1
|
Rowe FJ, Hepworth LR, Begoña Coco-Martin M, Gillebert CR, Leal-Vega L, Palmowski-Wolfe A, Papageorgiou E, Ryan SJ, Skorkovska K, Aamodt AH. European Stroke Organisation (ESO) guideline on visual impairment in stroke. Eur Stroke J 2025:23969873251314693. [PMID: 40401755 PMCID: PMC12098360 DOI: 10.1177/23969873251314693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/02/2024] [Indexed: 05/23/2025] Open
Abstract
Visual impairment due to stroke is common. However, controversy exists on how best to screen for visual impairment, the timing at which to screen, and on the optimal management of the varying types of visual impairment. This European Stroke Organisation (ESO) guideline provides evidence-based recommendations to assist clinicians in decision-making on screening methods, timing of screening and assessment and management options in adult stroke survivors. The target audience for this guideline is health care providers involved in stroke care from prehospital screening, in stroke units and rehabilitation centres, ophthalmological departments and community stroke care, and for stroke survivors and care givers. The guideline was developed according to the ESO standard operating procedure and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology. The working group identified relevant clinical questions, performed systematic reviews and, where possible, meta-analyses of the literature, assessed the quality of the available evidence and made specific recommendations. Expert consensus statements were provided where insufficient evidence was available to provide recommendations based on the GRADE approach. We found evidence of acceptability and feasibility of early visual screening within 1 week of stroke onset. We describe the accuracy of various vision screening tools at pre-hospital and hyper/acute stages as well as specialist vision assessment. We suggest vision screening in all patients with stroke to improve detection of their visual problems We describe a range of treatment options for visual impairment post-stroke across the typical categories of impaired central vision, ocular stroke (central retinal artery occlusion), eye movements, visual fields, visual neglect and visual perception. This guideline highlights specific areas where robust evidence is lacking and where further definitive randomised controlled trials and diagnostic accuracy studies are required.
Collapse
Affiliation(s)
- Fiona J Rowe
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Lauren R Hepworth
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | | | - Celine R Gillebert
- Department Brain and Cognition, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Luis Leal-Vega
- Department of Medicine, Dermatology and Toxicology, University of Valladolid, Valladolid, Spain
| | | | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Larissa, Greece
| | | | - Karolina Skorkovska
- Department of Optometry and Orthoptics, Masaryk University, Brno, Czech Republic
| | - Anne Hege Aamodt
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Neuromedicine and Movement Science, the Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Abbas AW, Aboeldahab H, Zeid MA, Hassan AK, Hindawi MD, Elrosasy A, Lorabi S, Hawas Y, Safwat B. Non-invasive brain stimulation for treating visual defects: a systematic review and meta-analysis. Neurol Sci 2025:10.1007/s10072-025-08069-y. [PMID: 40119237 DOI: 10.1007/s10072-025-08069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
OBJECTIVE We evaluated the efficacy of applying repetitive transorbital alternating current stimulation (rTACS) to patients suffering from visual defects, especially homonymous hemianopia. BACKGROUND Stroke or optic neuropathy would result in vision loss or Visual field defect (VFD) and homonymous hemianopia. Recently, one of the commonly used procedures to relieve VFD is non-invasive brain stimulation (NIBS). METHODS A comprehensive search covering publications in PubMed, Embase, Cochrane, and Scopus, spanning until September 2023 was performed. Relevant Randomized controlled trials (RCTs) were selected, and their data were extracted and analyzed. Pooled mean difference (MD) was calculated for change in the high-resolution perimetry detection accuracy (HRP DA) and fixation accuracy (HRP FA), static automated perimetry foveal threshold (SAP FT), and visual acuity (VA) of near vision outcomes. RESULTS We pooled in our analysis 4 RCTs. Compared to the sham group, rTACS patients had a significantly higher HRP DA (SMD = 0.35; 95% CI [0.003,0.694] P = 0.048). However, the analysis did not favor any of the compared groups in HRP FA, SAP FT, VA of near vision, and mean threshold (SMD = 0.14; 95% CI [-0.21,0.48] P = 0.43], (SMD = 0.17; 95% CI [-0.11,0.45] P = 0.23), (SMD = 0.32; 95%CI [-0.24,0.88] P = 0.26), and (SMD = 0.31; 95% CI [-0.04,0.65] P = 0.08) respectively. CONCLUSIONS Current evidence suggests that rTACS exhibits a promising approach in homonymous hemianopia patients, where it significantly increased HRP DA. Despite the results' failure to attain statistical significance in some outcomes, it underscores the necessity for larger RCTs with longer follow-up periods.
Collapse
Affiliation(s)
- Ahmed W Abbas
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Heba Aboeldahab
- Clinical Research Department, El-Gomhoria General Hospital, MOHP, Alexandria, Egypt
| | | | - Amr K Hassan
- Department of Ophthalmology, Faculty of Medicine, South Valley University, South Valley, Egypt
| | | | - Amr Elrosasy
- Faculty of Medicine Cairo University, Cairo, Egypt
| | - Safia Lorabi
- Faculty of Medicine, Algiers University, Alger Centre, Algeria
| | - Yousef Hawas
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Benyameen Safwat
- Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
3
|
Park AS, Thompson B. Non-invasive brain stimulation and vision rehabilitation: a clinical perspective. Clin Exp Optom 2024; 107:594-602. [PMID: 38772676 DOI: 10.1080/08164622.2024.2349565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Non-invasive brain stimulation techniques allow targeted modulation of brain regions and have emerged as a promising tool for vision rehabilitation. This review presents an overview of studies that have examined the use of non-invasive brain stimulation techniques for improving vision and visual functions. A description of the proposed neural mechanisms that underpin non-invasive brain stimulation effects is also provided. The clinical implications of non-invasive brain stimulation in vision rehabilitation are examined, including their safety, effectiveness, and potential applications in specific conditions such as amblyopia, post-stroke hemianopia, and central vision loss associated with age-related macular degeneration. Additionally, the future directions of research in this field are considered, including the need for larger and more rigorous clinical trials to validate the efficacy of these techniques. Overall, this review highlights the potential for brain stimulation techniques as a promising avenue for improving visual function in individuals with impaired vision and underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Adela Sy Park
- Centre for Eye & Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
4
|
Jia S, Mei X, Chen L, Chan LH, Tsang C, Suen V, Li T, Zaw MW, Liu A, Thompson B, Sabel B, Woo G, Leung CKS, Yip SP, Chang DHF, Cheong AMY. Glaucoma Rehabilitation using ElectricAI Transcranial Stimulation (GREAT)-study protocol for randomized controlled trial using combined perceptual learning and transcranial electrical stimulation for vision enhancement. Trials 2024; 25:501. [PMID: 39039582 PMCID: PMC11264395 DOI: 10.1186/s13063-024-08314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Glaucoma patients with irreversible visual field loss often experience decreased quality of life, impaired mobility, and mental health challenges. Perceptual learning (PL) and transcranial electrical stimulation (tES) have emerged as promising interventions for vision rehabilitation, showing potential in restoring residual visual functions. The Glaucoma Rehabilitation using ElectricAI Transcranial stimulation (GREAT) project aims to investigate whether combining PL and tES is more effective than using either method alone in maximizing the visual function of glaucoma patients. Additionally, the study will assess the impact of these interventions on brain neural activity, blood biomarkers, mobility, mental health, quality of life, and fear of falling. METHODS The study employs a three-arm, double-blind, randomized, superiority-controlled design. Participants are randomly allocated in a 1:1:1 ratio to one of three groups receiving: (1) real PL and real tES, (2) real PL and sham tES, and (3) placebo PL and sham tES. Each participant undergoes 10 sessions per block (~ 1 h each), with a total of three blocks. Assessments are conducted at six time points: baseline, interim 1, interim 2, post-intervention, 1-month post-intervention, and 2-month post-intervention. The primary outcome is the mean deviation of the 24-2 visual field measured by the Humphrey visual field analyzer. Secondary outcomes include detection rate in the suprathreshold visual field, balance and gait functions, and electrophysiological and biological responses. This study also investigates changes in neurotransmitter metabolism, biomarkers, self-perceived quality of life, and psychological status before and after the intervention. DISCUSSION The GREAT project is the first study to assess the effectiveness of PL and tES in the rehabilitation of glaucoma. Our findings will offer comprehensive assessments of the impact of these treatments on a wide range of brain and vision-related metrics including visual field, neural activity, biomarkers, mobility, mental health, fear of falling, and quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT05874258 . Registered on May 15, 2023.
Collapse
Affiliation(s)
- Shuwen Jia
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Xiaolin Mei
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lilin Chen
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lok Hin Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Celia Tsang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Venus Suen
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tingni Li
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Myo Win Zaw
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Amanda Liu
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Ben Thompson
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Bernhard Sabel
- Institute of Medical Psychology, University of Magdeburg, Magdeburg, Germany
| | - George Woo
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Christopher K S Leung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shea-Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Dorita H F Chang
- Department of Psychology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Allen M Y Cheong
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China.
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
5
|
Tol S, de Haan GA, Postuma EMJL, Jansen JL, Heutink J. Reading Difficulties in Individuals with Homonymous Visual Field Defects: A Systematic Review of Reported Interventions. Neuropsychol Rev 2024:10.1007/s11065-024-09636-4. [PMID: 38639880 DOI: 10.1007/s11065-024-09636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 04/20/2024]
Abstract
Reading difficulties are amongst the most commonly reported problems in individuals with homonymous visual field defects (HVFDs). To be able to provide guidance for healthcare professionals considering offering reading training, researchers in this field and interested individuals with HVFDs, this systematic review aims to (1) provide an overview of the contextual and intervention characteristics of all published HVFD interventions and (2) generate insights into the different reading outcome measures that these studies adopted. A search on PsycINFO, MEDLINE and Web of Science was conducted up to February 2, 2023. All intervention studies for HVFD in which reading was measured were included. Data was collected about the intervention type, session duration, number of sessions, the intensity, duration, circumstance of the interventions, country in which the intervention was studied and reading measures. Sixty records are included, describing 70 interventions in total of which 21 are specifically reading interventions. Overall, adjusted saccadic behaviour interventions occur most in the literature. A wide range within all intervention characteristics was observed. Forty-nine records reported task-performance reading measures, and 33 records reported self-reported reading measures. The majority of task-performance measures are based on self-developed paragraph reading tasks with a time-based outcome measure (e.g. words per minute). Future research could benefit from making use of validated reading tests, approaching the measurement of reading mixed-methods and providing participants the possibility to supply outcomes relevant to them.
Collapse
Affiliation(s)
- S Tol
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands.
| | - G A de Haan
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
- Royal Dutch Visio, Centre of Expertise for Blind and Partially Sighted People, Amersfoortsestraatweg 180, 1272 RR, Huizen, The Netherlands
| | - E M J L Postuma
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - J L Jansen
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - J Heutink
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
- Royal Dutch Visio, Centre of Expertise for Blind and Partially Sighted People, Amersfoortsestraatweg 180, 1272 RR, Huizen, The Netherlands
| |
Collapse
|
6
|
Diana L, Casati C, Melzi L, Bianchi Marzoli S, Bolognini N. The effects of occipital and parietal tDCS on chronic visual field defects after brain injury. Front Neurol 2024; 15:1340365. [PMID: 38419713 PMCID: PMC10899507 DOI: 10.3389/fneur.2024.1340365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Homonymous visual field defects (HVFDs) following acquired brain lesions affect independent living by hampering several activities of everyday life. Available treatments are intensive and week- or month-long. Transcranial Direct current stimulation (tDCS), a plasticity-modulating non-invasive brain stimulation technique, could be combined with behavioral trainings to boost their efficacy or reduce treatment duration. Some promising attempts have been made pairing occipital tDCS with visual restitution training, however less is knows about which area/network should be best stimulated in association with compensatory approaches, aimed at improving exploratory abilities, such as multisensory trainings. Methods In a proof-of-principle, sham-controlled, single-blind study, 15 participants with chronic HVFDs underwent four one-shot sessions of active or sham anodal tDCS applied over the ipsilesional occipital cortex, the ipsilesional or contralesional posterior parietal cortex. tDCS was delivered during a compensatory multisensory (audiovisual) training. Before and immediately after each tDCS session, participants carried out a visual detection task, and two visual search tasks (EF and Triangles search tests). Accuracy (ACC) and response times (RTs) were analyzed with generalized mixed models. We investigated differences in baseline performance, clinical-demographic and lesion factors between tDCS responders and non-responders, based on post-tDCS behavioral improvements. Lastly, we conducted exploratory analyses to compare left and right brain-damaged participants. Results RTs improved after active ipsilesional occipital and parietal tDCS in the visual search tasks, while no changes in ACC were detected. Responders to ipsilesional occipital tDCS (Triangle task) had shorter disease duration and smaller lesions of the parietal cortex and the superior longitudinal fasciculus. On the other end, on the EF test, those participants with larger damage of the temporo-parietal cortex or the fronto-occipital white matter tracts showed a larger benefit from contralesional parietal tDCS. Overall, the visual search RTs improvements were larger in participants with right-sided hemispheric lesions. Conclusion The present result shows the facilitatory effects of occipital and parietal tDCS combined with compensatory multisensory training on visual field exploration in HVFDs, suggesting a potential for the development of new neuromodulation treatments to improve visual scanning behavior in brain-injured patients.
Collapse
Affiliation(s)
- Lorenzo Diana
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carlotta Casati
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lisa Melzi
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefania Bianchi Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, University of Milano-Bicocca and NeuroMI, Milan, Italy
| |
Collapse
|
7
|
Maeyama T, Okada H, Sakai S. The effects of rehabilitative interventions on reading disorders caused by homonymous visual field defects: a meta-analysis focusing on improvement in reading speed. Acta Neurol Belg 2024; 124:123-140. [PMID: 37572263 DOI: 10.1007/s13760-023-02327-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/27/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION Reading disorders caused by homonymous visual field defects (HVFDs) have a significant impact on a patient's quality of life. However, no review has been conducted to evaluate the available evidence on the effects of rehabilitative interventions on reading disorders caused by HVFDs. Thus, the aim of this study was to systematically evaluate the effects of rehabilitative interventions on reading disorders caused by HVFDs. METHODS We searched the MEDLINE/PubMed, Cochrane Library, ClinicalTrials.gov, CINAHL, and ScienceDirect databases for relevant articles. Relevant search terms were used to identify reports of randomized controlled trials or randomized crossover trials published between January 1990 and December 2021. Only studies that included reading-speed-related outcomes were analyzed. Risk of bias was assessed using the PEDro scale. Meta-analysis was conducted using a random-effects model, and standardized mean differences (SMD) and 95% confidence intervals (CIs) were calculated. Heterogeneity was assessed using the Ι2 statistic. RESULTS Nine studies were included in the meta-analysis. The results showed that rehabilitative interventions significantly improved reading disorders caused by HVFDs (SMD = 0.30; 95% CI 0.08-0.51; P < 0.01; Ι2 = 0.0%). Subgroup analysis showed that reading training significantly improved reading disorders (SMD = 0.35; 95% CI 0.05-0.66; P = 0.02; Ι2 = 0.0%). CONCLUSION Reading disorders caused by HVFDs can be improved through rehabilitation. In addition, reading training for the improvement of eye movement and fixation to compensate for foveal and parafoveal visual field defects may improve reading speed.
Collapse
Affiliation(s)
- Takaya Maeyama
- Graduate School of Health Sciences, Hokkaido University, Kita 12-Jo Nishi 5-Chome, Kitaku, Sapporo, Hokkaido, Japan
| | - Hiroki Okada
- Department of Rehabilitation Sciences, Hokkaido University, Kita 12-Jo Nishi 5-Chome, Kita-Ku, Sapporo, Hokkaido, Japan.
| | - Shinya Sakai
- Department of Rehabilitation Sciences, Hokkaido University, Kita 12-Jo Nishi 5-Chome, Kita-Ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Lian Y, Cheng X, Chen Q, Huang L, Xie L, Wang W, Ni J, Chen X. Case report: Beneficial effects of visual cortex tDCS stimulation combined with visual training in patients with visual field defects. Front Neurol 2024; 15:1344348. [PMID: 38327623 PMCID: PMC10847570 DOI: 10.3389/fneur.2024.1344348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Background Visual field defect (VFD) refers to the phenomenon that the eye is unable to see a certain area within the normal range of vision, which may be caused by eye diseases, neurological diseases and other reasons. Transcranial direct current stimulation (tDCS) is expected to be an effective treatment for the recovery or partial recovery of VFD. This paper describes the potential for tDCS in combination with visual retraining strategies to have a positive impact on vision recovery, and the potential for neuroplasticity to play a key role in vision recovery. Methods This case report includes two patients. Patient 1 was diagnosed with a right occipital hemorrhage and homonymous hemianopia. Patient 2 had multiple facial fractures, a contusion of the right eye, and damage to the optic nerve of the right eye, which was diagnosed as a peripheral nerve injury (optic nerve injury). We administered a series of treatments to two patients, including transcranial direct current stimulation; visual field restoration rehabilitation: paracentric gaze training, upper and lower visual field training, VR rehabilitation, and perceptual training. One time per day, 5 days per week, total 6 weeks. Results After 6 weeks of visual rehabilitation and tDCS treatment, Patient 1 Humphrey visual field examination showed a significant improvement compared to the initial visit, with a reduction in the extent of visual field defects, increased visual acuity, and improvement in most visual functions. Patient 2 had an expanded visual field, improved visual sensitivity, and substantial improvement in visual function. Conclusion Our case reports support the feasibility and effectiveness of tDCS combined with visual rehabilitation training in the treatment of occipital stroke and optic nerve injury settings.
Collapse
Affiliation(s)
- Yanhua Lian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, Fuzhou Second Hospital, Fuzhou, China
| | - Xiaoping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qunlin Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Libin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lili Xie
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wenzong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Navarro PA, Contreras-Lopez WO, Tello A, Cardenas PL, Vargas MD, Martinez LC, Yepes-Nuñez JJ. Effectiveness and Safety of Non-Invasive Neuromodulation for Vision Restoration: A Systematic Review and Meta-Analysis. Neuroophthalmology 2023; 48:93-110. [PMID: 38487361 PMCID: PMC10936670 DOI: 10.1080/01658107.2023.2279092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 03/17/2024] Open
Abstract
We carried out a systematic review and meta-analysis to determine the effectiveness and safety of non-invasive electrical stimulation (NES) for vision restoration. We systematically searched for randomised controlled trials (RCTs) comparing NES with sham stimulation, for vision restoration between 2000 and 2022 in CENTRAL, MEDLINE, EMBASE, and LILACS. The main outcomes were as follows: visual acuity (VA); detection accuracy; foveal threshold; mean sensitivity as the parameter for the visual field; reading performance; contrast sensitivity (CS); electroencephalogram; quality of life (QoL), and safety. Two reviewers independently selected studies, extracted data, and evaluated the risk of bias using the Cochrane risk of bias 2.0 tool. The certainty in the evidence was determined using the GRADE framework. Protocol registration: CRD42022329342. Thirteen RCTs involving 441 patients with vision impairment indicate that NES may improve VA in the immediate post-intervention period (mean difference [MD] = -0.02 logMAR, 95% confidence intervals [CI] -0.08 to 0.04; low certainty), and probably increases QoL and detection accuracy (MD = 0.08, 95% CI -0.25 to 0.42 and standardised MD [SMD] = 0.09, 95% CI -0.58 to 0.77, respectively; both moderate certainty). NES likely results in little or no difference in mean sensitivity (SMD = -0.03, 95% CI -0.53 to 0.48). Compared with sham stimulation, NES increases the risk of minor adverse effects (risk ratio = 1.24, 95% CI 0.99 to 1.54; moderate certainty). The effect of NES on CS, reading performance, and electroencephalogram was uncertain. Our study suggests that although NES may slightly improve VA, detection accuracy, and QoL, the clinical relevance of these findings remains uncertain. Future research should focus on improving the available evidence's precision and consistency.
Collapse
Affiliation(s)
| | - William Omar Contreras-Lopez
- Departament of Neuromodulation, NEMOD Research Group, Bucaramanga, Colombia
- Department of Neurosurgery, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
| | - Alejandro Tello
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Department of Neuro-Ophthalmology, Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia
- Department of Ophthalmology, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- School of Medicine, Department of Ophthalmology, Universidad Industrial de Santander (UIS), Bucaramanga, Colombia
| | - Pedro Luis Cardenas
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Department of Neuro-Ophthalmology, Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia
- Department of Ophthalmology, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- School of Medicine, Department of Ophthalmology, Universidad Industrial de Santander (UIS), Bucaramanga, Colombia
| | | | - Luz Catherine Martinez
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Department of Ophthalmology, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
| | - Juan José Yepes-Nuñez
- School of Medicine, Universidad de los Andes, Bogotá DC, Colombia
- Department of Epidemiology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá DC, Colombia
| |
Collapse
|
10
|
Shen QR, Hu MT, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit 2022; 28:e938298. [PMID: 36457205 PMCID: PMC9724451 DOI: 10.12659/msm.938298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 09/02/2023] Open
Abstract
Stroke is a disease with a high incidence and disability rate, resulting in changes in neural network and corticoid-subcortical excitability and various functional disabilities. The aim of the present study was to discuss the current status of research and limitations and potential direction in the application of noninvasive brain stimulation (NIBS) on post-stroke patients. This literature review focused on clinical studies and reviews. Literature retrieval was conducted in PubMed, Cochrane, Scopus, and CNKI, using the following keywords: Repeated transcranial magnetic stimulation, Transcranial direct current stimulation, Transcranial alternating current stimulation, Transcranial alternating current stimulation, Transcranial focused ultrasound, Noninvasive vagus nerve stimulation, Stroke, and Rehabilitation. We selected 200 relevant publications from 1985 to 2022. An overview of recent research on the use of NIBS on post-stroke patients, including its mechanism, therapeutic parameters, effects, and safety, is presented. It was found that NIBS has positive therapeutic effects on dysfunctions of motor, sensory, cognitive, speech, swallowing, and depression after stroke, but standardized stimulus programs are still lacking. The literature suggests that rTMS and tDCS are more beneficial to post-stroke patients, while tFUS and tVNS are currently less studied for post-stroke rehabilitation, but are also potential interventions.
Collapse
Affiliation(s)
- Qian-ru Shen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Meng-ting Hu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wu Wang
- Department of Rehabilitation Therapy, The Second Rehabilitation Hospital of Shanghai, Shanghai, PR China
| |
Collapse
|
11
|
He Q, Yang XY, Zhao D, Fang F. Enhancement of visual perception by combining transcranial electrical stimulation and visual perceptual training. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:271-284. [PMID: 37724187 PMCID: PMC10388778 DOI: 10.1515/mr-2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 09/20/2023]
Abstract
The visual system remains highly malleable even after its maturity or impairment. Our visual function can be enhanced through many ways, such as transcranial electrical stimulation (tES) and visual perceptual learning (VPL). TES can change visual function rapidly, but its modulation effect is short-lived and unstable. By contrast, VPL can lead to a substantial and long-lasting improvement in visual function, but extensive training is typically required. Theoretically, visual function could be further improved in a shorter time frame by combining tES and VPL than by solely using tES or VPL. Vision enhancement by combining these two methods concurrently is both theoretically and practically significant. In this review, we firstly introduced the basic concept and possible mechanisms of VPL and tES; then we reviewed the current research progress of visual enhancement using the combination of two methods in both general and clinical population; finally, we discussed the limitations and future directions in this field. Our review provides a guide for future research and application of vision enhancement and restoration by combining VPL and tES.
Collapse
Affiliation(s)
- Qing He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xin-Yue Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daiqing Zhao
- Department of Psychology, The Pennsylvania State University, University Park, State College, PA, USA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
Turnbull C, Boomsma A, Milte R, Stanton TR, Hordacre B. Safety and Adverse Events following Non-invasive Electrical Brain Stimulation in Stroke: A Systematic Review. Top Stroke Rehabil 2022; 30:355-367. [PMID: 35353649 DOI: 10.1080/10749357.2022.2058294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Noninvasive electrical stimulation (ES) could have therapeutic potential in stroke recovery. However, there is no comprehensive evaluation of adverse events. This study systematically searched the literature to document frequency and prevalence of adverse events. A secondary aim was to explore associations between adverse events and ES parameters or participant characteristics.Methods: Databases were searched for studies evaluating ES in adults with stroke. All included studies were required to report on adverse events. Extracted data were: (1) study design; (2) adverse events; (3) participant characteristics; (4) ES parameters. RESULTS Seventy-five studies were included. Adverse events were minor in nature. The most frequently reported adverse events were tingling (37.3% of papers), burning (18.7%), headaches (14.7%) and fatigue (14.7%). Cathodal stimulation was associated with greater frequency of itching (p = .02), intensities of 1-2 mA with increased tingling (p = .04) and discomfort (p = .03), and current density <0.4mA/cm2 with greater discomfort (p = .03). Tingling was the most prevalent adverse event (18.1% of participants), with prevalence data not differing between active and control conditions (all p ≥ 0.37). Individual participants were more likely to report adverse events with increasing current density (r = 0.99, p = .001). Two severe adverse events were noted (a seizure and percutaneous endoscopic gastrostomy placement). CONCLUSION ES appears safe in people with stroke as reported adverse events were predominantly minor in nature. An adverse events questionnaire is proposed to enable a more comprehensive and nuanced analysis of the frequency and prevalence of adverse events.
Collapse
Affiliation(s)
- Clare Turnbull
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Aafke Boomsma
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Rachel Milte
- Health and Social Care Economics Group College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Tasha R Stanton
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
13
|
Räty S, Ruuth R, Silvennoinen K, Sabel BA, Tatlisumak T, Vanni S. Resting-state Functional Connectivity After Occipital Stroke. Neurorehabil Neural Repair 2021; 36:151-163. [PMID: 34949135 DOI: 10.1177/15459683211062897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (rsfMRI) reflects spontaneous activation of cortical networks. After stroke, these networks reorganize, both due to structural lesion and reorganization of functional connectivity (FC). OBJECTIVE We studied FC in chronic phase occipital stroke patients with homonymous visual field defects before and after repetitive transorbital alternating current stimulation (rtACS). METHODS This spin-off study, embedded in the randomized, sham-controlled REVIS trial, comprised 16 chronic occipital stroke patients with visual field defect and 12 healthy control subjects. The patients underwent rsfMRI at baseline, after two weeks of rtACS or sham treatment, and after two months of treatment-free follow-up, whereas the control subjects were measured once. We used a multivariate regression connectivity model to determine mutual prediction accuracy between 74 cortical regions of interest. Additionally, the model parameters were included into a graph to analyze average path length, centrality eigenvector, centrality degree, and clustering of the network. The patients and controls at baseline and the two treatment groups were compared with multilevel modeling. RESULTS Before treatment, the patients and controls had similar whole-network prediction accuracy and network parameters, whereas centrality eigenvector differed in perilesional regions, indicating local modification in connectivity. In line with behavioral results, neither prediction accuracy nor any network parameter changed systematically as a result of rtACS rehabilitation compared to sham. CONCLUSIONS Whole-network FC showed no difference between occipital stroke patients and healthy population, congruent with the peripheral location of the visual network in relation to the high-density cortical core. rtACS treatment in the given setting did not affect FC.
Collapse
Affiliation(s)
- Silja Räty
- Department of Neurology, 3836Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Advanced Magnetic Imaging Centre, 174277Aalto University, Espoo, Finland
| | - Riikka Ruuth
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katri Silvennoinen
- Department of Neurology, 3836Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Clinical and Experimental Epilepsy, 61554UCL Queen Square Institute of Neurology, London, UK
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-v, -Guericke University of Magdeburg, Magdeburg, Germany
| | - Turgut Tatlisumak
- Department of Clinical Neurosciences/Neurology, 70712Institute of Neurosciences and Physiology, Sahlgrenska Academy at University of Gothenburg and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simo Vanni
- Department of Neurology, 3836Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Xu J, Wu Z, Nürnberger A, Sabel BA. Reorganization of Brain Functional Connectivity Network and Vision Restoration Following Combined tACS-tDCS Treatment After Occipital Stroke. Front Neurol 2021; 12:729703. [PMID: 34777199 PMCID: PMC8580405 DOI: 10.3389/fneur.2021.729703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Non-invasive brain stimulation (NIBS) is already known to improve visual field functions in patients with optic nerve damage and partially restores the organization of brain functional connectivity networks (FCNs). However, because little is known if NIBS is effective also following brain damage, we now studied the correlation between visual field recovery and FCN reorganization in patients with stroke of the central visual pathway. Method: In a controlled, exploratory trial, 24 patients with hemianopia were randomly assigned to one of three brain stimulation groups: transcranial direct current stimulation (tDCS)/transcranial alternating current stimulation (tACS) (ACDC); sham tDCS/tACS (AC); sham tDCS/sham tACS (Sham), which were compared to age-matched controls (n = 24). Resting-state electroencephalogram (EEG) was collected at baseline, after 10 days stimulation and at 2 months follow-up. EEG recordings were analyzed for FCN measures using graph theory parameters, and FCN small worldness of the network and long pairwise coherence parameter alterations were then correlated with visual field performance. Result: ACDC enhanced alpha-band FCN strength in the superior occipital lobe of the lesioned hemisphere at follow-up. A negative correlation (r = −0.80) was found between the intact visual field size and characteristic path length (CPL) after ACDC with a trend of decreased alpha-band centrality of the intact middle occipital cortex. ACDC also significantly decreased delta band coherence between the lesion and the intact occipital lobe, and coherence was enhanced between occipital and temporal lobe of the intact hemisphere in the low beta band. Responders showed significantly higher strength in the low alpha band at follow-up in the intact lingual and calcarine cortex and in the superior occipital region of the lesioned hemisphere. Conclusion: While ACDC decreases delta band coherence between intact and damaged occipital brain areas indicating inhibition of low-frequency neural oscillations, ACDC increases FCN connectivity between the occipital and temporal lobe in the intact hemisphere. When taken together with the lower global clustering coefficient in responders, these findings suggest that FCN reorganization (here induced by NIBS) is adaptive in stroke. It leads to greater efficiency of neural processing, where the FCN requires fewer connections for visual processing.
Collapse
Affiliation(s)
- Jiahua Xu
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany.,Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Zheng Wu
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany.,Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Andreas Nürnberger
- Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|