1
|
Dai Y, Li J, Li Y, Wong FKY, Li M, Li C, Jia Y, Wang Y, Yorke J. A scoping review on the role of virtual walking intervention in enhancing wellness. NPJ Digit Med 2025; 8:217. [PMID: 40269092 PMCID: PMC12019490 DOI: 10.1038/s41746-025-01609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Virtual walking has the potential to be an adjunct to traditional physical therapy. This scoping review aims to synthesize evidence on the characteristics, effectiveness, feasibility, and neurological mechanism of virtual walking interventions on health-related outcomes. Articles in English were retrieved from twelve databases (January 2014-October 2024). Thirteen interventional studies were included, focusing on three types of virtual walking: passive observing moving (71.4%), arm swing locomotion (21.5%), and foot tracking locomotion (7.1%). Most studies (84.6%) involved individuals with spinal cord injuries, while the remaining studies focused on lower back pain (7.7%) and lower limb pain (7.7%). Over 70% of studies lasted 11-20 min, 1-5 weekly sessions for 10-14 days. Statistically significant findings included pain reduction (84.6%), improved physical function (mobility and muscle strength), and reduced depression. Mild adverse effects (fatigue and dizziness) were transient. Neurological evidence indicates somatosensory cortex activation during virtual walking, possibly linked to neuropathic pain.
Collapse
Affiliation(s)
- Yushen Dai
- School of Nursing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jiaying Li
- School of Nursing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yan Li
- School of Nursing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China.
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Humg Hom, Kowloon, Hong Kong SAR, China.
| | - Frances Kam Yuet Wong
- School of Nursing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mengqi Li
- School of Nursing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chen Li
- Department of Computing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ye Jia
- Department of Computing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yueying Wang
- School of Nursing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Janelle Yorke
- School of Nursing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Stephens J, Hays K, Winden H, Busch B, Tefertiller C. Assessing Task-Dependent Neurophysiology During Virtual Reality Treadmill Training in Adults With Traumatic Brain Injury: A Functional Near-Infrared Spectroscopy Feasibility Study. J Head Trauma Rehabil 2025:00001199-990000000-00259. [PMID: 40203004 DOI: 10.1097/htr.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Individuals with traumatic brain injury (TBI) often experience residual mobility deficits that can be improved with treadmill and virtual reality interventions. However, previous studies have not measured the underlying neurophysiology during these interventions nor assessed if acquiring such data is feasible in a TBI population. Thus, the primary purpose of this study was to assess the feasibility of using portable functional near-infrared spectroscopy (fNIRS) to measure neurophysiology during a treadmill task and a treadmill with virtual reality task. SETTING Data were collected in an outpatient setting at Craig Hospital. PARTICIPANTS Eight individuals with chronic moderate to severe TBI were recruited. The primary eligibility criteria include age of 18 years or older, diagnosis of moderate to severe TBI that initially required inpatient rehabilitation at least 1 year prior and could walk at least 10 feet without support from more than 1 person. DESIGN Cross-sectional feasibility study. Participants were assessed with fNIRS while completing a 12-minute treadmill task and a 12-minute treadmill with virtual reality task. Feasibility benchmarks were established a priori and included safety, acceptability, data acquisition and quality metrics. MAIN MEASURES Pre-determined feasibility objectives served as the primary outcome of this study. Global brain activity as measured by FNIRS was acquired during treadmill training alone and treadmill training with virtual reality in early, middle, and late epochs. RESULTS The fNIRS protocol used in this study was safe for all participants and acceptable to 87.5% of participants. FNIRS data acquisition and quality benchmarks were achieved for 87.5% participants. Exploratory fNIRS analyses revealed significantly greater global brain activity during the treadmill with virtual reality task compared to the treadmill task alone in late epochs. No adverse events occurred. CONCLUSION All feasibility benchmarks were achieved suggesting that this fNIRS protocol can be used in future, larger-scale studies.
Collapse
Affiliation(s)
- Jaclyn Stephens
- Author Affiliations: Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado (Dr Stephens); Colorado State University, Molecular Cellular and Integrative Neuroscience Program, Fort Collins, Colorado (Dr Stephens); Colorado State University, Columbine Health Systems Center for Healthy Aging, Fort Collins, Colorado (Dr Stephens); Craig Hospital Research Department, Englewood, Colorado (Dr Hays, Dr Winden, Mr Busch, Dr Tefertiller); University of Colorado, Denver, Colorado (Dr Tefertiller); and Department of Physical Medicine and Rehabilitation, Denver, Colorado (Dr Tefertiller)
| | | | | | | | | |
Collapse
|
3
|
Xiao Y, Gao Y, Bai H, Song G, Wang H, Rao JS, Hao A, Li X, Zheng J. Impact of an upper limb motion-driven virtual rehabilitation system on residual motor function in patients with complete spinal cord injury: a pilot study. J Neuroeng Rehabil 2025; 22:48. [PMID: 40045360 PMCID: PMC11881371 DOI: 10.1186/s12984-025-01587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Assessing residual motor function in motor complete spinal cord injury (SCI) patients using surface electromyography (sEMG) is clinically important. Due to the prolonged loss of motor control and peripheral sensory input, patients may struggle to effectively activate residual motor function during sEMG assessments. The study proposes using virtual reality (VR) technology to enhance embodiment, motor imagery (MI), and memory, aiming to improve the activation of residual motor function and increase the sensitivity of sEMG assessments. METHODS By Recruiting a sample of 12 patients with AIS A/B and capturing surface electromyographic signals before, druing and after VR training, RESULTS: Most patients showed significant electromyographic improvements in activation frequency and or 5-rank frequency during or after VR training. However, one patient with severe lower limb neuropathic pain did not exhibit volitional electromyographic activation, though their pain diminished during the VR training. CONCLUSIONS VR can enhance the activation of patients' residual motor function by improving body awareness and MI, thereby increasing the sensitivity of sEMG assessments.
Collapse
Affiliation(s)
- Yanqing Xiao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yang Gao
- The State Key Laboratory of VR Technology and Systems, Unit of Virtual Body and Virtual Surgery (2019RU004), Beihang University, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Hongming Bai
- The State Key Laboratory of VR Technology and Systems, Unit of Virtual Body and Virtual Surgery (2019RU004), Beihang University, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Guiyun Song
- Department of Rehabilitation Evaluation, Rehabilitation Research Center, Beijing, China
| | - Hanming Wang
- Rehabilitation Treatment Center of Beijing Rehabilitation Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Aimin Hao
- The State Key Laboratory of VR Technology and Systems, Unit of Virtual Body and Virtual Surgery (2019RU004), Beihang University, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.
| | - Jia Zheng
- Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
4
|
Mollà-Casanova S, Muñoz-Gómez E, Moreno-Segura N, Inglés M, Aguilar-Rodríguez M, Sempere-Rubio N, Serra-Añó P. Effect of a virtual walking and exercise-based intervention on muscle strength and activation in people with incomplete spinal cord injury. Sci Rep 2025; 15:3144. [PMID: 39856165 PMCID: PMC11761486 DOI: 10.1038/s41598-025-86845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This study aims to assess the effect of combining virtual walking (VW) therapy with a physical exercise (PE) program compared to PE alone on lower limb strength and muscle activation in people with incomplete spinal cord injury (iSCI). 38 participants performed 3 sessions/week during 6 weeks of Experimental Intervention (EI): VW and PE; or Control intervention (CI): Placebo-VW and PE. Strength and muscle activation of main lower limb muscles were assessed. EI group exhibited a general strength increase after intervention (T2), (16.31-34.72 N), and maintained this improvement up to 1-month-follow-up (T3) for hip abduction and extension movements. The CI group only showed improvements in hip abduction and extension movements (18.34 (7.13) N and 19.98 (9.60) N, respectively). EI group also exhibited an increase of activation in all agonistic muscles in T2 (36.02-20.24 µV), except gastrocnemius. Gastrocnemius and rectus femoris activation as antagonistic decreased during dorsal flexion (- 14.28 (5.61) µV) and hip extension (- 14.78 [6.11] µV), respectively. CI group only showed an activation increase of agonistic muscles of hip abduction and extension (22.16 (9.80) µV and 28.82 (9.14) µV, respectively), without changes in antagonistic activation. VW could enhance the PE effects regarding muscle strength and activation in people with iSCI.Registration number: NCT04809987.
Collapse
Affiliation(s)
- Sara Mollà-Casanova
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Elena Muñoz-Gómez
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Noemí Moreno-Segura
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Marta Inglés
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Núria Sempere-Rubio
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain.
| | - Pilar Serra-Añó
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| |
Collapse
|
5
|
Li J, Kang W, Wang X, Pan F. Progress in treatment of pathological neuropathic pain after spinal cord injury. Front Neurol 2024; 15:1430288. [PMID: 39606699 PMCID: PMC11600731 DOI: 10.3389/fneur.2024.1430288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathological neuropathic pain is a common complication following spinal cord injury. Due to its high incidence, prolonged duration, tenacity, and limited therapeutic efficacy, it has garnered increasing attention from both basic researchers and clinicians. The pathogenesis of neuropathic pain after spinal cord injury is multifaceted, involving factors such as structural and functional alterations of the central nervous system, pain signal transduction, and inflammatory effects, posing significant challenges to clinical management. Currently, drugs commonly employed in treating spinal cord injury induced neuropathic pain include analgesics, anticonvulsants, antidepressants, and antiepileptics. However, a subset of patients often experiences suboptimal therapeutic responses or severe adverse reactions. Therefore, emerging treatments are emphasizing a combination of pharmacological and non-pharmacological approaches to enhance neuropathic pain management. We provide a comprehensive review of past literature, which aims to aim both the mechanisms and clinical interventions for pathological neuropathic pain following spinal cord injury, offering novel insights for basic science research and clinical practice in spinal cord injury treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Xuanwu Jinan Hospital, Jinan, China
| | - Wenqing Kang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xi Wang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Pan
- Department of rehabilitation, Shandong Rehabilitation Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Wang L, Zhang H, Ai H, Liu Y. Effects of virtual reality rehabilitation after spinal cord injury: a systematic review and meta-analysis. J Neuroeng Rehabil 2024; 21:191. [PMID: 39468617 PMCID: PMC11514920 DOI: 10.1186/s12984-024-01492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a common neurological condition marked by damage to the spinal cord. In the field of neurological rehabilitation, virtual reality (VR) is increasingly employed for evaluating and addressing the physical limitations caused by SCI. This study aimed to describe and calculate the effect sizes of virtual reality intervention (VR) on the functional performance of SCI. METHODS We searched PubMed, Embase, Web of Science, and Cochrane Library to identify articles published before October 30, 2023, that addressed the intervention of SCI using virtual reality technology. We excluded from the meta-analysis articles that did not provide enough data to evaluate the association between virtual reality intervention and spinal cord injury. The RevMan 5.4 statistical software was used for data analysis. RESULTS We included 16 articles in the systematic review and pooled 9 for the meta-analysis, which were 5 randomized controlled trials (RCTs) and 4 non-RCTs, including 248 subjects. The outcome measure of the walking index for spinal cord injury, limits of stability testing and berg balance scale scores improved in non-RCTs. CONCLUSION VR has shown promise in enhancing walking ability and balance function in individuals with SCI. However, the existing evidence for VR interventions in SCI patients remains limited, highlighting the necessity for future studies in this area.
Collapse
Affiliation(s)
- Likun Wang
- Department of Rehabilitation, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 190 Jiannan Road, Mianyang, China
| | - Hong Zhang
- Department of Rehabilitation, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 190 Jiannan Road, Mianyang, China
| | - Haibo Ai
- Department of Rehabilitation, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 190 Jiannan Road, Mianyang, China
| | - Yuxi Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, China.
- Department of Orthopaedics, The Second Hospital of Santai, No. 19 Nan Street, Luxi, Miang Yang, China.
| |
Collapse
|
7
|
Xiao Y, Bai H, Gao Y, Hu B, Zheng J, Cai X, Rao J, Li X, Hao A. Interactive Virtual Ankle Movement Controlled by Wrist sEMG Improves Motor Imagery: An Exploratory Study. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5507-5524. [PMID: 37432832 DOI: 10.1109/tvcg.2023.3294342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Virtual reality (VR) techniques can significantly enhance motor imagery training by creating a strong illusion of action for central sensory stimulation. In this article, we establish a precedent by using surface electromyography (sEMG) of contralateral wrist movement to trigger virtual ankle movement through an improved data-driven approach with a continuous sEMG signal for fast and accurate intention recognition. Our developed VR interactive system can provide feedback training for stroke patients in the early stages, even if there is no active ankle movement. Our objectives are to evaluate: 1) the effects of VR immersion mode on body illusion, kinesthetic illusion, and motor imagery performance in stroke patients; 2) the effects of motivation and attention when utilizing wrist sEMG as a trigger signal for virtual ankle motion; 3) the acute effects on motor function in stroke patients. Through a series of well-designed experiments, we have found that, compared to the 2D condition, VR significantly increases the degree of kinesthetic illusion and body ownership of the patients, and improves their motor imagery performance and motor memory. When compared to conditions without feedback, using contralateral wrist sEMG signals as trigger signals for virtual ankle movement enhances patients' sustained attention and motivation during repetitive tasks. Furthermore, the combination of VR and feedback has an acute impact on motor function. Our exploratory study suggests that the sEMG-based immersive virtual interactive feedback provides an effective option for active rehabilitation training for severe hemiplegia patients in the early stages, with great potential for clinical application.
Collapse
|
8
|
Šlosar L, Peskar M, Pišot R, Marusic U. Environmental enrichment through virtual reality as multisensory stimulation to mitigate the negative effects of prolonged bed rest. Front Aging Neurosci 2023; 15:1169683. [PMID: 37674784 PMCID: PMC10477372 DOI: 10.3389/fnagi.2023.1169683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Prolonged bed rest causes a multitude of deleterious physiological changes in the human body that require interventions even during immobilization to prevent or minimize these negative effects. In addition to other interventions such as physical and nutritional therapy, non-physical interventions such as cognitive training, motor imagery, and action observation have demonstrated efficacy in mitigating or improving not only cognitive but also motor outcomes in bedridden patients. Recent technological advances have opened new opportunities to implement such non-physical interventions in semi- or fully-immersive environments to enable the development of bed rest countermeasures. Extended Reality (XR), which covers augmented reality (AR), mixed reality (MR), and virtual reality (VR), can enhance the training process by further engaging the kinesthetic, visual, and auditory senses. XR-based enriched environments offer a promising research avenue to investigate the effects of multisensory stimulation on motor rehabilitation and to counteract dysfunctional brain mechanisms that occur during prolonged bed rest. This review discussed the use of enriched environment applications in bedridden patients as a promising tool to improve patient rehabilitation outcomes and suggested their integration into existing treatment protocols to improve patient care. Finally, the neurobiological mechanisms associated with the positive cognitive and motor effects of an enriched environment are highlighted.
Collapse
Affiliation(s)
- Luka Šlosar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Alma Mater Europaea – ECM, Department of Health Sciences, Maribor, Slovenia
| | - Manca Peskar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Alma Mater Europaea – ECM, Department of Health Sciences, Maribor, Slovenia
| |
Collapse
|
9
|
Agostinho M, Weissman Fogel I, Treister R. Time since onset might be of essence: A recommendation to assess the effects of combination of non-pharmacological neuromodulatory approaches at early stage since symptoms onset. Front Neurol 2023; 14:1115370. [PMID: 36793488 PMCID: PMC9923174 DOI: 10.3389/fneur.2023.1115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
In the past decade researchers began to assess the potential beneficial effects of non-invasive brain stimulation (NIBS) combined with a behavioral task as a treatment approach for various medical conditions. Transcranial direct current stimulation (tDCS) applied to the motor cortex combined with another treatment approach has been assessed as analgesic treatment in neuropathic and non-neuropathic pain conditions, and was found to exert only modest pain relief. Our group results show that combined tDCS and mirror therapy dramatically reduced acute phantom limb pain intensity with long-lasting effects, potentially preventing pain chronification. A review of the scientific literature indicates that our approach differs from that of others: We applied the intervention at the acute stage of the disease, whereas other studies applied the intervention in patients whose disease had already been established. We suggest that the timing of administration of the combined intervention is critical. Unlike in patients with chronic painful condition, in which the maladaptive plasticity associated with pain chronification and chronicity is well-consolidated, early treatment at the acute pain stage may be more successful in counterbalancing the not-yet consolidated maladaptive plasticity. We encourage the research community to test our hypothesis, both in the treatment of pain, and beyond.
Collapse
Affiliation(s)
- Mariana Agostinho
- The Cheryl Spencer Department of Nursing, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Centre for Interdisciplinary Health Research, CIIS, Institute of Health Sciences, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Irit Weissman Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Roi Treister
- The Cheryl Spencer Department of Nursing, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
Tefertiller C, Ketchum JM, Bartelt P, Peckham M, Hays K. Feasibility of virtual reality and treadmill training in traumatic brain injury: a randomized controlled pilot trial. Brain Inj 2022; 36:898-908. [PMID: 35834738 DOI: 10.1080/02699052.2022.2096258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To evaluate the safety and efficacy of treadmill training with virtual reality compared to treadmill training alone and standard of care balance and mobility treatment in chronic traumatic brain injury (TBI). PARTICIPANTS AND DESIGN Thirty-one individuals with chronic TBI with self-reported and objective balance deficits participated in a 4-week 12 session intervention of treadmill training with virtual reality, treadmill training alone, or standard of care overground therapy. OUTCOME MEASURES Primary measures included recruitment and enrollment rates, retention, tolerance to intervention, completeness of outcome measures, and adverse events. Secondary measures included the Community Balance and Mobility Scale, 10 Meter Walk Test, 6 Minute Walk Test, and Timed Up and Go. RESULTS No serious adverse events were reported. All participants completed all training sessions and assessments at all time points. Recruitment, enrollment, and retention rates were high. All groups showed a trend toward improvement in all balance and mobility measures following treatment. CONCLUSION Virtual reality and treadmill training are safe and feasibile for individuals with TBI. Participants show improvements on balance and mobility measures following a 4-week intervention. Future research is needed to evaluate the efficacy of this intervention compared to other modes of balance and mobility training.
Collapse
Affiliation(s)
| | | | | | | | - Kaitlin Hays
- Research Department, Craig Hospital, Englewood, Colorado, USA
| |
Collapse
|
11
|
Pais-Vieira C, Gaspar P, Matos D, Alves LP, da Cruz BM, Azevedo MJ, Gago M, Poleri T, Perrotta A, Pais-Vieira M. Embodiment Comfort Levels During Motor Imagery Training Combined With Immersive Virtual Reality in a Spinal Cord Injury Patient. Front Hum Neurosci 2022; 16:909112. [PMID: 35669203 PMCID: PMC9163805 DOI: 10.3389/fnhum.2022.909112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023] Open
Abstract
Brain-machine interfaces combining visual, auditory, and tactile feedback have been previously used to generate embodiment experiences during spinal cord injury (SCI) rehabilitation. It is not known if adding temperature to these modalities can result in discomfort with embodiment experiences. Here, comfort levels with the embodiment experiences were investigated in an intervention that required a chronic pain SCI patient to generate lower limb motor imagery commands in an immersive environment combining visual (virtual reality -VR), auditory, tactile, and thermal feedback. Assessments were made pre-/ post-, throughout the intervention (Weeks 0-5), and at 7 weeks follow up. Overall, high levels of embodiment in the adapted three-domain scale of embodiment were found throughout the sessions. No significant adverse effects of VR were reported. Although sessions induced only a modest reduction in pain levels, an overall reduction occurred in all pain scales (Faces, Intensity, and Verbal) at follow up. A high degree of comfort in the comfort scale for the thermal-tactile sleeve, in both the thermal and tactile feedback components of the sleeve was reported. This study supports the feasibility of combining multimodal stimulation involving visual (VR), auditory, tactile, and thermal feedback to generate embodiment experiences in neurorehabilitation programs.
Collapse
Affiliation(s)
- Carla Pais-Vieira
- Centro de Investigação Interdisciplinar em Saúde (CIIS), Instituto de Ciências da Saúde (ICS), Universidade Católica Portuguesa, Porto, Portugal
| | - Pedro Gaspar
- Centro de Investigação em Ciência e Tecnologia das Artes (CITAR), Universidade Católica Portuguesa, Porto, Portugal
| | - Demétrio Matos
- ID+ (Instituto de Investigação em Design, Média e Cultura), Instituto Politécnico do Cávado e do Ave, Vila Frescainha, Portugal
| | - Leonor Palminha Alves
- Human Robotics Group, Centro de Sistemas Inteligentes do IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Bárbara Moreira da Cruz
- Serviço de Medicina Física e Reabilitação, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Maria João Azevedo
- Serviço de Medicina Física e Reabilitação, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Miguel Gago
- Serviço de Neurologia, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Tânia Poleri
- Plano de Ação para Apoio aos Deficientes Militares, Porto, Portugal
| | - André Perrotta
- Centre for Informatics and Systems of the University of Coimbra (CISUC), Coimbra, Portugal
| | - Miguel Pais-Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
Yi Y, Hu Y, Cui M, Wang C, Wang J. Effect of virtual reality exercise on interventions for patients with Alzheimer's disease: A systematic review. Front Psychiatry 2022; 13:1062162. [PMID: 36440413 PMCID: PMC9681900 DOI: 10.3389/fpsyt.2022.1062162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Virtual reality (VR) interventions are increasingly being used in rehabilitating and treating patients with neurological disorders. This study aimed to explore the effects of VR exercise interventions for patients with Alzheimer's disease (AD). A systematic review of the published literature on randomized controlled trials of VR technology applied to patients with AD was conducted using the preferred reporting entry for systematic reviews and Meta-analysis guidelines. Descriptive analyses were performed to assess the quality of the studies in terms of the characteristics of the included studies, samples, diagnoses, types of VR technologies, subjective and objective levels of immersion, and quality of studies. Eight studies were included, including a pooled sample of 362 patients with AD. A systematic review showed that most studies focused on patients with AD's cognitive and physical functions. The main finding was that VR interventions could help improve cognitive and physical balance in patients with AD. However, future studies should emphasize design and use well-accepted assessment tools to validate the effects of VR interventions further.
Collapse
Affiliation(s)
- Yali Yi
- School of Mathematics and Statistics, Southwest University, Chongqing, China.,School of Mathematics and Statistics, Yulin Normal University, Yulin, China
| | - Yuanyan Hu
- School of Mathematics and Statistics, Yulin Normal University, Yulin, China
| | - Mengxin Cui
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Cheng Wang
- Department of Sports, Northwestern Polytechnical University, Xi'an, China
| | - Jibing Wang
- International College of Football, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Leemhuis E, Giuffrida V, Giannini AM, Pazzaglia M. A Therapeutic Matrix: Virtual Reality as a Clinical Tool for Spinal Cord Injury-Induced Neuropathic Pain. Brain Sci 2021; 11:1201. [PMID: 34573221 PMCID: PMC8472645 DOI: 10.3390/brainsci11091201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain (NP) is a chronic, debilitating, and resistant form of pain. The onset rate of NP following spinal cord injuries (SCI) is high and may reduce the quality of life more than the sensorimotor loss itself. The long-term ineffectiveness of current treatments in managing symptoms and counteracting maladaptive plasticity highlights the need to find alternative therapeutic approaches. Virtual reality (VR) is possibly the best way to administer the specific illusory or reality-like experience and promote behavioral responses that may be effective in mitigating the effects of long-established NP. This approach aims to promote a more systematic adoption of VR-related techniques in pain research and management procedures, highlighting the encouraging preliminary results in SCI. We suggest that the multisensory modulation of the sense of agency and ownership by residual body signals may produce positive responses in cases of brain-body disconnection. First, we focus on the transversal role embodiment and how multisensory and environmental or artificial stimuli modulate illusory sensations of bodily presence and ownership. Then, we present a brief overview of the use of VR in healthcare and pain management. Finally, we discus research experiences which used VR in patients with SCI to treating NP, including the most recent combinations of VR with further stimulation techniques.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Giuffrida
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
14
|
Leemhuis E, Esposito RM, De Gennaro L, Pazzaglia M. Go Virtual to Get Real: Virtual Reality as a Resource for Spinal Cord Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1819. [PMID: 33668438 PMCID: PMC7918193 DOI: 10.3390/ijerph18041819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023]
Abstract
Increasingly, refined virtual reality (VR) techniques allow for the simultaneous and coherent stimulation of multiple sensory and motor domains. In some clinical interventions, such as those related to spinal cord injuries (SCIs), the impact of VR on people's multisensory perception, movements, attitudes, and even modulations of socio-cognitive aspects of their behavior may influence every phase of their rehabilitation treatment, from the acute to chronic stages. This work describes the potential advantages of using first-person-perspective VR to treat SCIs and its implications for manipulating sensory-motor feedback to alter body signals. By situating a patient with SCI in a virtual environment, sensorial perceptions and motor intention can be enriched into a more coherent bodily experience that also promotes processes of neural regeneration and plasticity. In addition to the great potential of research, the most significant areas of interest concern is managing neuropathic pain, motor rehabilitation, and psychological well-being.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Rita Maria Esposito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
15
|
Austin PD, Siddall PJ. Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: A scoping review. J Spinal Cord Med 2021; 44:8-18. [PMID: 30707649 PMCID: PMC7919871 DOI: 10.1080/10790268.2019.1575554] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Context: Virtual and augmented imagery are emerging technologies with potential to reduce the severity and impact of neuropathic pain in people with spinal cord injury (SCI).Objective: We aimed to identify and discuss studies using virtual and augmented reality applications for the management of neuropathic pain in people with spinal cord injury.Methods (data sources, data extraction): A systematic literature search was conducted using PRISMA scoping review guidelines. Articles were searched in PubMed, Embase and Web of Science databases using search terms relating to SCI, virtual and augmented reality and neuropathic pain. With no strong evidence for visual imagery in the treatment of pain in SCI patients, we selected exploratory, feasibility and more rigorous methodologies such as randomized controlled trials and case-control studies. We only selected studies evaluating the effects of visual imagery on neuropathic pain at or below the spinal cord injury level.Results: Of 60 articles located, we included nine articles involving 207 participants. All studies were exploratory using head-mounted devices or 3D and 2D screens with virtual walking or limb movement imagery. Outcomes included pain sensitivity, motor function and body ownership. Eight of the nine studies reported significant reductions in neuropathic pain intensity. However, given small sample sizes in all studies, results may be unreliable.Conclusion: Although the number of studies and individual sample sizes are small, these initial findings are promising. Given the limited options available for the effective treatment of neuropathic SCI pain and early evidence of efficacy, they provide valuable incentive for further research.
Collapse
Affiliation(s)
- Philip D. Austin
- Department of Pain Management, HammondCare, Greenwich Hospital, Sydney, New South Wales, Australia
| | - Philip J. Siddall
- Department of Pain Management, HammondCare, Greenwich Hospital, Sydney, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Wu J, Ma Y, Ren Z. Rehabilitative Effects of Virtual Reality Technology for Mild Cognitive Impairment: A Systematic Review With Meta-Analysis. Front Psychol 2020; 11:1811. [PMID: 33101098 PMCID: PMC7545425 DOI: 10.3389/fpsyg.2020.01811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: To evaluate the impact of virtual reality (VR) technology on the cognitive functions (overall cognitive ability, executive function, short-term memory, and long-term memory) of people with mild cognitive impairment (MCI). Methods: All major databases, including Web of Science, PubMed, Scopus, Proquest, WanFang, and CNKI, were searched to identify all relevant studies published in English or Chinese since October 28th, 2019. Two researchers independently conducted document retrieval, study selection, data extraction, and methodological quality evaluation. Result: 15 randomized controlled trials were analyzed (N = 612 people with MCI), with the methodological quality evaluation score ranging from 5 to 7 points. A random effects model was selected to combine effect sizes. The result of the meta-analysis indicates that VR significantly enhanced MCI patients' overall cognitive ability (SMD = 0.869, 95% confidence interval [CI] = 0.330–1.407, P = 0.002, I2 = 86.822, n = 537) and executive function (SMD = 1.083, 95%, 95%CI = 00.134–2.031, P = 0.025, I2 = 93.748, n = 220). The meta-analysis indicated that after VR training, effects on short-term memory (SMD = 0.488, 95%CI = −0.108–1.084, P = 0.109, I2 = 62.354, n = 131) and long-term memory (SMD = 0.335, 95%CI = −1.194–0.863, P = 0.0.214, I2 = 58.868, n = 152) were not statistically significant. Conclusions: The present meta-analysis verifies the potential rehabilitative effects of VR technology for mild cognitive impairment.
Collapse
Affiliation(s)
- Jinlong Wu
- Department of Physical Education, Shenzhen University, Shenzhen, China
| | - Yudan Ma
- Jilin Institute of Sport Science, Changchun, China
| | - Zhanbing Ren
- Department of Physical Education, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Opsommer E, Chevalley O, Korogod N. Motor imagery for pain and motor function after spinal cord injury: a systematic review. Spinal Cord 2019; 58:262-274. [PMID: 31836873 DOI: 10.1038/s41393-019-0390-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To evaluate the therapeutic benefits of motor imagery (MI) for the people with spinal cord injury (SCI). SETTING International. METHODS We searched electronic bibliographic databases, trial registers, and relevant reference lists. The review included experimental and quasi-experimental study designs as well as observational studies. For the critical appraisal of the 18 studies retrieved (three RCT, seven quasi-RCT, eight observational), we used instruments from the Joanna Briggs Institute. The primary outcome measure was pain. Secondary outcome measures included motor function and neurophysiological parameters. Adverse effects were extracted if reported in the included studies. Because of data heterogeneity, only a qualitative synthesis is offered. RESULTS The included studies involved 282 patients. In most, results were an improvement in motor function and decreased pain; however, some reported no effect or an increase in pain. Although protocols of MI intervention were heterogeneous, sessions of 8-20 min were used for pain treatments, and of 30-60 min were used for motor function improvement. Neurophysiological measurements showed changes in brain region activation and excitability imposed by SCI, which were partially recovered by MI interventions. No serious adverse effects were reported. CONCLUSIONS High heterogeneity in the SCI population, MI interventions, and outcomes measured makes it difficult to judge the therapeutic effects and best MI intervention protocol, especially for people with SCI with neuropathic pain. Further clinical trials evaluating MI intervention as adjunct therapy for pain in SCI patients are warranted.
Collapse
Affiliation(s)
- Emmanuelle Opsommer
- School of Health Sciences (HESAV) - University of Applied Sciences and Arts Western Switzerland (HES-SO), Avenue de Beaumont 21, 1011, Lausanne, Switzerland.
| | - Odile Chevalley
- School of Health Sciences (HESAV) - University of Applied Sciences and Arts Western Switzerland (HES-SO), Avenue de Beaumont 21, 1011, Lausanne, Switzerland
| | - Natalya Korogod
- School of Health Sciences (HESAV) - University of Applied Sciences and Arts Western Switzerland (HES-SO), Avenue de Beaumont 21, 1011, Lausanne, Switzerland
| |
Collapse
|
18
|
Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7106951. [PMID: 31828120 PMCID: PMC6885151 DOI: 10.1155/2019/7106951] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/31/2019] [Indexed: 01/01/2023]
Abstract
Background Spinal cord injury (SCI) is often associated with long-term impairments related to functional limitations in the sensorimotor system. The use of virtual reality (VR) technology may lead to increased motivation and engagement, besides allowing a wide range of possible tasks/exercises to be implemented in rehabilitation programs. The present review aims to investigate the possible benefits and efficacy of VR-based rehabilitation in individuals with SCI. Methods An electronically systematic search was performed in multiple databases (PubMed, BVS, Web of Science, Cochrane Central, and Scielo) up to May 2019. MESH terms and keywords were combined in a search strategy. Two reviewers independently selected the studies in accordance with eligibility criteria. The PEDro scale was used to score the methodological quality and risk of bias of the selected studies. Results Twenty-five studies (including 482 participants, 47.6 ± 9.5 years, 73% male) were selected and discussed. Overall, the studies used VR devices in different rehabilitation protocols to improve motor function, driving skills, balance, aerobic function, and pain level, as well as psychological and motivational aspects. A large amount of heterogeneity was observed as to the study design, VR protocols, and outcome measures used. Only seven studies (28%) had an excellent/good quality of evidence. However, substantial evidence for significant positive effects associated with VR therapy was found in most of the studies (88%), with no adverse events (88%) being reported. Conclusion Although the current evidence is limited, the findings suggest that VR-based rehabilitation in subjects with SCI may lead to positive effects on aerobic function, balance, pain level, and motor function recovery besides improving psychological/motivational aspects. Further high-quality studies are needed to provide a guideline to clinical practice and to draw robust conclusions about the potential benefits of VR therapy for SCI patients. Protocol details are registered on PROSPERO (registration number: CRD42016052629).
Collapse
|
19
|
Mallari B, Spaeth EK, Goh H, Boyd BS. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. J Pain Res 2019; 12:2053-2085. [PMID: 31308733 PMCID: PMC6613199 DOI: 10.2147/jpr.s200498] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/08/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Previous studies have shown that virtual reality (VR) is effective in reducing acute and chronic pain both in adults and in children. Given the emergence of new VR technology, and the growing body of research surrounding VR and pain management, an updated systematic review is warranted. Purpose: The purpose of this systematic review is to compare the effectiveness of VR in reducing acute and chronic pain in adults. Data Sources: A search was conducted in three databases (PubMed, CINAHL, Trip) using standardized search terms. Study Selection: Twenty experimental and quasi-experimental trials published between January 2007 and December 2018 were included based on prespecified inclusion and exclusion criteria. Pain intensity was the primary outcome. Data Extraction: We extracted data and appraised the quality of articles using either the PEDro or Modified Downs and Black risk of bias tools. Data Synthesis: The majority of studies supported the use of VR to reduce acute pain both during the procedure and immediately after. Numerous studies found VR reduced chronic pain during VR exposure but there is insufficient evidence to support lasting analgesia. There was considerable variability in patient population, pain condition and dosage of VR exposure. Limitations: Due to heterogeneity, we were unable to perform meta-analyses for all study populations and pain conditions. Conclusions: VR is an effective treatment for reducing acute pain. There is some research that suggests VR can reduce chronic pain during the intervention; however, more evidence is needed to conclude that VR is effective for lasting reductions in chronic pain.
Collapse
Affiliation(s)
- Brian Mallari
- Department of Physical Therapy, St. Mary's Medical Center, San Francisco, CA, USA
| | | | - Henry Goh
- Department of Physical Therapy, Kaiser Permanente, Oakland, CA, USA
| | - Benjamin S Boyd
- Department of Physical Therapy, Samuel Merritt University, Oakland, CA, USA
| |
Collapse
|
20
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
21
|
Thomschewski A, Ströhlein A, Langthaler PB, Schmid E, Potthoff J, Höller P, Leis S, Trinka E, Höller Y. Imagine There Is No Plegia. Mental Motor Imagery Difficulties in Patients with Traumatic Spinal Cord Injury. Front Neurosci 2017; 11:689. [PMID: 29311771 PMCID: PMC5732245 DOI: 10.3389/fnins.2017.00689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
In rehabilitation of patients with spinal cord injury (SCI), imagination of movement is a candidate tool to promote long-term recovery or to control futuristic neuroprostheses. However, little is known about the ability of patients with spinal cord injury to perform this task. It is likely that without the ability to effectively perform the movement, the imagination of movement is also problematic. We therefore examined, whether patients with SCI experience increased difficulties in motor imagery (MI) compared to healthy controls. We examined 7 male patients with traumatic spinal cord injury (aged 23–70 years, median 53) and 20 healthy controls (aged 21–54 years, median 30). All patients had incomplete SCI, with AIS (ASIA Impairment Scale) grades of C or D. All had cervical lesions, except one who had a thoracic injury level. Duration after injury ranged from 3 to 314 months. We performed the Movement Imagery Questionnaire Revised as well as the Beck Depression Inventory in all participants. The self-assessed ability of patients to visually imagine movements ranged from 7 to 36 (Md = 30) and tended to be decreased in comparison to healthy controls (ranged 16–49, Md = 42.5; W = 326.5, p = 0.055). Also, the self-assessed ability of patients to kinesthetically imagine movements (range = 7–35, Md = 31) differed significantly from the control group (range = 23–49, Md = 41; W = 337.5, p = 0.0047). Two patients yielded tendencies for depressive mood and they also reported most problems with movement imagination. Statistical analysis however did not confirm a general relationship between depressive mood and increased difficulty in MI across both groups. Patients with spinal cord injury seem to experience difficulties in imagining movements compared to healthy controls. This result might not only have implications for training and rehabilitation programs, but also for applications like brain-computer interfaces used to control neuroprostheses, which are often based on the brain signals exhibited during the imagination of movements.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria.,Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Anja Ströhlein
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria
| | - Patrick B Langthaler
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria.,Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Elisabeth Schmid
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria.,Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Jonas Potthoff
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria
| | - Peter Höller
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria
| | - Stefan Leis
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria.,Center for Cognitive Neuroscience Salzburg, Salzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria.,Center for Cognitive Neuroscience Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Mercier C, Roosink M, Bouffard J, Bouyer LJ. Promoting Gait Recovery and Limiting Neuropathic Pain After Spinal Cord Injury. Neurorehabil Neural Repair 2016; 31:315-322. [PMID: 27913797 PMCID: PMC5405804 DOI: 10.1177/1545968316680491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most persons living with a spinal cord injury experience neuropathic pain in the months following their lesion, at the moment where they receive intensive gait rehabilitation. Based on studies using animal models, it has been proposed that central sensitization in nociceptive pathways (maladaptive plasticity) and plasticity related to motor learning (adaptive plasticity) share common neural mechanisms and compete with each other. This article aims to address the discrepancy between the growing body of basic science literature supporting this hypothesis and the general belief in rehabilitation research that pain and gait rehabilitation represent two independent problems. First, the main findings from basic research showing interactions between nociception and learning in the spinal cord will be summarized, focusing both on evidence demonstrating the impact of nociception on motor learning and of motor learning on central sensitization. Then, the generalizability of these findings in animal models to humans will be discussed. Finally, the way potential interactions between nociception and motor learning are currently taken into account in clinical research in patients with spinal cord injury will be presented. To conclude, recommendations will be proposed to better integrate findings from basic research into future clinical research in persons with spinal cord injury.
Collapse
Affiliation(s)
- Catherine Mercier
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| | - Meyke Roosink
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada
| | - Jason Bouffard
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| | - Laurent J Bouyer
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| |
Collapse
|