1
|
Ntetsika T, Catrina SB, Markaki I. Understanding the link between type 2 diabetes mellitus and Parkinson's disease: role of brain insulin resistance. Neural Regen Res 2025; 20:3113-3123. [PMID: 39715083 PMCID: PMC11881720 DOI: 10.4103/nrr.nrr-d-23-01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 12/25/2024] Open
Abstract
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden. Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms. Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes. The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease, with emphasis on brain insulin resistance, is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| |
Collapse
|
2
|
Debnath M, Malhotra M, Kulkarni A. Protein corona formation on supramolecular polymer nanoparticles causes differential endosomal sorting resulting in an attenuated NLRP3 inflammasome activation. Biomater Sci 2025; 13:3030-3047. [PMID: 40244934 DOI: 10.1039/d5bm00244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Upon introduction into biological environments, nanoparticles undergo the spontaneous formation of a dynamic protein corona, which continually evolves and significantly modifies their physicochemical properties and interactions with biological systems. This evolving protein corona can critically impact the nanoparticles' endocytic pathways and targeting efficiency, potentially altering their functional characteristics and obscuring their intended therapeutic effects. Despite considerable focus on the characterization of corona proteins and their impact on nanoparticle uptake, the intracellular processes and their effects on immunogenicity are not yet thoroughly understood. Supramolecular polymer nanoparticles (SNPs) with a highly hydrophobic core are recognized for triggering NLRP3 inflammasome activation, a key component of the innate immune system. Here, it is reported that the protein corona formation on SNPs exerts an inhibitory effect on the activation pathway of NLRP3 inflammasome. The protein corona impairs the intrinsic capacity of SNPs to induce lysosomal membrane rupture, thereby diminishing the cellular stress signals necessary for the formation of the NLRP3 inflammasome complex. Furthermore, the cells transport SNPs with an attached protein corona to recycling endosomes, where they are sorted and prepared for exocytosis. Conversely, nascent SNPs are primarily confined to late endosomes and lysosomes, leading to lysosomal rupture and inflammasome activation. This differential routing reflects the significant impact of the protein corona on the cellular handling and subsequent biological activity of nanoparticles. In summary, this study elucidates the fundamental role of the protein corona in shaping the intracellular disposition of nanoparticles, with implications for modulating their interactions with the immune system.
Collapse
Affiliation(s)
- Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Mehak Malhotra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Yin X, Li G, Ji F, Wang M, Gao Y, Li F, Wang Z, Han G, Gao Z. Tim-3 Deficiency Ameliorates Motor Deficits and Neuroinflammation in MPP+/MPTP-Induced Parkinson's Disease Models via the NF-κB/NLRP3 Pathway. Mol Neurobiol 2025; 62:5566-5578. [PMID: 39579278 DOI: 10.1007/s12035-024-04560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/16/2024] [Indexed: 11/25/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, and neuroinflammation plays a pivotal role in its pathogenesis. T-cell immunoglobulin and mucin-domain-containing molecule 3 (Tim-3) is a crucial immunoregulatory mediator in various diseases; however, its roles and underlying molecular mechanisms in PD remain unclear. We established in vitro and in vivo 1-methyl-4-phenylpyridinium (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models in Tim-3-knockout BV2 cells and mice, respectively. Motor function was assessed through behavioral tests, including pole, traction, forced swimming, and open field tests. Immunofluorescence was used to examine dopaminergic neuron loss and glial activation. The expression levels of nuclear factor-kappa B (NF-κB)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) pathway components were evaluated by western blotting. Proinflammatory cytokines were measured via enzyme-linked immunosorbent assay (ELISA). Compared with the wild-type, Tim-3 expression was significantly increased in the PD model, and Tim-3 deficiency mitigated MPTP-induced motor deficits, dopaminergic neuron loss, and glial cell activation. Furthermore, Tim-3 deficiency suppressed neuroinflammation by negatively modulating the NF-κB/NLRP3 pathway, thereby downregulating the expression of the proinflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α. These findings indicate that Tim-3 plays a proinflammatory role in PD by regulating the NF-κB/NLRP3 pathway, highlighting Tim-3 as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xi Yin
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Ge Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fei Ji
- Department of Otolaryngology-Head and Neck Surgery, The Six Medical Center and National Clinical Research Center for Otolaryngologic Disease, Chinese PLA General Hospital, Beijing, China
| | - Miao Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yang Gao
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Fengzhu Li
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Zhenfu Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China.
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Zhongbao Gao
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Mohan M, Mannan A, Singh TG. Unravelling the role of protein kinase R (PKR) in neurodegenerative disease: a review. Mol Biol Rep 2025; 52:377. [PMID: 40205152 DOI: 10.1007/s11033-025-10484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Protein Kinase R is an essential regulator of many cell activities and belongs to one of the largest and most functionally complex gene families. These are found all over the body, and by adding phosphate groups to the substrate proteins, they regulate their activity and coordinate the action of almost all cellular processes. Recent research has illuminated the involvement of PKR in the pathogenesis of neurodegenerative disorders (NDs), thereby expanding our understanding of intricate molecular mechanisms underlying disease progression. Through their inhibition or activation, they hold potential therapeutic targets for the pathogenesis or protection of NDs. In the case of AD (AD), PKR contributes to the protection or elevation of Aβ accumulation, neuroinflammation, synaptic plasticity alterations, and neuronal excitability. Similarly, in Parkinson's disease (PD), PKR again has a dual role in dopaminergic neuronal loss, gene mutations, and mitochondrial dysfunction via various pathways. Notably, neuronal excitotoxicity, as well as genetic mutations, have been linked to ALS. In Huntington's disease (HD), PKR is associated with decreased or increased mutated genes, striatal neuron degeneration, neuroinflammation, and excitotoxicity. This review emphasizes strategies that target PKR for the treatment of neurodegenerative disorders. Doing so offers valuable insights that can guide future research endeavors and the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India.
| |
Collapse
|
5
|
Yan C, Tian Z, Ruan W, Wu M, Wang W, Liu Z. Erianin isolated from Dendrobium huoshanense alleviated neuroinflammation in MPTP-induced Parkinson's disease model via NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119620. [PMID: 40074095 DOI: 10.1016/j.jep.2025.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is one of the most common neurodegenerative disorders, yet effective therapeutic options remain limited. Dendrobium huoshanense (DH), a medicinal and edible herb mainly distributed in Ta-pieh Mountains of Central China, has been used to treat disorders of consciousness and chronic nervous diseases in the local hospital for thousands of years. Erianin, a bioactive bibenzyl compound isolated from DH, has emerged as a potential neuroprotective agent due to its anti-inflammatory and antioxidant properties. AIM OF THE STUDY This study aimed to investigate the neuroprotective effects of Erianin in the treatment of PD and the underlying mechanisms, particularly focusing on inflammation and oxidative stress, through both in vivo and in vitro models. MATERIALS AND METHODS A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was employed. The protective effects of Erianin were evaluated through neurobehavioral tests, immunohistochemistry, immunofluorescence, Nissl staining, serum biochemical tests, and Western blotting. The role of Erianin in modulating the NF-κB/NLRP3 pathway was investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia cells. RESULTS Erianin significantly alleviated MPTP-induced motor deficits, reduced neuroinflammation, and reversed abnormal secretion of inflammatory and oxidative stress factors in the serum. Additionally, Erianin suppressed the gene expression of NOD-like receptor protein 3 (NLRP3) and tyrosine hydroxylase (TH) in the striatum of PD mice. And, Erianin inhibited the activation of the NF-κB/NLRP3 pathway, decreased the production of oxidative stress factors, and reversed the secretion of inflammatory mediators in LPS-stimulated BV-2 microglia cells. CONCLUSION Erianin exerts neuroprotective effects in Parkinson's disease primarily by inhibiting the NF-κB/NLRP3 signaling pathway. These findings suggest that Erianin holds promise as a potential therapeutic candidate for the treatment of PD.
Collapse
Affiliation(s)
- Congjie Yan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zexi Tian
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Weiquan Ruan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Mengfen Wu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Weidong Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zenggen Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
6
|
Liang JY, Yuan XL, Jiang JM, Zhang P, Tan K. Targeting the NLRP3 inflammasome in Parkinson's disease: From molecular mechanism to therapeutic strategy. Exp Neurol 2025; 386:115167. [PMID: 39884329 DOI: 10.1016/j.expneurol.2025.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K+) efflux. Upon activation, it recruits and activates caspase-1, then processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which mediate neuroinflammation in Parkinson's disease. In this review, we provide a comprehensive overview of NLRP3 inflammasome, detailing its structure, activation pathways, and the factors that trigger its activation. We also explore the pathological mechanisms by which NLRP3 contributes to Parkinson's disease and discuss potential strategies for targeting NLRP3 as a therapeutic approach.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China
| | - Xiao-Lei Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neurology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Ping Zhang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Kuang Tan
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China.
| |
Collapse
|
7
|
Alboni S, Tascedda F, Uezato A, Sugama S, Chen Z, Marcondes MCG, Conti B. Interleukin 18 and the brain: neuronal functions, neuronal survival and psycho-neuro-immunology during stress. Mol Psychiatry 2025:10.1038/s41380-025-02951-z. [PMID: 40121365 DOI: 10.1038/s41380-025-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Interleukin 18 (IL-18) is a pleiotropic cytokine that regulates peripheral innate and adaptive immune response and is also expressed in the brain. Here, we summarize the current knowledge on the biology of IL-18 in the brain and the efforts to determine its significance concerning neurological and psychiatric conditions. The picture that emerges is that of a heavily regulated molecule that can contribute to neuroinflammatory-mediated neuronal survival but can also serve as a neuromodulator that affects behaviour. We also summarize evidence showing how the brain can control the synthesis of peripheral IL-18 during stress by hormonal and neuronal signalling, regulating tissue-specific promoter usage. We discuss how this may represent one of the mechanisms by which the brain affects immune functions and what its implications are when considering IL-18 as a biomarker of psychiatric conditions.
Collapse
Affiliation(s)
- Silvia Alboni
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Fabio Tascedda
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Akihito Uezato
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Shuei Sugama
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Zuxin Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P. R. China
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
8
|
Zhu RX, Han RX, Chen YH, Huang L, Liu T, Jiang J, Wang C, Cao L, Liu Y, Lu M. Inactivation of NLRP3 inflammasome by dephosphorylation at Serine 658 alleviates glial inflammation in the mouse model of Parkinson's disease. Mol Neurodegener 2025; 20:27. [PMID: 40038816 PMCID: PMC11881452 DOI: 10.1186/s13024-025-00818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a leading neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, contributing to considerable disability worldwide. Current treatments offer only symptomatic relief, highlighting the need for novel therapeutic strategies targeting disease progression. Neuroinflammation plays a pivotal role in PD pathogenesis, with the NLRP3 inflammasome emerging as a key contributor. METHODS The virtual screening of a natural product library comprising 5,088 compounds was applied to identify five potential NLRP3 inhibitors through molecular docking scores. Then surface plasmon resonance assays were used to detect their binding affinities to the NLRP3 protein. Functional studies in macrophages and glial cells were used to demonstrate the effect of Psoralen on NLRP3 phosphorylation and inflammasome activation. RESULTS Psoralen treatment improved PD-like symptoms and reduced dopaminergic neuronal death by targeting glial NLRP3 inflammasome activation in the MPTP/p mouse model. By performing 4D label-free quantitative phosphorylation proteomics and site mutation assays, we identified that Psoralen prevents NLRP3 phosphorylation at Serine 658 by binding to its NACHT and LRR domains. CONCLUSIONS These findings position Psoralen as a promising NLRP3 inflammasome inhibitor, offering a potential therapeutic avenue for PD and other NLRP3 inflammasome-related diseases. Additionally, this research highlights the innovative approach of targeting specific phosphorylation sites on the NLRP3 protein to reduce neuroinflammation.
Collapse
Affiliation(s)
- Rong-Xin Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Rui-Xue Han
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Yue-Han Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Lei Huang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Ting Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Jingwei Jiang
- China Pharmaceutical University, Nanjing, 211116, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| | - Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| |
Collapse
|
9
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated alterations in DNA methylation and hydroxymethylation in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.21.595193. [PMID: 39975085 PMCID: PMC11838189 DOI: 10.1101/2024.05.21.595193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Epigenetic mechanisms are mediators of interactions between aging, genetics, and environmental factors in sporadic Parkinson's disease (PD). Multiple studies have explored the DNA modifications in PD, but few focus on 5-hydroxymethylcytosine (5-hmC), which is important in the central nervous system and sensitive to environmental exposures. To date, studies have not differentiated between 5-methylcytosine (5-mC) and 5-hmC or have analyzed them separately. In this study, we modeled paired 5-mC and 5-hmC data simultaneously. We identified 108 cytosines with significant PD-associated shifts between these marks in an enriched neuronal population from PD postmortem parietal cortex, within 83 genes and 34 enhancers associated with 67 genes. These data potentially link epigenetic regulation of genes related to LRRK2 and endolysosomal sort (RAB32 and AGAP1), and genes involved in neuroinflammation, the inflammasome, and neurodevelopment with early changes in PD and suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes not captured by standard methods.
Collapse
Affiliation(s)
- Juliana I Choza
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Alison I Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
10
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
11
|
Menozzi E, Schapira AHV. Prospects for Disease Slowing in Parkinson Disease. Annu Rev Pharmacol Toxicol 2025; 65:237-258. [PMID: 39088860 DOI: 10.1146/annurev-pharmtox-022124-033653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The increasing prevalence of Parkinson disease (PD) highlights the need to develop interventions aimed at slowing or halting its progression. As a result of sophisticated disease modeling in preclinical studies, and refinement of specific clinical/genetic/pathological profiles, our understanding of PD pathogenesis has grown over the years, leading to the identification of several targets for disease modification. This has translated to the development of targeted therapies, many of which have entered clinical trials. Nonetheless, up until now, none of these treatments have satisfactorily shown disease-modifying effects in PD. In this review, we present the most up-to-date disease-modifying pharmacological interventions in the clinical trial pipeline for PD. We focus on agents that have reached more advanced stages of clinical trials testing, highlighting both positive and negative results, and critically reflect on strengths, weaknesses, and challenges of current disease-modifying therapeutic avenues in PD.
Collapse
Affiliation(s)
- Elisa Menozzi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| | - Anthony H V Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| |
Collapse
|
12
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
14
|
Azizifar N, Mohaddes G, Keyhanmanesh R, Athari SZ, Alimohammadi S, Farajdokht F. Intranasal AdipoRon Mitigated Anxiety and Depression-Like Behaviors in 6-OHDA-Induced Parkinson 's Disease Rat Model: Going Beyond Motor Symptoms. Neurochem Res 2024; 49:3030-3042. [PMID: 39096412 DOI: 10.1007/s11064-024-04223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Depression and anxiety are prevalent neuropsychiatric conditions among patients with Parkinson's disease (PD), which may manifest prior to motor symptoms. As levodopa, a prominent treatment for PD motor symptoms, provides few benefits for mood-related abnormalities, tackling non-motor symptoms is particularly important. AdipoRon (Ad), an adiponectin agonist, has demonstrated neuroprotective effects by suppressing neuroinflammatory responses and activating the AMPK/Sirt-1 signaling pathway. This study looked at the potential advantages and underlying mechanisms of intranasal Ad in a rat model of PD induced by 6-hydroxydopamine (6-OHDA). We found that Ad at doses of 1 and 10 µg for 21 days exhibited anxiolytic- and antidepressant effects in the open field (OF) test, elevated plus maze (EPM), sucrose splash test, and forced swimming test in a PD model caused by a unilateral 6-OHDA injection into the medial forebrain bundle (MFB). The Ad also lowered the levels of corticosterone in the blood, decreased inflammasome components (NLRP3, caspase 1, and IL-1β), and increased Sirt-1 protein levels in the prefrontal cortex (PFC) of PD rats. We conclude that Ad ameliorates anxious and depressive-like behaviors in the PD rat model through stimulating the AMPK/Sirt-1 signaling and blocking the NLRP3 inflammasome pathways in the PFC.
Collapse
Affiliation(s)
- Negin Azizifar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Alimohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Muhammad AJ, Al-Baqami FF, Alanazi FE, Alattar A, Alshaman R, Rehman NU, Riadi Y, Shah FA. The Interplay of Carveol and All-Trans Retinoic Acid (ATRA) in Experimental Parkinson's Disease: Role of Inflammasome-Mediated Pyroptosis and Nrf2. Neurochem Res 2024; 49:3118-3130. [PMID: 39190122 DOI: 10.1007/s11064-024-04226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a debilitating and the second most common neurodegenerative disorder with a high prevalence. PD has a multifaceted etiology characterized by an altered redox state and an excessive inflammatory response. Extensive research has consistently demonstrated the role of the nuclear factor E2-related factor (Nrf2) and inflammasomes, notably NLRP3 in neurodegenerative diseases. In this study, our focus was on exploring the potential neuroprotective properties of carveol in Parkinson's disease. Our findings suggest that carveol may exhibit these effects through Nrf2 and by suppressing pyroptosis. Male albino mice were treated with carveol, and the animal PD model was induced through a single intranigral dose of 2 µg/2µl lipopolysaccharide (LPS). To further demonstrate the essential role of the Nrf2 pathway, we utilized all-trans retinoic acid (ATRA) to inhibit the Nrf2. Our finding showed the induction of pyroptosis as evidenced by increased levels of NLRP3 and other inflammatory mediators, including IL-1β, iNOS, p-NFKB, and apoptotic cell death indicated by positive fluoro Jade B (FJB) staining. Moreover, increased levels of lipid peroxides and reactive oxygen species indicated a significant rise in oxidative stress due to LPS. The administration of carveol mitigates oxidative stress and suppresses inflammatory pathways through the augmentation of intrinsic antioxidant defenses, primarily via the activation of the Nrf2. Conversely, ATRA reversed carveol protective effects by increasing FJB-positive cells, inflammatory and oxidative biomarkers. Taken together, our findings suggest that carveol mitigated LPS-induced Parkinson-like symptoms, partially through the activation of the Nrf2 and downregulation of pyroptosis notably NLRP3.
Collapse
Affiliation(s)
- Asmaa Jan Muhammad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Faisal F Al-Baqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Najeeb Ur Rehman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Fawad Ali Shah
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia.
| |
Collapse
|
16
|
Ortega AJ, Daniel S, Renwick M, Kambhampati P, Thompson KN, Collier GE, Baker EL, Zaki H, Hulleman JD. Genetic removal of Nlrp3 protects against sporadic and R345W Efemp1-induced basal laminar deposit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618289. [PMID: 39464028 PMCID: PMC11507711 DOI: 10.1101/2024.10.14.618289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic, unresolved inflammation has long been speculated to serve as an initiating and propagating factor in numerous neurodegenerative diseases, including a leading cause of irreversible blindness in the elderly, age-related macular degeneration (AMD). Intracellular multiprotein complexes called inflammasomes in combination with activated caspases facilitate production of pro-inflammatory cytokines such as interleukin 1 beta. Specifically, the nucleotide-binding oligomerization (NOD)-like receptor protein 3 (NLRP3) has received heightened attention due to the wide range of stimuli to which it can respond and its potential involvement in AMD. In this study, we directly tested the role of Nlrp3 and its downstream effector, caspase 1 (Casp1) in mediating early AMD-like pathology (i.e., basal laminar deposits [BLamDs]) in wild-type (WT) mice and the Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) mouse model (p.R345W mutation in Efemp1). Compared to aged-matched controls, R345W+/+ knockin mice demonstrated increased Muller cell gliosis, subretinal Iba-1+ microglial cells, higher Nlrp3 immunoreactivity in the retina, as well as significant transcriptional upregulation of complement component 3, Nlrp3, pro-Il1b, pro-caspase-1, and tissue inhibitor of matrix metalloproteinase 3 in the retinal pigmented epithelium (RPE)/choroid. These findings were accompanied by an age-related increase in BLamD formation in the R345W+/+ mice. Genetic elimination of either Nlrp3 or Casp1 significantly reduced both the size and coverage of BLamDs in the R345W+/+ background, highlighting an important and underappreciated pathway that could affect ML/DHRD onset and progression. Moreover, Nlrp3 knockout reduced spontaneous, idiopathic BLamDs in WT mice, suggesting translatability of our findings not only to rare inherited retinal dystrophies, but also potentially to AMD itself.
Collapse
Affiliation(s)
- Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Pravallika Kambhampati
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Emily L. Baker
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Hasan Zaki
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
17
|
Lin TH, Chiu YJ, Lin CH, Chen YR, Lin W, Wu YR, Chang KH, Chen CM, Lee-Chen GJ. Coumarin-chalcone derivatives as dual NLRP1 and NLRP3 inflammasome inhibitors targeting oxidative stress and inflammation in neurotoxin-induced HMC3 and BE(2)-M17 cell models of Parkinson's disease. Front Aging Neurosci 2024; 16:1437138. [PMID: 39411284 PMCID: PMC11473416 DOI: 10.3389/fnagi.2024.1437138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background In Parkinson's disease (PD) brains, microglia are activated to release inflammatory factors to induce the production of reactive oxygen species (ROS) in neuron, and vice versa. Moreover, neuroinflammation and its synergistic interaction with oxidative stress contribute to the pathogenesis of PD. Methods In this study, we investigated whether in-house synthetic coumarin-chalcone derivatives protect human microglia HMC3 and neuroblastoma BE(2)-M17 cells against 1-methyl-4-phenyl pyridinium (MPP+)-induced neuroinflammation and associated neuronal damage. Results Treatment with MPP+ decreased cell viability as well as increased the release of inflammatory mediators including cytokines and nitric oxide in culture medium, and enhanced expression of microglial activation markers CD68 and MHCII in HMC3 cells. The protein levels of NLRP3, CASP1, iNOS, IL-1β, IL-6, and TNF-α were also increased in MPP+-stimulated HMC3 cells. Among the four tested compounds, LM-016, LM-021, and LM-036 at 10 μM counteracted the inflammatory action of MPP+ in HMC3 cells. In addition, LM-021 and LM-036 increased cell viability, reduced lactate dehydrogenase release, ameliorated cellular ROS production, decreased caspase-1, caspase-3 and caspase-6 activities, and promoted neurite outgrowth in MPP+-treated BE(2)-M17 cells. These protective effects were mediated by down-regulating inflammatory NLRP1, IL-1β, IL-6, and TNF-α, as well as up-regulating antioxidative NRF2, NQO1, GCLC, and PGC-1α, and neuroprotective CREB, BDNF, and BCL2. Conclusion The study results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanisms, and indicate the potential use of LM-021 and LM-036 as dual inflammasome inhibitors in treating both NLRP1- and NLRP3-associated PD.
Collapse
Affiliation(s)
- Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
18
|
Paulėkas E, Vanagas T, Lagunavičius S, Pajėdienė E, Petrikonis K, Rastenytė D. Navigating the Neurobiology of Parkinson's: The Impact and Potential of α-Synuclein. Biomedicines 2024; 12:2121. [PMID: 39335634 PMCID: PMC11429448 DOI: 10.3390/biomedicines12092121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide; therefore, since its initial description, significant progress has been made, yet a mystery remains regarding its pathogenesis and elusive root cause. The widespread distribution of pathological α-synuclein (αSyn) aggregates throughout the body raises inquiries regarding the etiology, which has prompted several hypotheses, with the most prominent one being αSyn-associated proteinopathy. The identification of αSyn protein within Lewy bodies, coupled with genetic evidence linking αSyn locus duplication, triplication, as well as point mutations to familial Parkinson's disease, has underscored the significance of αSyn in initiating and propagating Lewy body pathology throughout the brain. In monogenic and sporadic PD, the presence of early inflammation and synaptic dysfunction leads to αSyn aggregation and neuronal death through mitochondrial, lysosomal, and endosomal functional impairment. However, much remains to be understood about αSyn pathogenesis, which is heavily grounded in biomarkers and treatment strategies. In this review, we provide emerging new evidence on the current knowledge about αSyn's pathophysiological impact on PD, and its presumable role as a specific disease biomarker or main target of disease-modifying therapies, highlighting that this understanding today offers the best potential of disease-modifying therapy in the near future.
Collapse
Affiliation(s)
- Erlandas Paulėkas
- Department of Neurology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (T.V.); (S.L.); (E.P.); (K.P.); (D.R.)
| | | | | | | | | | | |
Collapse
|
19
|
Saadh MJ, Muhammad FA, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Hashim G, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. MicroRNAs Modulating Neuroinflammation in Parkinson's disease. Inflammation 2024:10.1007/s10753-024-02125-z. [PMID: 39162871 DOI: 10.1007/s10753-024-02125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Parkinson's disease (PD) is one of the most frequent age-associated neurodegenerative disorder. Presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc) and loss of dopaminergic (DA) neurons are among the characteristic of PD. One of the hallmarks of PD pathophysiology is chronic neuroinflammation. Activation of glial cells and elevated levels of pro-inflammatory factors are confirmed as frequent features of the PD brain. Chronic secretion of pro-inflammatory cytokines by activated astrocytes and microglia exacerbates DA neuron degeneration in the SNpc. MicroRNAs (miRNAs) are among endogenous non-coding small RNA with the ability to perform post-transcriptional regulation in target genes. In that regard, the capability of miRNAs for modulating inflammatory signaling is the center of attention in many investigations. MiRNAs could enhance or limit inflammatory signaling, exacerbating or ameliorating the pathological consequences of extreme neuroinflammation. This review summarizes the importance of inflammation in the pathophysiology of PD. Besides, we discuss the role of miRNAs in promoting or protecting neural cell injury in the PD model by controlling the inflammatory pathway. Modifying the neuroinflammation by miRNAs could be considered a primary therapeutic strategy for PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur,, Jamshedpur,, India, Jharkhand, 831001
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghassan Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
20
|
Senkevich K, Liu L, Alvarado CX, Leonard HL, Nalls MA, Gan-Or Z. Lack of genetic evidence for NLRP3 inflammasome involvement in Parkinson's disease pathogenesis. NPJ Parkinsons Dis 2024; 10:145. [PMID: 39103393 DOI: 10.1038/s41531-024-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Activation of the NLRP3 inflammasome has been implicated in Parkinson's disease (PD) based on in vitro and in vivo studies. Clinical trials targeting the NLRP3 inflammasome in PD are ongoing. However, the evidence supporting NLRP3's involvement in PD from human genetics data is limited. We analyzed common and rare variants in NLRP3 inflammasome-related genes in PD cohorts, performed pathway-specific polygenic risk score (PRS) analyses, and studied causal associations using Mendelian randomization (MR) with the NLRP3 components and the cytokines IL-1β and IL-18. Our findings showed no associations of common or rare variants, nor of the pathway PRS with PD. MR suggests that altering the expression of the NLRP3 inflammasome, IL-1β, or IL-18, does not affect PD risk or progression. Therefore, our results do not support a role for the NLRP3 inflammasome in PD pathogenesis or as a target for drug development.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Lang Liu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
- DZNE Tübingen, Tübingen, Germany
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
21
|
Shah S, Pushpa Tryphena K, Singh G, Kulkarni A, Pinjala P, Kumar Khatri D. Neuroprotective role of Carvacrol via Nrf2/HO-1/NLRP3 axis in Rotenone-induced PD mice model. Brain Res 2024; 1836:148954. [PMID: 38649135 DOI: 10.1016/j.brainres.2024.148954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder whose cause is unclear. Neuroinflammation is recognized as one of the major pathogenic mechanisms involved in the development and progression of PD. NLRP3 inflammasome is the most widely studied inflammatory mediator in various diseases including PD. Several phytoconstituents have shown neuroprotective role in PD. Carvacrol is a phenolic monoterpene commonly found in the essential oils derived from plants belonging to Lamiaceae family. It is well known for its anti-inflammatory and antioxidant properties and has been widely explored in several diseases. In this study, we explored the role of Carvacrol in suppressing neuroinflammation by regulating NLRP3 inflammasome through Nrf2/HO-1 axis and subsequently, inflammatory cytokines like IL-1β, IL-18 in Rotenone induced PD mice model. Three doses (25 mg/kg, 50 mg/kg, 100 mg/kg p.o.) of Carvacrol were administered to, respectively, three groups (LD, MD, HD), one hour after administration of Rotenone (1.5 mg/kg, i.p.), every day, for 21 days. Treatment with Carvacrol ameliorated the motor impairment caused by Rotenone. It alleviated neurotoxicity and reduced inflammatory cytokines. Further, Carvacrol also alleviated oxidative stress and increased antioxidant enzymes. From these results, we show that Carvacrol exerts neuroprotective effects in PD via anti-inflammatory and antioxidant mechanisms and could be a potential therapeutic option in PD.
Collapse
Affiliation(s)
- Shruti Shah
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Gurpreet Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Amrita Kulkarni
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Poojitha Pinjala
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
22
|
Senkevich K, Liu L, Alvarado CX, Leonard HL, Nalls MA, Gan-Or Z. Lack of genetic evidence for NLRP3-inflammasome involvement in Parkinson's disease pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.20.23295790. [PMID: 37886468 PMCID: PMC10602039 DOI: 10.1101/2023.09.20.23295790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Activation of the NLRP3-inflammasome has been implicated in Parkinson's disease based on in vitro and in vivo studies. Clinical trials targeting the NLRP3-inflammasome in Parkinson's disease are ongoing. However, the evidence supporting NLRP3's involvement in Parkinson's disease from human genetics data is limited. In this study, we conducted analyses of common and rare variants in NLRP3-inflammasome related genes in Parkinson's disease cohorts. We performed pathway-specific analyses using polygenic risk scores and studied potential causal associations using Mendelian randomization with the NLRP3 components and the cytokines IL-1β and IL-18. Our findings showed no associations of common or rare variants, nor of the pathway polygenic risk score with Parkinson's disease. Mendelian randomization suggests that altering the expression of the NLRP3-inflammasome, IL-1β or IL-18, does not affect Parkinson's disease risk or progression. Therefore, our results do not support a role for the NLRP3-inflammasome in Parkinson's disease pathogenesis or as a target for drug development.
Collapse
|
23
|
Hussain MS, Moglad E, Afzal M, Sharma S, Gupta G, Sivaprasad GV, Deorari M, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Pant K, Ali H, Singh SK, Dua K, Subramaniyan V. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson's disease pathogenesis. CNS Neurosci Ther 2024; 30:e14763. [PMID: 38790149 PMCID: PMC11126788 DOI: 10.1111/cns.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical SciencesJaipur National UniversityJaipurRajasthanIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of CollegesMohaliPunjabIndia
| | - Gaurav Gupta
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - G. V. Sivaprasad
- Department of Basic Science & HumanitiesRaghu Engineering CollegeVisakhapatnamIndia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Kumud Pant
- Graphic Era (Deemed to be University)DehradunIndia
- Graphic Era Hill UniversityDehradunIndia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
24
|
Quan W, Liu Y, Li J, Chen D, Xu J, Song J, Chen J, Sun S. Investigating the TLR4/TAK1/IRF7 axis in NLRP3-Mediated Pyroptosis in Parkinson's Disease. Inflammation 2024; 47:404-420. [PMID: 37930487 DOI: 10.1007/s10753-023-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
In the realm of Parkinson's disease (PD) research, NLRP3 inflammasome-mediated pyroptosis has recently garnered significant attention as a potential novel form of dopaminergic neuronal death. Our previous research revealed the activation of innate immune-related genes, such as the TLR4 signaling pathway and interferon regulatory factor 7 (IRF7), although the specific mechanism remains unclear. Our current study shed light on whether the TLR4 signaling pathway and IRF7 can affect the pyroptosis of dopaminergic nerve cells and thus participate in the pathogenesis of PD. The PD model was constructed by MPP+ treatment of PC12 cells or stereotactic injection of the striatum of SD rats, and the expression of genes were detected by RT-qPCR and Western Blotting. Lentivirus, siRNA and (5Z)-7-Oxozeaenol were used to validate the regulation of this pathway on pyroptosis. The expression of TLR4, TAK1, IRF7 and pyroptosis molecular markers was upregulated after MPP+ treatment. IRF7 could affect dopaminergic neural cells pyroptosis by targeted regulation of NLRP3. Furthermore, inhibition of the TLR4/TAK1 signaling pathway led to a decrease in the expression of both IRF7 and NLRP3, while overexpression of IRF7 reversed the reduction in pyroptosis and increase in TH expression. TLR4/TAK1/IRF7 axis can promote PD by influencing pyroptosis through NLRP3.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Dawei Chen
- Department of Neurosurgery, First Affiliated Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China.
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
25
|
Xu Y, Xu Y, Biby S, Kaur B, Liu Y, Bagdasarian FA, Wey HY, Tanzi R, Zhang C, Wang C, Zhang S. Design and Discovery of Novel NLRP3 Inhibitors and PET Imaging Radiotracers Based on a 1,2,3-Triazole-Bearing Scaffold. J Med Chem 2024; 67:555-571. [PMID: 38150705 PMCID: PMC11002996 DOI: 10.1021/acs.jmedchem.3c01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The NOD-like receptor (NLR) family pyrin-domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune system, has been emerging as a viable drug target and a potential biomarker for human diseases. In our efforts to develop novel small molecule NLRP3 inhibitors, a 1-(5-chloro-2-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole scaffold was designed via a rational approach based on our previous leads. Structure-activity relationship studies and biophysical studies identified a new lead compound 8 as a potent (IC50: 0.55 ± 0.16 μM), selective, and direct NLRP3 inhibitor. Positron emission tomography (PET) imaging studies of [11C]8 demonstrated its rapid and high brain uptake as well as fast washout in mice and rhesus macaque. Notably, plasma kinetic analysis of this radiotracer from the PET/magnetic resonance imaging studies in rhesus macaque suggested radiometabolic stability. Collectively, our data not only encourage further studies of this lead compound but also warrant further optimization to generate additional novel NLRP3 inhibitors and suitable central nervous system PET radioligands with translational promise.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Savannah Biby
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Baljit Kaur
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick Andrew Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, McCane Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCane Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
26
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
27
|
Harrison D, Billinton A, Bock MG, Doedens JR, Gabel CA, Holloway MK, Porter RA, Reader V, Scanlon J, Schooley K, Watt AP. Discovery of Clinical Candidate NT-0796, a Brain-Penetrant and Highly Potent NLRP3 Inflammasome Inhibitor for Neuroinflammatory Disorders. J Med Chem 2023; 66:14897-14911. [PMID: 37874905 DOI: 10.1021/acs.jmedchem.3c01398] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The NLRP3 inflammasome is a component of the innate immune system involved in the production of proinflammatory cytokines. Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, have been shown to have a component driven by NLRP3 inflammasome activation. Diseases such as these with large unmet medical needs have resulted in an interest in inhibiting the NLRP3 inflammasome as a potential pharmacological treatment, but to date, no marketed drugs specifically targeting NLRP3 have been approved. Furthermore, the requirement for CNS-penetrant molecules adds additional complexity to the search for NLRP3 inflammasome inhibitors suitable for clinical investigation of neuroinflammatory disorders. We designed a series of ester-substituted carbamate compounds as selective NLRP3 inflammasome inhibitors, leading to NT-0796, an isopropyl ester that undergoes intracellular conversion to NDT-19795, the carboxylic acid active species. NT-0796 was shown to be a potent and selective NLRP3 inflammasome inhibitor with demonstrated in vivo brain penetration.
Collapse
Affiliation(s)
- David Harrison
- NodThera Ltd., Suite 8, The Mansion, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, Essex, U.K
| | - Andy Billinton
- NodThera Ltd., Suite 8, The Mansion, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, Essex, U.K
| | - Mark G Bock
- NodThera Inc., P.O. Box 156, Suite 1702, 265 Franklin Street, Boston, Massachusetts 02110, United States
| | - John R Doedens
- NodThera Inc., 454 N 34th Street, Seattle, Washington 98103, United States
| | | | | | - Roderick A Porter
- Rod Porter Consultancy, 89 Back Street, Ashwell, Baldock SG7 5PG, Hertfordshire, U.K
| | - Valérie Reader
- NodThera Ltd., Suite 8, The Mansion, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, Essex, U.K
| | - Jane Scanlon
- NodThera Ltd., Suite 8, The Mansion, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, Essex, U.K
| | - Kenneth Schooley
- NodThera Inc., 454 N 34th Street, Seattle, Washington 98103, United States
| | - Alan P Watt
- NodThera Ltd., Suite 8, The Mansion, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, Essex, U.K
| |
Collapse
|
28
|
Jiang S, Tian T, Li W, Liu T, Wang C, Hu G, Du R, Liu Y, Lu M. Mefloquine targets NLRP3 to reduce lipopolysaccharide-induced systemic inflammation and neural injury. EMBO Rep 2023; 24:e57101. [PMID: 37621232 PMCID: PMC10561175 DOI: 10.15252/embr.202357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in the pathogenesis of a wide variety of human diseases. So far, drugs directly and specifically targeting the NLRP3 inflammasome are not available for clinical use since the safety and efficacy of new compounds are often unclear. A promising approach is thus to identify NLRP3 inhibitors from existing drugs that are already in clinical use. Here, we show that mefloquine, a well-known antimalarial drug, is a highly selective and potent NLRP3 inhibitor by screening a FDA-approved drug library. Mechanistically, mefloquine directly binds to the NLRP3 NACHT and LRR domains to prevent NLRP3 inflammasome activation. More importantly, mefloquine treatment attenuates the symptoms of lipopolysaccharide-induced systemic inflammation and Parkinson's disease-like neural damage in mice. Our findings identify mefloquine as a potential therapeutic agent for NLRP3-driven diseases and migth expand its clinical use considerably.
Collapse
Affiliation(s)
- Si‐Yuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Tian Tian
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Wen‐Jie Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Ting Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Ren‐Hong Du
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Yang Liu
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, Li MJ, Zhang QG. Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol 2023; 14:1265825. [PMID: 37849728 PMCID: PMC10577194 DOI: 10.3389/fphar.2023.1265825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Bao-Hong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Wen-Wen Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ming Zhao
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hong-Ben Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xue-Fen Guo
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chang Di
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min-Jie Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
30
|
Seo HW, Ha TY, Ko G, Jang A, Choi JW, Lee DH, Chang KA. Scutellaria baicalensis Attenuated Neurological Impairment by Regulating Programmed Cell Death Pathway in Ischemic Stroke Mice. Cells 2023; 12:2133. [PMID: 37681864 PMCID: PMC10486384 DOI: 10.3390/cells12172133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Stroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear. Scutellaria baicalensis, an herbal component known for its anti-inflammatory and antioxidant properties, has traditionally been used to treat brain disorders. This study investigated the therapeutic effects of the Scutellaria baicalensis extraction (SB) during the acute stage of ischemic stroke using photothrombotic (PTB)-induced and transient middle cerebral artery occlusion (tMCAO) model mice. We found that SB mitigated ischemic brain injury, as evidenced by a significant reduction in the modified neurological severity score in the acute stage of PTB and both the acute and chronic stages of tMCAO. Furthermore, we elucidated the regulatory role of SB in the necroptosis and pyroptosis pathways during the acute stage of stroke, underscoring its protective effects. Behavioral assessments demonstrated the effectiveness of SB in ameliorating motor dysfunction and cognitive impairment compared to the group receiving the vehicle. Our findings highlight the potential of SB as a promising therapeutic candidate for stroke. SB was found to help modulate the programmed cell death pathways, promote neuroprotection, and facilitate functional recovery.
Collapse
Affiliation(s)
- Ho-won Seo
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Tae-Young Ha
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
| | - Geon Ko
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Aram Jang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ji-Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea;
| | - Dong-hun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Keun-A Chang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
31
|
Zhang Y, Li S, Hou L, Wu M, Liu J, Wang R, Wang Q, Zhao J. NLRP3 mediates the neuroprotective effects of SVHRSP derived from scorpion venom in rotenone-induced experimental Parkinson's disease model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116497. [PMID: 37072089 DOI: 10.1016/j.jep.2023.116497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, scorpion is used to treat diseases with symptoms such as trembling, convulsion and dementia. Our laboratory employs patented technology to extract and purify the active single component from scorpion venom. We then utilize mass spectrometry to determine the amino acid sequence of the polypeptide and synthesize it artificially to acquire the polypeptide with a purity of 99.3%, named SVHRSP (Scorpion Venom Heat-Resistant Peptide). SVHRSP has been demonstrated to display potent neuroprotective efficacy in Parkinson's disease. AIM OF THE STUDY To explore the molecular mechanisms and potential molecular targets of SVHRSP-afforded neuroprotection in PD mouse models, as well as to investigate the role of NLRP3 in SVHRSP-mediated neuroprotection. MATERIALS AND METHODS The PD mouse model was induced by rotenone and the neuroprotective role of SVHRSP on the PD mouse model was measured using the gait test, rotarod test, the number of dopaminergic neurons, and the activation of microglia. RNA sequencing and GSEA analysis were performed to find the differentially biological pathways regulated by SVHRSP. Primary mid-brain neuron-glial cultures and NLRP3-/- mice were applied to verify the role of NLRP3 by using qRT-PCR, western blotting, enzyme-linked immunosorbent assay (ELISA) and immunostaining. RESULTS SVHRSP-afforded dopaminergic neuroprotection was accompanied with inhibition of microglia-mediated neuroinflammatory pathways. Importantly, depletion of microglia markedly reduced the neuroprotective efficacy of SVHRSP against rotenone-induced dopaminergic neurotoxicity in vitro. SVHRSP inhibited microglial NOD-like receptor pathway, mRNA expression and protein level of NLRP3 in rotenone PD mice. SVHRSP also reduced rotenone-induced caspse-1 activation and IL-1β maturation, indicating that SVHRSP mitigated activation of NLRP3 inflammasome. Moreover, inactivation of NLRP3 inflammasome by MCC950 or genetic deletion of NLRP3 almost abolished SVHRSP-afforded anti-inflammatory, neuroprotective effects and improvement of motor performance in response to rotenone. CONCLUSIONS NLRP3 mediated the neuroprotective effects of SVHRSP in rotenone-induced experimental PD model, providing additional evidence for the mechanisms of SVHRSP-afforded anti-inflammatory and neuroprotective effects in PD.
Collapse
Affiliation(s)
- Yu Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liyan Hou
- Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Mingyang Wu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Jianing Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ruonan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
32
|
Alam MR, Singh S. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacology 2023:10.1007/s10787-023-01259-0. [PMID: 37318694 DOI: 10.1007/s10787-023-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
33
|
Lind-Holm Mogensen F, Scafidi A, Poli A, Michelucci A. PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. J Neuroinflammation 2023; 20:95. [PMID: 37072827 PMCID: PMC10111685 DOI: 10.1186/s12974-023-02776-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
34
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
35
|
Possemato E, La Barbera L, Nobili A, Krashia P, D'Amelio M. The role of dopamine in NLRP3 inflammasome inhibition: Implications for neurodegenerative diseases. Ageing Res Rev 2023; 87:101907. [PMID: 36893920 DOI: 10.1016/j.arr.2023.101907] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1β and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.
Collapse
Affiliation(s)
- Elena Possemato
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Livia La Barbera
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Annalisa Nobili
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy.
| |
Collapse
|
36
|
Lv QK, Tao KX, Wang XB, Yao XY, Pang MZ, Liu JY, Wang F, Liu CF. Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflamm Res 2023; 72:443-462. [PMID: 36598534 DOI: 10.1007/s00011-022-01676-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES Further studies are needed to determine how α-syn works in microglia. METHODS A keyword-based search was performed using the PubMed database for published articles. CONCLUSION In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
37
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
38
|
Ying ZM, Lv QK, Yao XY, Dong AQ, Yang YP, Cao YL, Wang F, Gong AP, Liu CF. BAG3 promotes autophagy and suppresses NLRP3 inflammasome activation in Parkinson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1218. [PMID: 36544667 PMCID: PMC9761134 DOI: 10.21037/atm-22-5159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Background Neuroinflammation mediated by microglia plays a key role in the pathogenesis of Parkinson's disease (PD), and our previous studies showed this was significantly inhibited by enhanced autophagy. In the autophagy pathway, Bcl2-associated athanogene (BAG)3 is a prominent co-chaperone, and we have shown BAG3 can regulate autophagy to clear the PD pathogenic protein α-synuclein. However, the connection between BAG3 and microglia mediated neuroinflammation is not clear. Methods In this study, we explored whether BAG3 regulated related neuroinflammation and its original mechanism in PD. An inflammatory model of PD was established by injecting adeno-associated virus (AAV)-BAG3 into the bilateral striatum of C57BL/6 male mice to induce overexpression of BAG3, followed by injection of lipopolysaccharide (LPS). The striatum was extracted at 3 days after injection of LPS for Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR), and immunohistochemical staining was performed at 21 days after injection. At the same time, LPS was used to induce activation of BV2 cells to verify the effect of BAG3 in vitro. Results Overexpression of BAG3 reduced LPS-induced pyroptosis by reducing activation of caspase-1, the NOD-like receptor family, and the pyrin domain-containing 3 (NLRP3) inflammasome, and by release of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. The LPS-induced inflammatory environment inhibits autophagy, and overexpression of BAG3 can restore autophagy, which may be the mechanism by which BAG3 reduces neuronal inflammation in PD. Conclusions Our results demonstrate BAG3 promotes autophagy and suppresses NLRP3 inflammasome formation in PD.
Collapse
Affiliation(s)
- Zhong-Ming Ying
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China;,Department of Neurology, Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Taizhou, China
| | - Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China;,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China;,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - An-Qi Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ya-Ping Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu-Lan Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China;,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ai-Ping Gong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China;,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China;,Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|