1
|
Fujita K, Desmond P, Blondelle J, Soták M, Rajan MR, Clark M, Estève É, Chan Y, Gu Y, Actis Dato V, Marrocco V, Dalton ND, Ghassemian M, Do A, Klos M, Peterson KL, Sheikh F, Cho Y, Börgeson E, Lange S. Combined Loss of Obsc and Obsl1 in Murine Hearts Results in Diastolic Dysfunction, Altered Metabolism, and Deregulated Mitophagy. Circ Heart Fail 2025; 18:e011867. [PMID: 40066567 PMCID: PMC11995854 DOI: 10.1161/circheartfailure.124.011867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/09/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Muscle proteins of the obscurin protein family play important roles in sarcomere organization and sarcoplasmic reticulum and T-tubule architecture and function. However, their precise molecular functions and redundancies between protein family members as well as their involvement in cardiac diseases remain to be fully understood. METHODS To investigate the functional roles of Obsc (obscurin) and its close homolog Obsl1 (obscurin-like 1) in the heart, we generated and analyzed knockout mice for Obsc, Obsl1, as well as Obsc/Obsl1 double knockouts. RESULTS We show that double-knockout mice are viable but show postnatal deficits in cardiac muscle sarcoplasmic reticulum and mitochondrial architecture and function at the microscopic, biochemical, and cellular levels. Altered sarcoplasmic reticulum structure resulted in perturbed calcium cycling, whereas mitochondrial ultrastructure deficits were linked to decreased levels of Chchd3 (coiled-coil-helix-coiled-coil-helix domain containing 3), a Micos (mitochondrial contact site and cristae organizing system) complex protein. Hearts of double-knockout mice also show altered levels of Atg4 proteins, novel Obsl1 interactors, resulting in abnormal mitophagy, and increased unfolded protein response. At the physiological level, loss of obscurin and Obsl1 resulted in a profound delay of cardiac relaxation, associated with metabolic signs of heart failure. CONCLUSIONS Taken together, our data suggest that Obsc and Obsl1 play crucial roles in cardiac sarcoplasmic reticulum structure, calcium cycling, mitochondrial function, turnover, and metabolism.
Collapse
Affiliation(s)
- Kyohei Fujita
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Japan (K.F.)
| | - Patrick Desmond
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Jordan Blondelle
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matúš Soták
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Meenu Rohini Rajan
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Madison Clark
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Éric Estève
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- PhyMedExp, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Regionale Universitaire (CHRU) Montpellier, France (E.E.)
| | - Yunghang Chan
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yusu Gu
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Virginia Actis Dato
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Valeria Marrocco
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Nancy D. Dalton
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry (M.G.), University of California San Diego, La Jolla
| | - Aryanne Do
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matthew Klos
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Kirk L. Peterson
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Farah Sheikh
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Emma Börgeson
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Stephan Lange
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| |
Collapse
|
2
|
Onnée M, Malfatti E. The widening genetic and myopathologic spectrum of congenital myopathies (CMYOs): a narrative review. Neuromuscul Disord 2025; 49:105338. [PMID: 40112751 DOI: 10.1016/j.nmd.2025.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Congenital myopathies (CMYOs) represent a genetically and clinically heterogeneous group of disorders characterized by early-onset muscle weakness and distinct myopathologic features. The advent of next-generation sequencing (NGS) has accelerated the identification of causative genes, leading to the discovery of novel CMYOs and thereby challenging the traditional classification. In this comprehensive review, we focus on the clinical, myopathologic, molecular and pathophysiological features of 33 newly identified CMYOs.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Hôpital Henri Mondor, 94010 Créteil, France; European Reference Center for Neuromuscular Disorders, EURO-NMD, France.
| |
Collapse
|
3
|
Wang J, Guo W, Wang Q, Yang Y, Sun X. Recent advances of myotubularin-related (MTMR) protein family in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1364604. [PMID: 38529329 PMCID: PMC10961392 DOI: 10.3389/fcvm.2024.1364604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Belonging to a lipid phosphatase family containing 16 members, myotubularin-related proteins (MTMRs) are widely expressed in a variety of tissues and organs. MTMRs preferentially hydrolyzes phosphatidylinositol 3-monophosphate and phosphatidylinositol (3,5) bis-phosphate to generate phosphatidylinositol and phosphatidylinositol 5-monophosphate, respectively. These phosphoinositides (PIPs) promote membrane degradation during autophagosome-lysosomal fusion and are also involved in various regulatory signal transduction. Based on the ability of modulating the levels of these PIPs, MTMRs exert physiological functions such as vesicle trafficking, cell proliferation, differentiation, necrosis, cytoskeleton, and cell migration. It has recently been found that MTMRs are also involved in the occurrence and development of several cardiovascular diseases, including cardiomyocyte hypertrophy, proliferation of vascular smooth muscle cell, LQT1, aortic aneurysm, etc. This review summarizes the functions of MTMRs and highlights their pathophysiological roles in cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wei Guo
- Clinical Research Center, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Dilated-Left Ventricular Non-Compaction Cardiomyopathy in a Pediatric Case with SPEG Compound Heterozygous Variants. Int J Mol Sci 2022; 23:ijms23095205. [PMID: 35563595 PMCID: PMC9102709 DOI: 10.3390/ijms23095205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Left Ventricular Non-Compaction (LVNC) is defined by the triad prominent myocardial trabecular meshwork, thin compacted layer, and deep intertrabecular recesses. LVNC associated with dilation is characterized by the coexistence of left ventricular dilation and systolic dysfunction. Pediatric cases with dilated-LVNC have worse outcomes than those with isolated dilated cardiomyopathy and adult patients. Herein, we report a clinical and genetic investigation using trio-based whole-exome sequencing of a pediatric case with early-onset dilated-LVNC. Compound heterozygous mutations were identified in the Striated Muscle Enriched Protein Kinase (SPEG) gene, a key regulator of cardiac calcium homeostasis. A paternally inherited mutation: SPEG; p.(Arg2470Ser) and the second variant, SPEG; p.(Pro2687Thr), is common and occurred de novo. Subsequently, Sanger sequencing was performed for the family in order to segregate the variants. Thus, the index case, his father, and both sisters carried the SPEG: p.(Arg2470Ser) variant. Only the index patient carried both SPEG variants. Both sisters, as well as the patient’s father, showed LVNC without cardiac dysfunction. The unaffected mother did not harbor any of the variants. The in silico analysis of the identified variants (rare and common) showed a decrease in protein stability with alterations of the physical properties as well as high conservation scores for the mutated residues. Interestingly, using the Project HOPE tool, the SPEG; p.(Pro2687Thr) variant is predicted to disturb the second fibronectin type III domain of the protein and may abolish its function. To our knowledge, the present case is the first description of compound heterozygous SPEG mutations involving a de novo variant and causing dilated-LVNC without neuropathy or centronuclear myopathy.
Collapse
|
5
|
Espinosa KG, Geissah S, Groom L, Volpatti J, Scott IC, Dirksen RT, Zhao M, Dowling JJ. Characterization of a novel zebrafish model of SPEG-related centronuclear myopathy. Dis Model Mech 2022; 15:275324. [PMID: 35293586 PMCID: PMC9118044 DOI: 10.1242/dmm.049437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 01/03/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital neuromuscular disorder caused by pathogenic variation in genes associated with membrane trafficking and excitation–contraction coupling (ECC). Bi-allelic autosomal-recessive mutations in striated muscle enriched protein kinase (SPEG) account for a subset of CNM patients. Previous research has been limited by the perinatal lethality of constitutive Speg knockout mice. Thus, the precise biological role of SPEG in developing skeletal muscle remains unknown. To address this issue, we generated zebrafish spega, spegb and spega;spegb (speg-DKO) mutant lines. We demonstrated that speg-DKO zebrafish faithfully recapitulate multiple phenotypes associated with CNM, including disruption of the ECC machinery, dysregulation of calcium homeostasis during ECC and impairment of muscle performance. Taking advantage of zebrafish models of multiple CNM genetic subtypes, we compared novel and known disease markers in speg-DKO with mtm1-KO and DNM2-S619L transgenic zebrafish. We observed Desmin accumulation common to all CNM subtypes, and Dnm2 upregulation in muscle of both speg-DKO and mtm1-KO zebrafish. In all, we establish a new model of SPEG-related CNM, and identify abnormalities in this model suitable for defining disease pathomechanisms and evaluating potential therapies. This article has an associated First Person interview with the joint first authors of the paper. Summary: We created a novel zebrafish Speg mutant model of centronuclear myopathy that recapitulates key features of the human disorder and provides insight into pathomechanisms of the disease.
Collapse
Affiliation(s)
- Karla G Espinosa
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Salma Geissah
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jonathan Volpatti
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.,Program for Development and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Mo Zhao
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.,Department of Pediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
6
|
Gurgel-Giannetti J, Souza LS, Messina de Pádua Andrade GF, Derlene MDF, Meira ZMA, Azevedo BVM, Jr WC, Diniz SSL, Carvalhais MB, Oliveira JRS, Uliana L, Bráulio R, Costa PHN, Filho GB, Vainzof M. A Novel SPEG mutation causing congenital myopathy with fiber size disproportion and dilated cardiomyopathy with heart transplantation. Neuromuscul Disord 2021; 31:1199-1206. [PMID: 34742623 DOI: 10.1016/j.nmd.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Congenital myopathies are a heterogeneous group of conditions diagnosed based on the clinical presentation, muscle histopathology and genetic defects. Recessive mutations in the SPEG gene have been described in recent years and are primarily associated with centronuclear myopathy with cardiomyopathy. In this report, we describe two Brazilian siblings, aged 13 and 6 years, with a novel homozygous mutation (c.8872 C>T:p.Arg2958Ter) in the SPEG gene leading to a congenital myopathy. In the older sibling, the muscle biopsy showed fiber size disproportion. The mean diameter of type 2 fibers (119 µm) was significantly higher than type 1 (57 µm) (P < 0,001) with a 72% prevalence of type 1 fibers. The patient also had progressive cardiomyopathy treated with heart transplantation. The present report expands the muscle histopathological findings related to mutations in the SPEG gene, including fiber size disproportion without central nuclei. Additionally, this report describes the first case of heart transplantation in a patient with SPEG mutations.
Collapse
Affiliation(s)
- Juliana Gurgel-Giannetti
- Department of Pediatrics, Service of Neuropediatrics from Federal University of Minas Gerais, Brazil Rua Herculano de Freitas, 905 apt 1302 Bairro Gutierrez, Belo Horizonte, Brazil.
| | - Lucas Santos Souza
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center from University of São Paulo, Brazil
| | | | - Maria de Fátima Derlene
- Department of Pediatrics, Service of Pediatric Cardiology from Federal University of Minas Gerais, Brazil
| | - Zilda Maria Alves Meira
- Department of Pediatrics, Service of Pediatric Cardiology from Federal University of Minas Gerais, Brazil
| | - Beatriz Vilela Morais Azevedo
- Department of Pediatrics, Service of Neuropediatrics from Federal University of Minas Gerais, Brazil Rua Herculano de Freitas, 905 apt 1302 Bairro Gutierrez, Belo Horizonte, Brazil
| | - Wilson Campos Jr
- Department of Radiology, Hospital Mater Dei Contorno, Belo Horizonte, Brazil
| | - Sabrina Stephanie Lana Diniz
- Department of Pediatrics, Service of Neuropediatrics from Federal University of Minas Gerais, Brazil Rua Herculano de Freitas, 905 apt 1302 Bairro Gutierrez, Belo Horizonte, Brazil
| | - Marina Belisario Carvalhais
- Department of Pediatrics, Service of Neuropediatrics from Federal University of Minas Gerais, Brazil Rua Herculano de Freitas, 905 apt 1302 Bairro Gutierrez, Belo Horizonte, Brazil
| | | | - Livia Uliana
- Department of Pediatrics, Service of Neuropediatrics from Federal University of Minas Gerais, Brazil Rua Herculano de Freitas, 905 apt 1302 Bairro Gutierrez, Belo Horizonte, Brazil
| | - Renato Bráulio
- Department of Clinics, Service of cardiology and cardiovascular Surgery from Federal University of Minas Gerais, Brazil
| | - Paulo Henrique Nogueira Costa
- Department of Clinics, Service of cardiology and cardiovascular Surgery from Federal University of Minas Gerais, Brazil
| | | | - Mariz Vainzof
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center from University of São Paulo, Brazil
| |
Collapse
|
7
|
Yildirim M, Balasar O, Kose E, Dogan MT. Mild congenital myopathy due to a novel variation in SPEG gene. Intractable Rare Dis Res 2021; 10:220-222. [PMID: 34466346 PMCID: PMC8397816 DOI: 10.5582/irdr.2021.01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 11/05/2022] Open
Abstract
Centronuclear myopathies (CNMs) are a subgroup of congenital myopathies (CMs) characterized by muscle weakness, genetic heterogeneity, and predominant type 1 fibers and increased central nuclei in muscle biopsy. Mutations in CNM-causing genes such as MTM1, DNM2, BIN1, RYR1, CACNA1S, TTN, and extraordinary rarely SPEG (striated muscle preferentially expressed protein kinase) have been identified for about 60-80% of patients. Herein, we report a case of CM due to a novel variation in the SPEG gene, manifested by mild neonatal hypotonia, muscle weakness, delayed motor milestones, and ophthalmoplegia, without dilated cardiomyopathy. We identified a novel variation [c.153C>T (p.Asn51=) in exon 1] in the SPEG gene with whole-exome sequencing and confirmed by Sanger sequencing. Mild intellectual disability has not been associated with SPEG-related CM in the previous reports. We suggest that this report expands the phenotypic spectrum of SPEG-related CM, and further case reports are required to expand the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Mirac Yildirim
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
- Address correspondence to:Mirac Yildirim, Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, RI 06590, Turkey. E-mail:
| | - Ozgur Balasar
- Department of Medical Genetics, Konya Research and Training Hospital, Konya, Turkey
| | - Engin Kose
- Department of Pediatric Metabolism and Nutrition, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Melih Timucin Dogan
- Department of Pediatric Cardiology, Konya Research and Training Hospital, Konya, Turkey
| |
Collapse
|
8
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
9
|
Zhang G, Xu M, Huang T, Lin W, Chen J, Chen W, Chang X. Clinical and genetic analysis of a case with centronuclear myopathy caused by SPEG gene mutation: a case report and literature review. BMC Pediatr 2021; 21:209. [PMID: 33926407 PMCID: PMC8082920 DOI: 10.1186/s12887-021-02656-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Centronuclear myopathy (CNM), a subtype of congenital myopathy (CM), is a group of clinical and genetically heterogeneous muscle disorders. Since the discovery of the SPEG gene and disease-causing variants, only a few additional patients have been reported. CASE PRESENTATION The child, a 13-year-old female, had delayed motor development since childhood, weakness of both lower extremities for 10 years, gait swinging, and a positive Gower sign. Her distal muscle strength of both lower extremities was grade IV. The electromyography showed myogenic damage and electromyographic changes. Her 11-year-old sister had a similar muscle weakness phenotype. Gene sequencing revealed that both sisters had SPEG compound heterozygous mutations, and the mutation sites were c.3715 + 4C > T and c.3588delC, which were derived from their parents. These variant sites have not been reported before. The muscle biopsy showed the nucleic (> 20% of fibers) were located in the center of the cell, the average diameter of type I myofibers was slightly smaller than that of type II myofibers, and the pathology of type I myofibers was dominant, which agreed with the pathological changes of centronuclear myopathy. CONCLUSIONS The clinical phenotypes of CNM patients caused by mutations at different sites of the SPEG gene are also different. In this case, there was no cardiomyopathy. This study expanded the number of CNM cases and the mutation spectrum of the SPEG gene to provide references for prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Min Xu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Huang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxin Lin
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinglin Chen
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wangyang Chen
- Kaiumph Medical Diagnostics Co, Ltd, Beijing, 100102, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
| |
Collapse
|
10
|
Campbell H, Aguilar-Sanchez Y, Quick AP, Dobrev D, Wehrens XHT. SPEG: a key regulator of cardiac calcium homeostasis. Cardiovasc Res 2020; 117:2175-2185. [PMID: 33067609 DOI: 10.1093/cvr/cvaa290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Proper cardiac Ca2+ homeostasis is essential for normal excitation-contraction coupling. Perturbations in cardiac Ca2+ handling through altered kinase activity has been implicated in altered cardiac contractility and arrhythmogenesis. Thus, a better understanding of cardiac Ca2+ handling regulation is vital for a better understanding of various human disease processes. 'Striated muscle preferentially expressed protein kinase' (SPEG) is a member of the myosin light chain kinase family that is key for normal cardiac function. Work within the last 5 years has revealed that SPEG has a crucial role in maintaining normal cardiac Ca2+ handling through maintenance of transverse tubule formation and phosphorylation of junctional membrane complex proteins. Additionally, SPEG has been causally impacted in human genetic diseases such as centronuclear myopathy and dilated cardiomyopathy as well as in common acquired cardiovascular disease such as heart failure and atrial fibrillation. Given the rapidly emerging role of SPEG as a key cardiac Ca2+ regulator, we here present this review in order to summarize recent findings regarding the mechanisms of SPEG regulation of cardiac excitation-contraction coupling in both physiology and human disease. A better understanding of the roles of SPEG will be important for a more complete comprehension of cardiac Ca2+ regulation in physiology and disease.
Collapse
Affiliation(s)
- Hannah Campbell
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann P Quick
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dobromir Dobrev
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Grogan A, Tsakiroglou P, Kontrogianni-Konstantopoulos A. Double the trouble: giant proteins with dual kinase activity in the heart. Biophys Rev 2020; 12:1019-1029. [PMID: 32638332 DOI: 10.1007/s12551-020-00715-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obscurin and its homolog, striated muscle preferentially expressed gene (SPEG), constitute a unique group of proteins abundantly expressed in striated muscles that contain two tandemly arranged MLCK-like kinases. The physiological significance of the dual kinase motifs is largely understudied; however, a collection of recent studies characterizing their binding interactions, putative targets, and disease-linked mutations have begun to shed light on their potential roles in muscle pathophysiology. Specifically, obscurin kinase 1 is proposed to regulate cardiomyocyte adhesion via phosphorylating N-cadherin, whereas SPEG kinases 1 and 2 regulate Ca2+ cycling by phosphorylating junctophilin-2 and the sarcoendoplasmic Ca2+ ATPase 2 (SERCA2). Herein, we review what is currently known regarding the potential substrates, physiological roles, and disease associations of obscurin and SPEG tandem kinase domains and provide future directions that have yet to be investigated.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD, 21201, USA
| | - Panagiotis Tsakiroglou
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD, 21201, USA
| | | |
Collapse
|
12
|
Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: The underestimated part of the sarcomere. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118440. [PMID: 30738787 PMCID: PMC7023976 DOI: 10.1016/j.bbamcr.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Collapse
Affiliation(s)
- Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, San Diego, Medical Sciences Research Bldg, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Irina Agarkova
- InSphero, Wagistrasse 27, CH-8952 Schlieren, Switzerland
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
13
|
Tang J, Ma W, Chen Y, Jiang R, Zeng Q, Tan J, Jiang H, Li Q, Zhang VW, Wang J, Tang H, Luo L. Novel SPEG variant cause centronuclear myopathy in China. J Clin Lab Anal 2019; 34:e23054. [PMID: 31625632 PMCID: PMC7031609 DOI: 10.1002/jcla.23054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Centronuclear myopathy (CNM), a subtype of congenital myopathy (CM), is a group of clinical and genetically heterogeneous muscle disorders. Centronuclear myopathy is a kind of disease difficult to diagnose due to its genetic diversity. Since the discovery of the SPEG gene and disease-causing variants, only a few additional patients have been reported. METHODS A radiograph test, ultrasonic test, and biochemical tests were applied to clinical diagnosis of CNM. We performed trio medical exome sequencing of the family and conservation analysis to identify variants. RESULTS We report a pair of severe CNM twins with the same novel homozygous SPEG variant c. 8710A>G (p.Thr2904Ala) identified by clinical trio medical exome sequencing of the family and conservation analysis. The twins showed clinical symptoms of facial weakness, hypotonia, arthrogryposis, strephenopodia, patent ductus arteriosus, and pulmonary arterial hypertension. CONCLUSIONS Our report expands the clinical and molecular repertoire of CNM and enriches the variant spectrum of the SPEG gene in the Chinese population and helps us further understand the pathogenesis of CNM.
Collapse
Affiliation(s)
- Jia Tang
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Wei Ma
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yangran Chen
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Runze Jiang
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Qinlong Zeng
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Jieliang Tan
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Hongqing Jiang
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Qing Li
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Victor W Zhang
- AmCare Genomics Laboratory, International BioIsland, Guangzhou, China
| | - Jing Wang
- AmCare Genomics Laboratory, International BioIsland, Guangzhou, China
| | - Hui Tang
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Qualls AE, Donkervoort S, Herkert JC, D'gama AM, Bharucha-Goebel D, Collins J, Chao KR, Foley AR, Schoots MH, Jongbloed JDH, Bönnemann CG, Agrawal PB. Novel SPEG mutations in congenital myopathies: Genotype-phenotype correlations. Muscle Nerve 2018; 59:357-362. [PMID: 30412272 DOI: 10.1002/mus.26378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Centronuclear myopathies (CNMs) are a subtype of congenital myopathies (CMs) characterized by muscle weakness, predominant type 1 fibers, and increased central nuclei. SPEG (striated preferentially expressed protein kinase) mutations have recently been identified in 7 CM patients (6 with CNMs). We report 2 additional patients with SPEG mutations expanding the phenotype and evaluate genotype-phenotype correlations associated with SPEG mutations. METHODS Using whole exome/genome sequencing in CM families, we identified novel recessive SPEG mutations in 2 patients. RESULTS Patient 1, with severe muscle weakness requiring respiratory support, dilated cardiomyopathy, ophthalmoplegia, and findings of nonspecific CM on muscle biopsy carried a homozygous SPEG mutation (p.Val3062del). Patient 2, with milder muscle weakness, ophthalmoplegia, and CNM carried compound heterozygous mutations (p.Leu728Argfs*82) and (p.Val2997Glyfs*52). CONCLUSIONS The 2 patients add insight into genotype-phenotype correlations of SPEG-associated CMs. Clinicians should consider evaluating a CM patient for SPEG mutations even in the absence of CNM features. Muscle Nerve 59:357-362, 2019.
Collapse
Affiliation(s)
- Anita E Qualls
- Division of Newborn Medicine, Division of Genetics and Genomics, and The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA
| | - Johanna C Herkert
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Alissa M D'gama
- Division of Newborn Medicine, Division of Genetics and Genomics, and The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Diana Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA.,Division of Neurology, Children's National Health System, Washington, DC, USA
| | - James Collins
- Mercy Clinic Pediatric Neurology, Springfield, Missouri, USA
| | - Katherine R Chao
- Center for Mendelian Genomics at the Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA
| | - Mirthe H Schoots
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Division of Genetics and Genomics, and The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| |
Collapse
|
15
|
Wang H, Schänzer A, Kampschulte B, Daimagüler HS, Logeswaran T, Schlierbach H, Petzinger J, Ehrhardt H, Hahn A, Cirak S. A novel SPEG mutation causes non-compaction cardiomyopathy and neuropathy in a floppy infant with centronuclear myopathy. Acta Neuropathol Commun 2018; 6:83. [PMID: 30157964 PMCID: PMC6114030 DOI: 10.1186/s40478-018-0589-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
|