the field, the pharmacodynamics and pharmacokinetics of therapeutic SOD1 modulation can be improved. Here, we developed a chemically stabilized divalent siRNA scaffold (di-siRNA) that effectively suppresses SOD1 expression in vitro and in vivo. With optimized chemical modification, it achieves remarkable CNS tissue permeation and SOD1 silencing in vivo. Administered intraventricularly, di-siRNASOD1 extended survival in SOD1-G93A ALS mice, surpassing survival previously seen in these mice by ASO modalities, slowed disease progression, and prevented ALS neuropathology. These properties offer an improved therapeutic strategy for SOD1-mediated ALS and may extend to other dominantly inherited neurological disorders.
Collapse
Affiliation(s)
- Alexandra Weiss
- Department of Neurology, UMass Chan Medical School; Worcester, MA, USA
| | - James W. Gilbert
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | | | - Jillian Belgrad
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Chantal Ferguson
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Elif O. Dogan
- Department of Neurology, UMass Chan Medical School; Worcester, MA, USA
| | - Nicholas Wightman
- Department of Neurology, UMass Chan Medical School; Worcester, MA, USA
| | - Kit Mocarski
- Department of Neurology, UMass Chan Medical School; Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School; Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Ashley Summers
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Raymond Furgal
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Nozomi Yamada
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - David Cooper
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Kathryn Monopoli
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | | | - Matthew R. Hassler
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Ken Yamada
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Paul Greer
- Program in Molecular Medicine, UMass Chan Medical School; Worcester, MA, USA
| | - Nils Henninger
- Department of Neurology, UMass Chan Medical School; Worcester, MA, USA
- Department of Psychiatry, UMass Chan Medical School; Worcester, MA, USA
| | - Robert H. Brown
- Department of Neurology, UMass Chan Medical School; Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School; Worcester, MA, USA
| |
Collapse
|
16
|
Magrì A, Lipari CLR, Caccamo A, Battiato G, Conti Nibali S, De Pinto V, Guarino F, Messina A. AAV-mediated upregulation of VDAC1 rescues the mitochondrial respiration and sirtuins expression in a SOD1 mouse model of inherited ALS. Cell Death Discov 2024; 10:178. [PMID: 38627359 PMCID: PMC11021507 DOI: 10.1038/s41420-024-01949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondrial dysfunction represents one of the most common molecular hallmarks of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by the selective degeneration and death of motor neurons. The accumulation of misfolded proteins on and within mitochondria, as observed for SOD1 G93A mutant, correlates with a drastic reduction of mitochondrial respiration and the inhibition of metabolites exchanges, including ADP/ATP and NAD+/NADH, across the Voltage-Dependent Anion-selective Channel 1 (VDAC1), the most abundant channel protein of the outer mitochondrial membrane. Here, we show that the AAV-mediated upregulation of VDAC1 in the spinal cord of transgenic mice expressing SOD1 G93A completely rescues the mitochondrial respiratory profile. This correlates with the increased activity and levels of key regulators of mitochondrial functions and maintenance, namely the respiratory chain Complex I and the sirtuins (Sirt), especially Sirt3. Furthermore, the selective increase of these mitochondrial proteins is associated with an increase in Tom20 levels, the receptor subunit of the TOM complex. Overall, our results indicate that the overexpression of VDAC1 has beneficial effects on ALS-affected tissue by stabilizing the Complex I-Sirt3 axis.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
| | - Cristiana Lucia Rita Lipari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 32, 98166, Messina, Italy
| | - Giuseppe Battiato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Vito De Pinto
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Francesca Guarino
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy.
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy.
| |
Collapse
|
17
|
La Cognata V, Morello G, Guarnaccia M, Cavallaro S. The multifaceted role of the CXC chemokines and receptors signaling axes in ALS pathophysiology. Prog Neurobiol 2024; 235:102587. [PMID: 38367748 DOI: 10.1016/j.pneurobio.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease with complex genetic basis and still no clear etiology. Multiple intertwined layers of immune system-related dysfunctions and neuroinflammatory mechanisms are emerging as substantial determinants in ALS onset and progression. In this review, we collect the increasingly arising evidence implicating four main CXC chemokines/cognate receptors signaling axes (CXCR1/2-CXCL1/2/8; CXCR3-CXCL9/10/11; CXCR4/7-CXCL12; CXCR5-CXCL13) in the pathophysiology of ALS. Findings in preclinical models implicate these signaling pathways in motor neuron toxicity and neuroprotection, while in ALS patients dysregulation of CXCLs/CXCRs has been shown at both central and peripheral levels. Immunological monitoring of CXC-ligands in ALS may allow tracking of disease progression, while pharmacological modulation of CXC-receptors provides a novel therapeutic strategy. A deeper understanding of the interplay between CXC-mediated neuroinflammation and ALS is crucial to advance research into treatments for this debilitating uncurable disorder.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
18
|
Costa-Pinto S, Gonçalves-Ribeiro J, Tedim-Moreira J, Socodato R, Relvas JB, Sebastião AM, Vaz SH. Communication defects with astroglia contribute to early impairments in the motor cortex plasticity of SOD1 G93A mice. Neurobiol Dis 2024; 193:106435. [PMID: 38336279 DOI: 10.1016/j.nbd.2024.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, involving the selective degeneration of cortical upper synapses in the primary motor cortex (M1). Excitotoxicity in ALS occurs due to an imbalance between excitation and inhibition, closely linked to the loss/gain of astrocytic function. Using the ALS SOD1G93A mice, we investigated the astrocytic contribution for the electrophysiological alterations observed in the M1 of SOD1G93A mice, throughout disease progression. Results showed that astrocytes are involved in synaptic dysfunction observed in presymptomatic SOD1G93A mice, since astrocytic glutamate transport currents are diminished and pharmacological inhibition of astrocytes only impaired long-term potentiation and basal transmission in wild-type mice. Proteomic analysis revealed major differences in neuronal transmission, metabolism, and immune system in upper synapses, confirming early communication deficits between neurons and astroglia. These results provide valuable insights into the early impact of upper synapses in ALS and the lack of supportive functions of cortical astrocytes, highlighting the possibility of manipulating astrocytes to improve synaptic function.
Collapse
Affiliation(s)
- Sara Costa-Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Tedim-Moreira
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
| |
Collapse
|
19
|
Duan C, Kang M, Pan X, Gan Z, Huang V, Li G, Place RF, Li LC. Intrathecal administration of a novel siRNA modality extends survival and improves motor function in the SOD1 G93A ALS mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102147. [PMID: 38435120 PMCID: PMC10907209 DOI: 10.1016/j.omtn.2024.102147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Antisense oligonucleotides (ASOs) were the first modality to pioneer targeted gene knockdown in the treatment of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1). RNA interference (RNAi) is another mechanism of gene silencing in which short interfering RNAs (siRNAs) effectively degrade complementary transcripts. However, delivery to extrahepatic tissues like the CNS has been a bottleneck in the clinical development of RNAi. Herein, we identify potent siRNA duplexes for the knockdown of human SOD1 in which medicinal chemistry and conjugation to an accessory oligonucleotide (ACO) enable activity in CNS tissues. Local delivery via intracerebroventricular or intrathecal injection into SOD1G93A mice delayed disease progression and extended animal survival with superior efficacy compared with an ASO resembling tofersen in sequence and chemistry. Treatment also prevented disease-related declines in motor function, including improvements in animal mobility, muscle strength, and coordination. The ACO itself does not target any specific complementary nucleic acid sequence; rather, it imparts benefits conducive to bioavailability and delivery through its chemistry. The complete conjugate (i.e., siRNA-ACO) represents a novel modality for delivery of duplex RNA (e.g., siRNA) to the CNS that is currently being tested in the clinic for treatment of ALS.
Collapse
Affiliation(s)
- Chunling Duan
- Ractigen Therapeutics, Nantong, Jiangsu Province, China
| | - Moorim Kang
- Ractigen Therapeutics, Nantong, Jiangsu Province, China
| | - Xiaojie Pan
- Ractigen Therapeutics, Nantong, Jiangsu Province, China
| | - Zubao Gan
- Ractigen Therapeutics, Nantong, Jiangsu Province, China
| | - Vera Huang
- Ractigen Therapeutics, Nantong, Jiangsu Province, China
| | - Guanlin Li
- Ractigen Therapeutics, Nantong, Jiangsu Province, China
| | | | - Long-Cheng Li
- Ractigen Therapeutics, Nantong, Jiangsu Province, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| |
Collapse
|
20
|
Zamani A, Thomas E, Wright DK. Sex biology in amyotrophic lateral sclerosis. Ageing Res Rev 2024; 95:102228. [PMID: 38354985 DOI: 10.1016/j.arr.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Although sex differences in amyotrophic lateral sclerosis (ALS) have not been studied systematically, numerous clinical and preclinical studies have shown sex to be influential in disease prognosis. Moreover, with the development of advanced imaging tools, the difference between male and female brain in structure and function and their response to neurodegeneration are more definitive. As discussed in this review, ALS patients exhibit a sex bias pertaining to the features of the disease, and their clinical, pathological, (and pathophysiological) phenotypes. Several epidemiological studies have indicated that this sex disparity stems from various aetiologies, including sex-specific brain structure and neural functioning, genetic predisposition, age, gonadal hormones, susceptibility to traumatic brain injury (TBI)/head trauma and lifestyle factors.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Emma Thomas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
21
|
Komine O, Ohnuma S, Hinohara K, Hara Y, Shimada M, Akashi T, Watanabe S, Sobue A, Kawade N, Ogi T, Yamanaka K. Genetic background variation impacts microglial heterogeneity and disease progression in amyotrophic lateral sclerosis model mice. iScience 2024; 27:108872. [PMID: 38318390 PMCID: PMC10839647 DOI: 10.1016/j.isci.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Recent single-cell analyses have revealed the complexity of microglial heterogeneity in brain development, aging, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Disease-associated microglia (DAMs) have been identified in ALS mice model, but their role in ALS pathology remains unclear. The effect of genetic background variations on microglial heterogeneity and functions remains unknown. Herein, we established and analyzed two mice models of ALS with distinct genetic backgrounds of C57BL/6 and BALB/c. We observed that the change in genetic background from C57BL/6 to BALB/c affected microglial heterogeneity and ALS pathology and its progression, likely due to the defective induction of neurotrophic factor-secreting DAMs and impaired microglial survival. Single-cell analyses of ALS mice revealed new markers for each microglial subtype and a possible association between microglial heterogeneity and systemic immune environments. Thus, we highlighted the role of microglia in ALS pathology and importance of genetic background variations in modulating microglial functions.
Collapse
Affiliation(s)
- Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Syuhei Ohnuma
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Center for 5D Cell Dynamics, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomohiro Akashi
- Center for 5D Cell Dynamics, Nagoya University, Nagoya, Aichi, Japan
- Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan
| |
Collapse
|
22
|
Martinelli I, Ghezzi A, Zucchi E, Gianferrari G, Ferri L, Moglia C, Manera U, Solero L, Vasta R, Canosa A, Grassano M, Brunetti M, Mazzini L, De Marchi F, Simonini C, Fini N, Vinceti M, Pinti M, Chiò A, Calvo A, Mandrioli J. Predictors for progression in amyotrophic lateral sclerosis associated to SOD1 mutation: insight from two population-based registries. J Neurol 2023; 270:6081-6092. [PMID: 37668704 DOI: 10.1007/s00415-023-11963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Uncovering distinct features and trajectories of amyotrophic lateral sclerosis (ALS) associated with SOD1 mutations (SOD1-ALS) can provide valuable insights for patient' counseling and stratification for trials, and interventions timing. Our study aims to pinpoint distinct clinical characteristics of SOD1-ALS by delving into genotype-phenotype correlations and factors that potentially impact disease progression. METHODS This is a retrospective observational study of a SOD1-ALS cohort from two Italian registers situated in the regions of Emilia-Romagna, Piedmont and Valle d'Aosta. RESULTS Out of 2204 genotyped ALS patients, 2.5% carried SOD1 mutations, with a M:F ratio of 0.83. SOD1-ALS patients were younger, and more frequently reported a family history of ALS and/or FTD. SOD1-ALS had a longer survival compared to patients without ALS-associated gene mutations. However, here was considerable variability in survival across distinct SOD1 mutations, with an average survival of less than a year for the L39V, G42S, G73S, D91N mutations. Among SOD1-ALS, multivariate analysis showed that, alongside established clinical prognostic factors such as advanced age at onset and high progression rate at diagnosis, mutations located in exon 2 or within highly conserved gene positions predicted worse survival. Conversely, among comorbidities, cancer history was independently associated with longer survival. INTERPRETATION Within the context of an overall slower disease, SOD1-ALS exhibits some degree of heterogeneity linked to the considerable genetic diversity arising from the multitude of potential mutations sites and specific clinical prognostic factors, including cancer history. Revealing the factors that modulate the phenotypic heterogeneity of SOD1-ALS could prove advantageous in improving the efficacy of upcoming therapeutic approaches.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy.
| | - Giulia Gianferrari
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Ferri
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Moglia
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Umberto Manera
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Luca Solero
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Rosario Vasta
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Antonio Canosa
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maurizio Grassano
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maura Brunetti
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Letizia Mazzini
- Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Science of Public Health, Research Centre in Environmental, Genetic and Nutritional Epidemiology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adriano Chiò
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Andrea Calvo
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Tomiyama ALMR, Cartarozzi LP, de Oliveira Coser L, Chiarotto GB, Oliveira ALR. Neuroprotection by upregulation of the major histocompatibility complex class I (MHC I) in SOD1 G93A mice. Front Cell Neurosci 2023; 17:1211486. [PMID: 37711512 PMCID: PMC10498468 DOI: 10.3389/fncel.2023.1211486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that progressively affects motoneurons, causing muscle atrophy and evolving to death. Astrocytes inhibit the expression of MHC-I by neurons, contributing to a degenerative outcome. The present study verified the influence of interferon β (IFN β) treatment, a proinflammatory cytokine that upregulates MHC-I expression, in SOD1G93A transgenic mice. For that, 17 days old presymptomatic female mice were subjected to subcutaneous application of IFN β (250, 1,000, and 10,000 IU) every other day for 20 days. Rotarod motor test, clinical score, and body weight assessment were conducted every third day throughout the treatment period. No significant intergroup variations were observed in such parameters during the pre-symptomatic phase. All mice were then euthanized, and the spinal cords collected for comparative analysis of motoneuron survival, reactive gliosis, synapse coverage, microglia morphology classification, cytokine analysis by flow cytometry, and RT-qPCR quantification of gene transcripts. Additionally, mice underwent Rotarod motor assessment, weight monitoring, and neurological scoring. The results show that IFN β treatment led to an increase in the expression of MHC-I, which, even at the lowest dose (250 IU), resulted in a significant increase in neuronal survival in the ALS presymptomatic period which lasted until the onset of the disease. The treatment also influenced synaptic preservation by decreasing excitatory inputs and upregulating the expression of AMPA receptors by astrocytes. Microglial reactivity quantified by the integrated density of pixels did not decrease with treatment but showed a less activated morphology, coupled with polarization to an M1 profile. Disease progression upregulated gene transcripts for pro- and anti-inflammatory cytokines, and IFN β treatment significantly decreased mRNA expression for IL4. Overall, the present results demonstrate that a low dosage of IFN β shows therapeutic potential by increasing MHC-I expression, resulting in neuroprotection and immunomodulation.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre L. R. Oliveira
- Department of Structural and Functional Biology, Institute of Biology—University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
24
|
Song J, Dikwella N, Sinske D, Roselli F, Knöll B. SRF deletion results in earlier disease onset in a mouse model of amyotrophic lateral sclerosis. JCI Insight 2023; 8:e167694. [PMID: 37339001 PMCID: PMC10445689 DOI: 10.1172/jci.insight.167694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
Changes in neuronal activity modulate the vulnerability of motoneurons (MNs) in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). So far, the molecular basis of neuronal activity's impact in ALS is poorly understood. Herein, we investigated the impact of deleting the neuronal activity-stimulated transcription factor (TF) serum response factor (SRF) in MNs of SOD1G93A mice. SRF was present in vulnerable MMP9+ MNs. Ablation of SRF in MNs induced an earlier disease onset starting around 7-8 weeks after birth, as revealed by enhanced weight loss and decreased motor ability. This earlier disease onset in SRF-depleted MNs was accompanied by a mild elevation of neuroinflammation and neuromuscular synapse degeneration, whereas overall MN numbers and mortality were unaffected. In SRF-deficient mice, MNs showed impaired induction of autophagy-encoding genes, suggesting a potentially new SRF function in transcriptional regulation of autophagy. Complementary, constitutively active SRF-VP16 enhanced autophagy-encoding gene transcription and autophagy progression in cells. Furthermore, SRF-VP16 decreased ALS-associated aggregate induction. Chemogenetic modulation of neuronal activity uncovered SRF as having important TF-mediating activity-dependent effects, which might be beneficial to reduce ALS disease burden. Thus, our data identify SRF as a gene regulator connecting neuronal activity with the cellular autophagy program initiated in degenerating MNs.
Collapse
Affiliation(s)
- Jialei Song
- Institute of Neurobiochemistry and
- Department of Neurology, Ulm University, Ulm, Germany
| | - Natalie Dikwella
- Institute of Neurobiochemistry and
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases-Ulm (DZNE-Ulm), Ulm, Germany
| | | |
Collapse
|
25
|
Candelise N, Santilli F, Fabrizi J, Caissutti D, Spinello Z, Moliterni C, Lancia L, Delle Monache S, Mattei V, Misasi R. The Importance of Stem Cells Isolated from Human Dental Pulp and Exfoliated Deciduous Teeth as Therapeutic Approach in Nervous System Pathologies. Cells 2023; 12:1686. [PMID: 37443720 PMCID: PMC10340170 DOI: 10.3390/cells12131686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Despite decades of research, no therapies are available to halt or slow down the course of neuro-degenerative disorders. Most of the drugs developed to fight neurodegeneration are aimed to alleviate symptoms, but none has proven adequate in altering the course of the pathologies. Cell therapy has emerged as an intriguing alternative to the classical pharmacological approach. Cell therapy consists of the transplantation of stem cells that can be obtained from various embryonal and adult tissues. Whereas the former holds notable ethical issue, adult somatic stem cells can be obtained without major concerns. However, most adult stem cells, such as those derived from the bone marrow, are committed toward the mesodermal lineage, and hence need to be reprogrammed to induce the differentiation into the neurons. The discovery of neural crest stem cells in the dental pulp, both in adults' molar and in baby teeth (dental pulp stem cells and stem cells from human exfoliated deciduous teeth, respectively) prompted researchers to investigate their utility as therapy in nervous system disorders. In this review, we recapitulate the advancements on the application of these stem cells in preclinical models of neurodegenerative diseases, highlighting differences and analogies in their maintenance, differentiation, and potential clinical application.
Collapse
Affiliation(s)
- Niccolò Candelise
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (F.S.); (J.F.); (V.M.)
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (F.S.); (J.F.); (V.M.)
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| | - Daniela Caissutti
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| | - Zaira Spinello
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| | - Camilla Moliterni
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), “Sapienza” University of Rome, 00189 Rome, Italy;
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.L.); (S.D.M.)
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.L.); (S.D.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (F.S.); (J.F.); (V.M.)
| | - Roberta Misasi
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| |
Collapse
|
26
|
McIntosh J, Mekrouda I, Dashti M, Giuraniuc CV, Banks RW, Miles GB, Bewick GS. Development of abnormalities at the neuromuscular junction in the SOD1-G93A mouse model of ALS: dysfunction then disruption of postsynaptic structure precede overt motor symptoms. Front Mol Neurosci 2023; 16:1169075. [PMID: 37273905 PMCID: PMC10237339 DOI: 10.3389/fnmol.2023.1169075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction The ultimate deficit in amyotrophic lateral sclerosis (ALS) is neuromuscular junction (NMJ) loss, producing permanent paralysis, ultimately in respiratory muscles. However, understanding the functional and structural deficits at NMJs prior to this loss is crucial for therapeutic strategy design. Should early interventions focus on reversing denervation, or supporting largely intact NMJs that are functionally impaired? We therefore determined when functional and structural deficits appeared in diaphragmatic NMJs relative to the onset of hindlimb tremor (the first overt motor symptoms) in vivo in the SOD1-G93A mouse model of ALS. Materials and methods We employed electrophysiological recording of NMJ postsynaptic potentials for spontaneous and nerve stimulation-evoked responses. This was correlated with fluorescent imaging microscopy of the postsynaptic acetylcholine receptor (AChR) distribution throughout the postnatal developmental timecourse from 2 weeks to early symptomatic ages. Results Significant reduction in the amplitudes of spontaneous miniature endplate potentials (mEPPs) and evoked EPPs emerged only at early symptomatic ages (in our colony, 18-22 weeks). Reductions in mEPP frequency, number of vesicles per EPP, and EPP rise time were seen earlier, at 16weeks, but this reversed by early symptomatic ages. However, the earliest and most striking impairment was an inability to maintain EPP amplitude during a 20 Hz stimulus train, which appeared 6 weeks before overt in vivo motor symptoms. Despite this, fluorescent α-bungarotoxin labelling revealed no systematic, progressive changes in 11 comprehensive NMJ morphological parameters (area, shape, compactness, number of acetylcholine receptor, AChR, regions, etc.) with disease progression. Rather, while NMJs were largely normally-shaped, from 16 weeks there was a progressive and substantial disruption in AChR concentration and distribution within the NMJ footprint. Discussion Thus, NMJ functional deficits appear at least 6 weeks before motor symptoms in vivo, while structural deficits occur 4 weeks later, and predominantly within NMJs. These data suggest initial therapies focused on rectifying suboptimal NMJ function could produce effective relief of symptoms of weakness.
Collapse
Affiliation(s)
- Jayne McIntosh
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Imane Mekrouda
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Maryam Dashti
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Robert W. Banks
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Guy S. Bewick
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
27
|
Bak AN, Djukic S, Kadlecova M, Braunstein TH, Jensen DB, Meehan CF. Cytoplasmic TDP-43 accumulation drives changes in C-bouton number and size in a mouse model of sporadic Amyotrophic Lateral Sclerosis. Mol Cell Neurosci 2023; 125:103840. [PMID: 36921783 DOI: 10.1016/j.mcn.2023.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/11/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
An altered neuronal excitability of spinal motoneurones has consistently been implicated in Amyotrophic Lateral Sclerosis (ALS) leading to several investigations of synaptic input to these motoneurones. One such input that has repeatedly been shown to be affected is a population of large cholinergic synapses terminating mainly on the soma of the motoneurones referred to as C-boutons. Most research on these synapses during disease progression has used transgenic Superoxide Dismutase 1 (SOD1) mouse models of the disease which have not only produced conflicting findings, but also fail to recapitulate the key pathological feature seen in ALS; cytoplasmic accumulations of TAR DNA-binding protein 43 (TDP-43). Additionally, they fail to distinguish between slow and fast motoneurones, the latter of which have more C-boutons, but are lost earlier in the disease. To circumvent these issues, we quantified the frequency and volume of C-boutons on traced soleus and gastrocnemius motoneurones, representing predominantly slow and fast motor pools respectively. Experiments were performed using the TDP-43ΔNLS mouse model that carries a transgenic construct of TDP-43 devoid of its nuclear localization signal, preventing its nuclear import. This results in the emergence of pathological TDP-43 inclusions in the cytoplasm, modelling the main pathology seen in this disorder, accompanied by a severe and lethal ALS phenotype. Our results confirmed changes in both the number and volume of C-boutons with a decrease in number on the more vulnerable, predominantly fast gastrocnemius motoneurones and an increase in number on the less vulnerable, predominantly slow soleus motoneurones. Importantly, these changes were only found in male mice. However, both sexes and motor pools showed a decrease in C-bouton volume. Our experiments confirm that cytoplasmic TDP-43 accumulation is sufficient to drive C-bouton changes.
Collapse
Affiliation(s)
| | - Svetlana Djukic
- Department of Neuroscience, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
28
|
Sironi F, De Marchi F, Mazzini L, Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res Bull 2023; 194:64-81. [PMID: 36690163 DOI: 10.1016/j.brainresbull.2023.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons and neuromuscular impairment leading to complete paralysis, respiratory failure and premature death. The pathogenesis of the disease is multifactorial and noncell-autonomous involving the central and peripheral compartments of the neuromuscular axis and the skeletal muscle. Advanced clinical trials on specific ALS-related pathways have failed to significantly slow the disease. Therapy with stem cells from different sources has provided a promising strategy to protect the motor units exerting their effect through multiple mechanisms including neurotrophic support and excitotoxicity and neuroinflammation modulation, as evidenced from preclinical studies. Several phase I and II clinical trial of ALS patients have been developed showing positive effects in terms of safety and tolerability. However, the modest results on functional improvement in ALS patients suggest that only a coordinated effort between basic and clinical researchers could solve many problems, such as selecting the ideal stem cell source, identifying their mechanism of action and expected clinical outcomes. A promising approach may be stem cells selected or engineered to deliver optimal growth factor support at multiple sites along the neuromuscular pathway. This review covers recent advances in stem cell therapies in animal models of ALS, as well as detailing the human clinical trials that have been done and are currently undergoing development.
Collapse
Affiliation(s)
- Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy.
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
29
|
Lee AJB, Kittel TE, Kim RB, Bach TN, Zhang T, Mitchell CS. Comparing therapeutic modulators of the SOD1 G93A Amyotrophic Lateral Sclerosis mouse pathophysiology. Front Neurosci 2023; 16:1111763. [PMID: 36741054 PMCID: PMC9893287 DOI: 10.3389/fnins.2022.1111763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Amyotrophic Lateral Sclerosis (ALS) is a paralyzing, multifactorial neurodegenerative disease with limited therapeutics and no known cure. The study goal was to determine which pathophysiological treatment targets appear most beneficial. Methods A big data approach was used to analyze high copy SOD1 G93A experimental data. The secondary data set comprised 227 published studies and 4,296 data points. Treatments were classified by pathophysiological target: apoptosis, axonal transport, cellular chemistry, energetics, neuron excitability, inflammation, oxidative stress, proteomics, or systemic function. Outcome assessment modalities included onset delay, health status (rotarod performance, body weight, grip strength), and survival duration. Pairwise statistical analysis (two-tailed t-test with Bonferroni correction) of normalized fold change (treatment/control) assessed significant differences in treatment efficacy. Cohen's d quantified pathophysiological treatment category effect size compared to "all" (e.g., all pathophysiological treatment categories combined). Results Inflammation treatments were best at delaying onset (d = 0.42, p > 0.05). Oxidative stress treatments were significantly better for prolonging survival duration (d = 0.18, p < 0.05). Excitability treatments were significantly better for prolonging overall health status (d = 0.22, p < 0.05). However, the absolute best pathophysiological treatment category for prolonging health status varied with disease progression: oxidative stress was best for pre-onset health (d = 0.18, p > 0.05); excitability was best for prolonging function near onset (d = 0.34, p < 0.05); inflammation was best for prolonging post-onset function (d = 0.24, p > 0.05); and apoptosis was best for prolonging end-stage function (d = 0.49, p > 0.05). Finally, combination treatments simultaneously targeting multiple pathophysiological categories (e.g., polytherapy) performed significantly (p < 0.05) better than monotherapies at end-stage. Discussion In summary, the most effective pathophysiological treatments change as function of assessment modality and disease progression. Shifting pathophysiological treatment category efficacy with disease progression supports the homeostatic instability theory of ALS disease progression.
Collapse
Affiliation(s)
- Albert J. B. Lee
- Laboratory for Pathology Dynamics, Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tyler E. Kittel
- Laboratory for Pathology Dynamics, Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Renaid B. Kim
- Laboratory for Pathology Dynamics, Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Thao-Nguyen Bach
- Laboratory for Pathology Dynamics, Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
- University of Texas at Dallas, Dallas, TX, United States
| | - Tian Zhang
- Laboratory for Pathology Dynamics, Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
30
|
Ciuro M, Sangiorgio M, Leanza G, Gulino R. A Meta-Analysis Study of SOD1-Mutant Mouse Models of ALS to Analyse the Determinants of Disease Onset and Progression. Int J Mol Sci 2022; 24:ijms24010216. [PMID: 36613659 PMCID: PMC9820332 DOI: 10.3390/ijms24010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
A complex interaction between genetic and external factors determines the development of amyotrophic lateral sclerosis (ALS). Epidemiological studies on large patient cohorts have suggested that ALS is a multi-step disease, as symptom onset occurs only after exposure to a sequence of risk factors. Although the exact nature of these determinants remains to be clarified, it seems clear that: (i) genetic mutations may be responsible for one or more of these steps; (ii) other risk factors are probably linked to environment and/or to lifestyle, and (iii) compensatory plastic changes taking place during the ALS etiopathogenesis probably affect the timing of onset and progression of disease. Current knowledge on ALS mechanisms and therapeutic targets, derives mainly from studies involving superoxide dismutase 1 (SOD1) transgenic mice; therefore, it would be fundamental to verify whether a multi-step disease concept can also be applied to these animal models. With this aim, a meta-analysis study has been performed using a collection of primary studies (n = 137), selected according to the following criteria: (1) the studies should employ SOD1 transgenic mice; (2) the studies should entail the presence of a disease-modifying experimental manipulation; (3) the studies should make use of Kaplan-Meier plots showing the distribution of symptom onset and lifespan. Then, using a subset of this study collection (n = 94), the effects of treatments on key molecular mechanisms, as well as on the onset and progression of disease have been analysed in a large population of mice. The results are consistent with a multi-step etiopathogenesis of disease in ALS mice (including two to six steps, depending on the particular SOD1 mutation), closely resembling that observed in patient cohorts, and revealed an interesting relationship between molecular mechanisms and disease manifestation. Thus, SOD1 mouse models may be considered of high predictive value to understand the determinants of disease onset and progression, as well as to identify targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Ciuro
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Maria Sangiorgio
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
31
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
32
|
Collins JM, Atkinson RAK, Matthews LM, Murray IC, Perry SE, King AE. Sarm1 knockout modifies biomarkers of neurodegeneration and spinal cord circuitry but not disease progression in the mSOD1 G93A mouse model of ALS. Neurobiol Dis 2022; 172:105821. [PMID: 35863521 DOI: 10.1016/j.nbd.2022.105821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022] Open
Abstract
The mechanisms underlying the loss of motor neuron axon integrity in amyotrophic lateral sclerosis (ALS) are unclear. SARM1 has been identified as a genetic risk variant in sporadic ALS, and the SARM1 protein is a key mediator of axon degeneration. To investigate the role of SARM1 in ALS-associated axon degeneration, we knocked out Sarm1 (Sarm1KO) in mSOD1G93ATg (mSOD1) mice. Animals were monitored for ALS disease onset and severity, with motor function assessed at pre-symptomatic and late-stage disease and lumbar spinal cord and sciatic nerve harvested for immunohistochemistry at endpoint (20 weeks). Serum was collected monthly to assess protein concentrations of biomarkers linked to axon degeneration (neurofilament light (NFL) and tau), and astrogliosis (glial fibrillary acidic protein (GFAP)), using single molecule array (Simoa®) technology. Overall, loss of Sarm1 in mSOD1 mice did not slow or delay symptom onset, failed to improve functional declines, and failed to protect motor neurons. Serum NFL levels in mSOD1 mice increased between 8 -12 and 16-20 weeks of age, with the later increase significantly reduced by loss of SARM1. Similarly, loss of SARM1 significantly reduced an increase in serum GFAP between 16 and 20 weeks of age in mSOD1 mice, indicating protection of both global axon degeneration and astrogliosis. In the spinal cord, Sarm1 deletion protected against loss of excitatory VGluT2-positive puncta and attenuated astrogliosis in mSOD1 mice. In the sciatic nerve, absence of SARM1 in mSOD1 mice restored the average area of phosphorylated neurofilament reactivity towards WT levels. Together these data suggest that Sarm1KO in mSOD1 mice is not sufficient to ameliorate functional decline or motor neuron loss but does alter serum biomarker levels and provide protection to axons and glutamatergic synapses. This indicates that treatments targeting SARM1 could warrant further investigation in ALS, potentially as part of a combination therapy.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Lyzette M Matthews
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Isabella C Murray
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Sharn E Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| |
Collapse
|
33
|
Zhang J, Wen A, Chai W, Liang H, Tang C, Gan W, Xu R. Potential proteomic alteration in the brain of Tg(SOD1*G93A)1Gur mice: A new pathogenesis insight of amyotrophic lateral sclerosis. Cell Biol Int 2022; 46:1378-1398. [PMID: 35801511 DOI: 10.1002/cbin.11842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) remains unclear. The recent studies have suggested that the protein abnormalities could play some important roles in ALS because several protein mutations were found in individuals with this disease. However, proteins that are currently known to be associated with ALS only explain the pathogenesis of this disease in a minority of cases, thus, further screening is needed to identify other ALS-related proteins. In this study, we systematically analyzed and compared the brain proteomic alterations between a mouse model of ALS, the Tg(SOD1*G93A)1Gur model, and wild-type mice using isobaric tags for relative and absolute quantitation (iTRAQ) as well as bioinformatics methods. The results revealed some significant up- and downregulated proteins at the different developmental stages in the ALS-like mice as well as the possibly related cellular components, molecular functions, biological processes, and pathways in the development of ALS. Our results identified some possible proteins that participate in the pathogenesis of ALS as well as the cellular components that are damaged by these proteins, we additionally identified the molecular functions, the biological processes, and the pathways of these proteins as well as the molecules that are associated with these pathways. This study represents an important preliminary investigation of the role of proteomic abnormalities in the pathogenesis of ALS, both in human patients and other animal models. We present some novel findings that may serve as a basis for further investigation of abnormal proteins that are involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - An Wen
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiting Liang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chunyan Tang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weiming Gan
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Bette M, Cors E, Kresse C, Schütz B. Therapeutic Treatment of Superoxide Dismutase 1 (G93A) Amyotrophic Lateral Sclerosis Model Mice with Medical Ozone Decelerates Trigeminal Motor Neuron Degeneration, Attenuates Microglial Proliferation, and Preserves Monocyte Levels in Mesenteric Lymph Nodes. Int J Mol Sci 2022; 23:ijms23063403. [PMID: 35328829 PMCID: PMC8950555 DOI: 10.3390/ijms23063403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and lethal neurodegenerative disease in which progressive motor neuron loss and associated inflammation represent major pathology hallmarks. Both the prevention of neuronal loss and neuro-destructive inflammation are still unmet challenges. Medical ozone, an ozonized oxygen mixture (O3/O2), has been shown to elicit profound immunomodulatory effects in peripheral organs, and beneficial effects in the aging brain. We investigated, in a preclinical drug testing approach, the therapeutic potential of a five-day O3/O2i.p. treatment regime at the beginning of the symptomatic disease phase in the superoxide dismutase (SOD1G93A) ALS mouse model. Clinical assessment of SOD1G93A mice revealed no benefit of medical ozone treatment over sham with respect to gross body weight, motor performance, disease duration, or survival. In the brainstem of end stage SOD1G93A mice, however, neurodegeneration was found decelerated, and SOD1-related vacuolization was reduced in the motor trigeminal nucleus in the O3/O2 treatment group when compared to sham-treated mice. In addition, microglia proliferation was less pronounced in the brainstem, while the hypertrophy of astroglia remained largely unaffected. Finally, monocyte numbers were reduced in the blood, spleen, and mesenteric lymph nodes at postnatal day 60 in SOD1G93A mice. A further decrease in monocyte numbers seen in mesenteric lymph nodes from sham-treated SOD1G93A mice at an advanced disease stage, however, was prevented by medical ozone treatment. Collectively, our study revealed a select neuroprotective and possibly anti-inflammatory capacity for medical ozone when applied as a therapeutic agent in SOD1G93A ALS mice.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| | - Eileen Cors
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Department of Mitochondrial Proteostasis, Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Carolin Kresse
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| |
Collapse
|
35
|
MacLean M, López-Díez R, Vasquez C, Gugger PF, Schmidt AM. Neuronal-glial communication perturbations in murine SOD1 G93A spinal cord. Commun Biol 2022; 5:177. [PMID: 35228715 PMCID: PMC8885678 DOI: 10.1038/s42003-022-03128-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable disease characterized by proteinaceous aggregate accumulation and neuroinflammation culminating in rapidly progressive lower and upper motor neuron death. To interrogate cell-intrinsic and inter-cell type perturbations in ALS, single-nucleus RNA sequencing was performed on the lumbar spinal cord in the murine ALS model SOD1G93A transgenic and littermate control mice at peri-symptomatic onset stage of disease, age 90 days. This work uncovered perturbed tripartite synapse functions, complement activation and metabolic stress in the affected spinal cord; processes evidenced by cell death and proteolytic stress-associated gene sets. Concomitantly, these pro-damage events in the spinal cord co-existed with dysregulated reparative mechanisms. This work provides a resource of cell-specific niches in the ALS spinal cord and asserts that interwoven dysfunctional neuronal-glial communications mediating neurodegeneration are underway prior to overt disease manifestation and are recapitulated, in part, in the human post-mortem ALS spinal cord. In this paper, single-nucleus RNA sequencing was performed to provide a resource of cell-specific niches in the murine ALS model spinal cord at peri-symptomatic onset stage of disease. The data suggest that dysfunctional neuronal-glial communication occurs prior to disease onset, which is partially recapitulated in human post-mortem ALS spinal cord tissue.
Collapse
Affiliation(s)
- Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Carolina Vasquez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
36
|
Beneficial and Dimorphic Response to Combined HDAC Inhibitor Valproate and AMPK/SIRT1 Pathway Activator Resveratrol in the Treatment of ALS Mice. Int J Mol Sci 2022; 23:ijms23031047. [PMID: 35162978 PMCID: PMC8835218 DOI: 10.3390/ijms23031047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There is no cure and current treatments fail to slow the progression of the disease. Epigenetic modulation in the acetylation state of NF-kB RelA and the histone 3 (H3) protein, involved in the development of neurodegeneration, is a drugable target for the class-I histone deacetylases (HDAC) inhibitors, entinostat or valproate, and the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator, resveratrol. In this study, we demonstrated that the combination of valproate and resveratrol can restore the normal acetylation state of RelA in the SOD1(G93A) murine model of ALS, in order to obtain the neuroprotective form of NF-kB. We also investigated the sexually dimorphic development of the disease, as well as the sex-sensibility to the treatment administered. We showed that the combined drugs, which rescued AMPK activation, RelA and the histone 3 acetylation state, reduced the motor deficit and the disease pathology associated with motor neuron loss and microglial reactivity, Brain-Derived Neurotrophic Factor (BDNF) and B-cell lymphoma-extra large (Bcl-xL) level decline. Specifically, vehicle-administered males showed earlier onset and slower progression of the disease when compared to females. The treatment, administered at 50 days of life, postponed the time of onset in the male by 22 days, but not in a significant way in females. Nevertheless, in females, the drugs significantly reduced symptom severity of the later phase of the disease and prolonged the mice’s survival. Only minor beneficial effects were produced in the latter stage in males. Overall, this study shows a beneficial and sexually dimorphic response to valproate and resveratrol treatment in ALS mice.
Collapse
|
37
|
Lum JS, Brown ML, Farrawell NE, McAlary L, Ly D, Chisholm CG, Snow J, Vine KL, Karl T, Kreilaus F, McInnes LE, Nikseresht S, Donnelly PS, Crouch PJ, Yerbury JJ. CuATSM improves motor function and extends survival but is not tolerated at a high dose in SOD1 G93A mice with a C57BL/6 background. Sci Rep 2021; 11:19392. [PMID: 34588483 PMCID: PMC8481268 DOI: 10.1038/s41598-021-98317-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
The synthetic copper-containing compound, CuATSM, has emerged as one of the most promising drug candidates developed for the treatment of amyotrophic lateral sclerosis (ALS). Multiple studies have reported CuATSM treatment provides therapeutic efficacy in various mouse models of ALS without any observable adverse effects. Moreover, recent results from an open label clinical study suggested that daily oral dosing with CuATSM slows disease progression in patients with both sporadic and familial ALS, providing encouraging support for CuATSM in the treatment of ALS. Here, we assessed CuATSM in high copy SOD1G93A mice on the congenic C57BL/6 background, treating at 100 mg/kg/day by gavage, starting at 70 days of age. This dose in this specific model has not been assessed previously. Unexpectedly, we report a subset of mice initially administered CuATSM exhibited signs of clinical toxicity, that necessitated euthanasia in extremis after 3-51 days of treatment. Following a 1-week washout period, the remaining mice resumed treatment at the reduced dose of 60 mg/kg/day. At this revised dose, treatment with CuATSM slowed disease progression and increased survival relative to vehicle-treated littermates. This work provides the first evidence that CuATSM produces positive disease-modifying outcomes in high copy SOD1G93A mice on a congenic C57BL/6 background. Furthermore, results from the 100 mg/kg/day phase of the study support dose escalation determination of tolerability as a prudent step when assessing treatments in previously unassessed models or genetic backgrounds.
Collapse
Affiliation(s)
- Jeremy S Lum
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mikayla L Brown
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Christen G Chisholm
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Josh Snow
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Fabian Kreilaus
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Lachlan E McInnes
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Sara Nikseresht
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
38
|
Stella R, Bonadio RS, Cagnin S, Massimino ML, Bertoli A, Peggion C. Perturbations of the Proteome and of Secreted Metabolites in Primary Astrocytes from the hSOD1(G93A) ALS Mouse Model. Int J Mol Sci 2021; 22:ijms22137028. [PMID: 34209958 PMCID: PMC8268687 DOI: 10.3390/ijms22137028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose pathophysiology is largely unknown. Despite the fact that motor neuron (MN) death is recognized as the key event in ALS, astrocytes dysfunctionalities and neuroinflammation were demonstrated to accompany and probably even drive MN loss. Nevertheless, the mechanisms priming astrocyte failure and hyperactivation are still obscure. In this work, altered pathways and molecules in ALS astrocytes were unveiled by investigating the proteomic profile and the secreted metabolome of primary spinal cord astrocytes derived from transgenic ALS mouse model overexpressing the human (h)SOD1(G93A) protein in comparison with the transgenic counterpart expressing hSOD1(WT) protein. Here we show that ALS primary astrocytes are depleted of proteins-and of secreted metabolites-involved in glutathione metabolism and signaling. The observed increased activation of Nf-kB, Ebf1, and Plag1 transcription factors may account for the augmented expression of proteins involved in the proteolytic routes mediated by proteasome or endosome-lysosome systems. Moreover, hSOD1(G93A) primary astrocytes also display altered lipid metabolism. Our results provide novel insights into the altered molecular pathways that may underlie astrocyte dysfunctionalities and altered astrocyte-MN crosstalk in ALS, representing potential therapeutic targets to abrogate or slow down MN demise in disease pathogenesis.
Collapse
Affiliation(s)
- Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Raphael Severino Bonadio
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Stefano Cagnin
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | | | - Alessandro Bertoli
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| |
Collapse
|
39
|
Alhindi A, Boehm I, Chaytow H. Small junction, big problems: Neuromuscular junction pathology in mouse models of amyotrophic lateral sclerosis (ALS). J Anat 2021; 241:1089-1107. [PMID: 34101196 PMCID: PMC9558162 DOI: 10.1111/joa.13463] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with an extremely heterogeneous clinical and genetic phenotype. In our efforts to find therapies for ALS, the scientific community has developed a plethora of mouse models, each with their own benefits and drawbacks. The peripheral nervous system, specifically the neuromuscular junction (NMJ), is known to be affected in ALS patients and shows marked dysfunction across mouse models. Evidence of pathology at the NMJ includes denervated NMJs, changes in endplate size and loss of terminal Schwann cells. This review compares the temporal disease progression with severity of disease at the NMJ in mouse models with the most commonly mutated genes in ALS patients (SOD1, C9ORF72, TARDBP and FUS). Despite variability, early NMJ dysfunction seems to be a common factor in models with SOD1, TARDBP and FUS mutations, while C9ORF72 models do not appear to follow the same pattern of pathology. Further work into determining the timing of NMJ pathology, particularly in newer ALS mouse models, will confirm its pivotal role in ALS pathogenesis and therefore highlight the NMJ as a potential therapeutic target.
Collapse
Affiliation(s)
- Abrar Alhindi
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Ines Boehm
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Guerra S, Chung R, Yerbury J, Karl T. Behavioural effects of cage systems on the G93A Superoxide Dismutase 1 transgenic mouse model for amyotrophic lateral sclerosis. GENES BRAIN AND BEHAVIOR 2021; 20:e12735. [PMID: 33871173 DOI: 10.1111/gbb.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Environmental factors inherent to animal facilities can impact on the neuro-behavioural phenotype of laboratory mice and genetic mouse models for human diseases. Many facilities have upgraded from traditional 'open filter top' cages (FT) to individually ventilated cage (IVC) systems, which have been shown to modify various behavioural responses of laboratory mice. Importantly, the impact of IVC housing on the G93A superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis (ALS) is currently unknown. Male and female wild type-like (WT) and heterozygous SOD1G93A mice were group-housed in FT or IVC systems from PND 30 ± 5 onwards. Body weight and motor function were assessed weekly from 15 weeks onward. Mice were also tested for cognitive abilities (i.e., fear conditioning and social recognition memory) and sensorimotor gating (i.e., prepulse inhibition: PPI). SOD1G93A mice lost body weight, and their motor function degenerated over time compared with control littermates. Motor impairments developed faster when SOD1G93A females were housed in IVCs. Context and cue freezing were increased in SOD1G93A females compared with controls, whereas all SOD1G93A mice exhibited lower acoustic startle and PPI than WT mice. IVC housing led to an increase in cue freezing in males and reduced the severity of PPI deficits in SOD1G93A females. Overall, IVC housing impacted moderately on the SOD1G93A phenotype but central behavioural deficits were still evident across housing conditions. Nonetheless, our findings indicate the importance of assessing the effect of cage system in genetic mouse models as these systems can modulate the magnitude and onset of genotypic differences.
Collapse
Affiliation(s)
- Stefan Guerra
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Roger Chung
- Centre for MND Research, Macquarie University, Sydney, New South Wales, Australia
| | - Justin Yerbury
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| |
Collapse
|
41
|
Kim HN, Kim JY. A Systematic Review of Oropharyngeal Dysphagia Models in Rodents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4987. [PMID: 34067192 PMCID: PMC8125817 DOI: 10.3390/ijerph18094987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Oropharyngeal dysphagia is a condition characterized by swallowing difficulty in the mouth and pharynx, which can be due to various factors. Animal models of oropharyngeal dysphagia are essential to confirm the cause-specific symptoms, pathological findings, and the effect of treatment. Recently, various animal models of dysphagia have been reported. The purpose of this review is to organize the rodent models of oropharyngeal dysphagia reported to date. The articles were obtained from Medline, Embase, and the Cochrane library, and selected following the PRISMA guideline. The animal models in which oropharyngeal dysphagia was induced in rats or mice were selected and classified based on the diseases causing oropharyngeal dysphagia. The animal used, method of inducing dysphagia, and screening methods and results were collected from the selected 37 articles. Various rodent models of oropharyngeal dysphagia provide distinctive information on atypical swallowing. Applying and analyzing the treatment in rodent models of dysphagia induced from various causes is an essential process to develop symptom-specific treatments. Therefore, the results of this study provide fundamental and important data for selecting appropriate animal models to study dysphagia.
Collapse
Affiliation(s)
- Han-Na Kim
- Department of Dental Hygiene, College of Health and Medical Sciences, Cheongju University, Cheongju 28503, Korea;
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon 21936, Korea
| |
Collapse
|
42
|
Trabjerg MS, Andersen DC, Huntjens P, Oklinski KE, Bolther L, Hald JL, Baisgaard AE, Mørk K, Warming N, Kullab UB, Kroese LJ, Pritchard CEJ, Huijbers IJ, Nieland JDV. Downregulating carnitine palmitoyl transferase 1 affects disease progression in the SOD1 G93A mouse model of ALS. Commun Biol 2021; 4:509. [PMID: 33931719 PMCID: PMC8087699 DOI: 10.1038/s42003-021-02034-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by death of motor neurons. The etiology and pathogenesis remains elusive despite decades of intensive research. Herein, we report that dysregulated metabolism plays a central role in the SOD1 G93A mouse model mimicking ALS. Specifically, we report that the activity of carnitine palmitoyl transferase 1 (CPT1) lipid metabolism is associated with disease progression. Downregulation of CPT1 activity by pharmacological and genetic methods results in amelioration of disease symptoms, inflammation, oxidative stress and mitochondrial function, whereas upregulation by high-fat diet or corticosterone results in a more aggressive disease progression. Finally, we show that downregulating CPT1 shifts the gut microbiota communities towards a protective phenotype in SOD1 G93A mice. These findings reveal that metabolism, and specifically CPT1 lipid metabolism plays a central role in the SOD1 G93A mouse model and shows that CPT1 might be a therapeutic target in ALS.
Collapse
Affiliation(s)
| | | | - Pam Huntjens
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Luise Bolther
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jonas Laugård Hald
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Kasper Mørk
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nikolaj Warming
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ulla Bismark Kullab
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lona John Kroese
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Eliot Jason Pritchard
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo Johan Huijbers
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
43
|
Tomas D, McLeod VM, Chiam MDF, Wanniarachchillage N, Boon WC, Turner BJ. Dissociation of disease onset, progression and sex differences from androgen receptor levels in a mouse model of amyotrophic lateral sclerosis. Sci Rep 2021; 11:9255. [PMID: 33927243 PMCID: PMC8085012 DOI: 10.1038/s41598-021-88415-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder caused by loss of motor neurons. ALS incidence is skewed towards males with typically earlier age of onset and limb site of onset. The androgen receptor (AR) is the major mediator of androgen effects in the body and is present extensively throughout the central nervous system, including motor neurons. Mutations in the AR gene lead to selective lower motor neuron degeneration in male spinal bulbar muscular atrophy (SBMA) patients, emphasising the importance of AR in maintaining motor neuron health and survival. To evaluate a potential role of AR in onset and progression of ALS, we generated SOD1G93A mice with either neural AR deletion or global human AR overexpression. Using a Cre-LoxP conditional gene knockout strategy, we report that neural deletion of AR has minimal impact on the disease course in SOD1G93A male mice. This outcome was potentially confounded by the metabolically disrupted Nestin-Cre phenotype, which likely conferred the profound lifespan extension observed in the SOD1G93A double transgenic male mice. In addition, overexpression of human AR produced no benefit to disease onset and progression in SOD1G93A mice. In conclusion, the disease course of SOD1G93A mice is independent of AR expression levels, implicating other mechanisms involved in mediating the sex differences in ALS. Our findings using Nestin-Cre mice, which show an inherent metabolic phenotype, led us to hypothesise that targeting hypermetabolism associated with ALS may be a more potent modulator of disease, than AR in this mouse model.
Collapse
Affiliation(s)
- Doris Tomas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Victoria M McLeod
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Mathew D F Chiam
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nayomi Wanniarachchillage
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Wah C Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA, 6150, Australia.
| |
Collapse
|
44
|
Hummel C, Leylamian O, Pösch A, Weis J, Aronica E, Beyer C, Johann S. Expression and Cell Type-specific Localization of Inflammasome Sensors in the Spinal Cord of SOD1 (G93A) Mice and Sporadic Amyotrophic lateral sclerosis Patients. Neuroscience 2021; 463:288-302. [PMID: 33781799 DOI: 10.1016/j.neuroscience.2021.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Inflammasomes are key components of the innate immune system and activation of these multiprotein platforms is a crucial event in the etiopathology of amyotrophic lateral sclerosis (ALS). Inflammasomes consist of a pattern recognition receptor (PRR), the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and caspase 1. Exogenous or endogenous "danger signals" can trigger inflammasome assembly and promote maturation and release of pro-inflammatory cytokines, including interleukin 1β. Previous studies have demonstrated presence and activation of NLRP3 in spinal cord tissue from SOD1(G93A) mice and human sporadic ALS (sALS) patients. However, regulation and cell type-specific localization of other well-known PRRs has not yet been analysed in ALS. Here, we explored gene expression, protein concentration and cell type-specific localization of the NLRP1, NLRC4 and AIM2 inflammasomes in spinal cord samples from SOD1(G93A) mice and sALS patients. Transcription levels of NLRP1 and NLRC4, but not AIM2, were elevated in symptomatic SOD1(G93A) animals. Immunoblotting revealed elevated protein levels of NLRC4, which were significantly increased in sALS vs. control patients. Immunofluorescence studies revealed neuronal labelling of all investigated PRRs. Staining of AIM2 was detected in all types of glia, whereas glial type-specific labelling was observed for NLRP1 and NLRC4. Our findings revealed pathology-related and cell type-specific differences in the expression of subsets of PRRs. Besides NLRP3, NLRC4 appears to be linked more closely to ALS pathogenesis.
Collapse
Affiliation(s)
- Carmen Hummel
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Omid Leylamian
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Anna Pösch
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany; Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany.
| |
Collapse
|
45
|
Zakyrjanova GF, Giniatullin AR, Mukhutdinova KA, Kuznetsova EA, Petrov AM. Early differences in membrane properties at the neuromuscular junctions of ALS model mice: Effects of 25-hydroxycholesterol. Life Sci 2021; 273:119300. [PMID: 33662433 DOI: 10.1016/j.lfs.2021.119300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
AIMS Plasma hyperlipidemia is a protective factor in amyotrophic lateral sclerosis (ALS) while cholesterol-lowering drugs aggravate the pathology. We hypothesize that this phenomenon can be linked with membrane lipid alterations in the neuromuscular junctions (NMJs) occurring before motor neuron loss. METHODS Neurotransmitter release in parallel with lipid membrane properties in diaphragm NMJs of SOD1G93A (mSOD) mice at nine weeks of age (pre-onset stage) were assessed. KEY FINDINGS Despite on slight changes in spontaneous and evoked quantum release of acetylcholine, extracellular levels of choline at resting conditions, an indicator of non-quantum release, were significantly increased in mSOD mice. The use of lipid-sensitive fluorescent probes points to lipid raft disruption in the NMJs of mSOD mice. However, content of cholesterol, a key raft component was unchanged implying another pathway responsible for the loss of raft integrity. In the mSOD mice we found marked increase in levels of raft-destabilizing lipid ceramide. This was accompanied by enhanced ability to uptake of exogenous ceramide in NMJs. Acute and chronic administration of 25-hydroxycholesterol, whose levels increase due to hypercholesterolemia, recovered early alterations in membrane properties. Furthermore, chronic treatment with 25-hydroxycholesterol prevented increase in ceramide and extracellular choline levels as well as suppressed lipid peroxidation of NMJ membranes and fragmentation of end plates. SIGNIFICANCE Thus, lipid raft disruption likely due to ceramide accumulation could be early event in ALS which may trigger neuromuscular abnormalities. Cholesterol derivative 25-hydroxycholesterol may serve as a molecule restoring the membrane and functional properties of NMJs at the early stage.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Arthur R Giniatullin
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia
| | - Kamilla A Mukhutdinova
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
46
|
Konsolaki E, Koropouli E, Tsape E, Pothakos K, Zagoraiou L. Genetic Inactivation of Cholinergic C Bouton Output Improves Motor Performance but not Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2020; 450:71-80. [DOI: 10.1016/j.neuroscience.2020.07.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
|
47
|
Ruiz-Ruiz C, García-Magro N, Negredo P, Avendaño C, Bhattacharya A, Ceusters M, García AG. Chronic administration of P2X7 receptor antagonist JNJ-47965567 delays disease onset and progression, and improves motor performance in ALS SOD1 G93A female mice. Dis Model Mech 2020; 13:13/10/dmm045732. [PMID: 33174532 PMCID: PMC7648608 DOI: 10.1242/dmm.045732] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is one of the main physiopathological mechanisms of amyotrophic lateral sclerosis (ALS), produced by the chronic activation of microglia in the CNS. This process is triggered by the persistent activation of the ATP-gated P2X7 receptor (P2RX7, hereafter referred to as P2X7R). The present study aimed to evaluate the effects of the chronic treatment with the P2X7R antagonist JNJ-47965567 in the development and progression of ALS in the SOD1G93A murine model. SOD1G93A mice were intraperitoneally (i.p.) injected with either 30 mg/kg of JNJ-47965567 or vehicle 4 times per week, from pre-onset age (here, postnatal day 60; P60) until study endpoint. Body weight, motor coordination, phenotypic score, disease onset and survival were measured throughout the study, and compared between vehicle- and drug-injected groups. Treatment with the P2X7R antagonist JNJ-47965567 delayed disease onset, reduced body weight loss and improved motor coordination and phenotypic score in female SOD1G93A mice, although it did not increase lifespan. Interestingly, neither beneficial nor detrimental effects were observed in males in any of the analyzed parameters. Treatment did not affect motor neuron survival or ChAT, Iba-1 and P2X7R protein expression in endpoint individuals of mixed sexes. Overall, chronic administration of JNJ-47965567 for 4 times per week to SOD1G93A mice from pre-onset stage altered disease progression in female individuals while it did not have any effect in males. Our results suggest a partial, yet important, effect of P2X7R in the development and progression of ALS.
Collapse
Affiliation(s)
- Cristina Ruiz-Ruiz
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain.,Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Nuria García-Magro
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Pilar Negredo
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Carlos Avendaño
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Anindya Bhattacharya
- Neuroscience Therapeutic Area, Janssen Research and Development LLC., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Marc Ceusters
- Neuroscience Therapeutic Area, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain .,Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid 28006, Spain
| |
Collapse
|
48
|
Wang S, Tatman M, Monteiro MJ. Overexpression of UBQLN1 reduces neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Acta Neuropathol Commun 2020; 8:164. [PMID: 33028421 PMCID: PMC7539388 DOI: 10.1186/s40478-020-01039-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Missense mutations in UBQLN2 cause X-linked dominant inheritance of amyotrophic lateral sclerosis with frontotemporal dementia (ALS/FTD). UBQLN2 belongs to a family of four highly homologous proteins expressed in humans that play diverse roles in maintaining proteostasis, but whether one isoform can substitute for another is not known. Here, we tested whether overexpression of UBQLN1 can alleviate disease in the P497S UBQLN2 mouse model of ALS/FTD by crossing transgenic (Tg) mouse lines expressing the two proteins and characterizing the resulting genotypes using a battery of pathologic and behavioral tests. The pathologic findings revealed UBQLN1 overexpression dramatically reduced the burden of UBQLN2 inclusions, neuronal loss and disturbances in proteostasis in double Tg mice compared to single P497S Tg mice. The beneficial effects of UBQLN1 overexpression were primarily confirmed by behavioral improvements seen in rotarod performance and grip strength in male, but not female mice. Paradoxically, although UBQLN1 overexpression reduced pathologic signatures of disease in P497S Tg mice, female mice had larger percentage of body weight loss than males, and this correlated with a corresponding lack of behavioral improvements in the females. These findings lead us to speculate that methods to upregulate UBQLN1 expression may reduce pathogenicity caused by UBQLN2 mutations, but may also lead to gender-specific outcomes that will have to be carefully weighed with the therapeutic benefits of UBQLN1 upregulation.
Collapse
|
49
|
McLeod VM, Chiam MDF, Lau CL, Rupasinghe TW, Boon WC, Turner BJ. Dysregulation of Steroid Hormone Receptors in Motor Neurons and Glia Associates with Disease Progression in ALS Mice. Endocrinology 2020; 161:5867502. [PMID: 32621747 DOI: 10.1210/endocr/bqaa113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting motor neurons which shows sexual dimorphism in its incidence, age of onset, and progression rate. All steroid hormones, including androgens, estrogens, and progestogens, have been implicated in modulating ALS. Increasing evidence suggests that steroid hormones provide neuroprotective and neurotrophic support to motor neurons, either directly or via surrounding glial cell interactions, by activating their respective nuclear hormone receptors and initiating transcriptional regulatory responses. The SOD1G93A transgenic mouse also shows sex-specific differences in age of onset and progression, and remains the most widely used model in ALS research. To provide a more comprehensive understanding of the influences of steroid hormone signaling in ALS, we systemically characterized sex hormone receptor expression at transcript and protein levels, cellular localization, and the impact of disease course in lumbar spinal cords of male and female SOD1G93A mice. We found that spinal motor neurons highly express nuclear androgen receptor (AR), estrogen receptor (ER)α, ERβ, and progesterone receptor with variations in glial cell expression. AR showed the most robust sex-specific difference in expression and was downregulated in male SOD1G93A mouse spinal cord, in association with depletion in 5α-reductase type 2 isoform, which primarily metabolizes testosterone to 5α-dihydrotestosterone. ERα was highly enriched in reactive astrocytes of SOD1G93A mice and ERβ was strongly upregulated. The 5α-reductase type 1 isoform was upregulated with disease progression and may influence local spinal cord hormone levels. In conclusion, steroid hormone receptor expression is dynamic and cell-type specific in SOD1G93A mice which may provide targets to modulate progression in ALS.
Collapse
Affiliation(s)
- Victoria M McLeod
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mathew D F Chiam
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Thusitha W Rupasinghe
- Metabolomics Australia, School of BioSciences, University of Melbourne, VIC, Australia
| | - Wah C Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
50
|
Gomes C, Sequeira C, Barbosa M, Cunha C, Vaz AR, Brites D. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp Cell Res 2020; 395:112209. [PMID: 32739211 DOI: 10.1016/j.yexcr.2020.112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Astrocytes are major contributors of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). We investigated whether regional and cell maturation differences influence ALS astrocyte malfunction. Spinal and cortical astrocytes from SOD1G93A (mSOD1) 7-day-old mice were cultured for 5 and 13 days in vitro (DIV). Astrocyte aberrancies predominated in 13DIV cells with region specificity. 13DIV cortical mSOD1 astrocytes showed early morphological changes and a predominant reactive and inflammatory phenotype, while repressed proteins and genes were found in spinal cells. Inflammatory-associated miRNAs, e.g. miR-155/miR-21/miR-146a, were downregulated in the first and upregulated in the later ones. Interestingly, depleted miR-155/miR-21/miR-146a in small extracellular vesicles (sEVs/exosomes) was a common pathological feature. Cortical mSOD1 astrocytes induced late apoptosis and kinesin-1 downregulation in mSOD1 NSC-34 MNs, whereas spinal cells upregulated dynein, while decreased nNOS and synaptic-related genes. Both regional-distinct mSOD1 astrocytes enhanced iNOS gene expression in mSOD1 MNs. We provide information on the potential contribution of astrocytes to ALS bulbar-vs. spinal-onset pathology, local influence on neuronal dysfunction and their shared miRNA-depleted exosome trafficking. These causal and common features may have potential therapeutic implications in ALS. Future studies should clarify if astrocyte-derived sEVs are active players in ALS-related neuroinflammation and glial activation.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Marta Barbosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|