1
|
Devlin LA, Dewhurst RM, Sudhindar PD, Sayer JA. Renal ciliopathies. Curr Top Dev Biol 2025; 163:229-305. [PMID: 40254346 DOI: 10.1016/bs.ctdb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Primary cilia are essential cellular organelles with pivotal roles in many signalling pathways. Here we provide an overview of the role of primary cilia within the kidney, starting with primary ciliary structure and key protein complexes. We then highlight the specialised functions of primary cilia, emphasising their role in a group of diseases known as renal ciliopathies. These conditions include forms of polycystic kidney disease, nephronophthisis, and other syndromic ciliopathies, such as Joubert syndrome and Bardet-Biedl syndrome. We explore models of renal ciliopathies, both in vitro and in vivo, shedding light on the molecular mechanisms underlying these diseases including Wnt and Hedgehog signalling pathways, inflammation, and cellular metabolism. Finally, we discuss therapeutic approaches, from current treatments to cutting-edge preclinical research and clinical trials.
Collapse
Affiliation(s)
- Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca M Dewhurst
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Praveen D Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Renal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; National Institute for Health Research, Newcastle Biomedical Research Centre, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
2
|
Taudien JE, Bracht D, Olbrich H, Swirski S, D’Abrusco F, Van der Zwaag B, Möller M, Lücke T, Teig N, Lindberg U, Wohlgemuth K, Wallmeier J, Blanque A, Gatsogiannis C, George S, Jüschke C, Owczarek-Lipska M, Veer D, Kroes HY, Valente EM, Korenke GC, Omran H, Neidhardt J. Pathogenic KIAA0586/TALPID3 variants are associated with defects in primary and motile cilia. iScience 2025; 28:111670. [PMID: 39898050 PMCID: PMC11783387 DOI: 10.1016/j.isci.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/18/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Pathogenic variants in KIAA0586/TALPID3 are associated with the ciliopathy Joubert syndrome (JS). We report individuals with KIAA0586/TALPID3 variants affected by primary and motile cilia defects leading to JS and chronic destructive airway disease. DNA variants were detected in three families by sequencing. In two unrelated families, a deep-intronic variant (KIAA0586/TALPID3:c.3990 + 3186G>A) activated a cryptic exon. We performed histological and functional analyses in native and air-liquid interface (ALI) cultured respiratory cells. Primary cilia lengths were measured in patient-derived fibroblasts. Our data associate KIAA0586/TALPID3 variants with a syndrome combining JS and chronic destructive airway disease, reduced number of motile cilia, disorganized basal body location, and ciliary clearance malfunction. Additionally, patient-derived cell lines showed primary cilia defects. Disease causing KIAA0586/TALPID3 variants, including a deep-intronic sequence variant, were associated with primary and motile cilia defects in JS patients. The combination of JS and respiratory symptoms should be considered indicative for KIAA0586/TALPID3 sequence alterations.
Collapse
Affiliation(s)
- Jacqueline E. Taudien
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Diana Bracht
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Sebastian Swirski
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Fulvio D’Abrusco
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Bert Van der Zwaag
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maike Möller
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Lücke
- Department of Neuropaediatrics and Social Paediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Norbert Teig
- Department of Neonatalogy, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ulrika Lindberg
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund, Sweden
| | - Kai Wohlgemuth
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Anja Blanque
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms University Münster, 48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms University Münster, 48149 Münster, Germany
| | - Sebastian George
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Christoph Jüschke
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Dorothee Veer
- Social-pediatric Outpatient and Therapy Center, Hospital Ludmillenstift, 49716 Meppen, Germany
| | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, the Netherlands
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - G. Christoph Korenke
- University Children’s Hospital Oldenburg, Department of Neuropaediatric and Metabolic Diseases, 26133 Oldenburg, Germany
| | - Heymut Omran
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - John Neidhardt
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Bhate M, Bansal Bhandari S, Jayaraman D, Varma R, Jalali S. Ophthalmic, Neurological, Radiological, and Visual Rehabilitation Profile and Outcomes in a Cohort of Patients with Joubert Syndrome. Neuroophthalmology 2025; 49:249-254. [PMID: 40190368 PMCID: PMC11970756 DOI: 10.1080/01658107.2025.2460176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 01/26/2025] [Indexed: 04/09/2025] Open
Abstract
Objective To report the ophthalmic, neurological, and radiological profile in a cohort of patients suspected with Joubert syndrome (JS). Methods A retrospective review of electronic medical records of patients diagnosed with or referred as a diagnosed case of JS was conducted. Clinical profile, visual electrophysiology, and rehabilitation, along with radiologic features, were studied. Results Total 26 patients were studied, mean age at presentation was 4.6 (±2.8) years, and the male-to-female ratio was 3.3:1. Among patients with quantitative vision assessment (n = 11; 42.3%), severe visual impairment was noted in the better eye at presentation in five patients (45.5%), while moderate vision loss was observed in six patients (54.5%). Fixing following light or no fixation was documented in 15 patients. Astigmatism (with hyperopia/myopia) was the most common refractive error in 14 patients (14/26; 53.84%), and high hypermetropia >+6D was noted in five patients (5/26; 19.23%). Exotropia was more frequent (n = 13; 50%) in patients. Head thrust/oculomotor apraxia was noted in four (15.3%) and retinal dystrophy in eight (32%) patients. Electroretinogram (n = 5/8) testing revealed subnormal or undetectable scotopic and photopic responses. MRI brain revealed a molar tooth sign in all patients (n = 26; 100%). Rehabilitation specialists evaluated 16 children with a range of follow-up visits (1-33 visits), and improvement in visual acuity was noted in eight children. Conclusions In our cohort, visual impairment with abnormal eye movements and generalized hypotonia were the most consistent clinical features, and a molar tooth sign on MRI brain was the most consistent radiological feature. Neuro-imaging should be considered in all. Visual rehabilitation plays a crucial role in the multidisciplinary management.
Collapse
Affiliation(s)
- Manjushree Bhate
- Jasti V Ramanamma Children’s Eye Care Centre, LV Prasad Eye Institute Hyderabad India, Hyderabad, India
| | - Shivani Bansal Bhandari
- Jasti V Ramanamma Children’s Eye Care Centre, LV Prasad Eye Institute Hyderabad India, Hyderabad, India
| | - Deiva Jayaraman
- Institute for Vision Rehabilitation, LV Prasad Eye Institute Hyderabad India, Hyderabad, India
| | - Ravi Varma
- Department of Neuroradiology, Citi Neuro Centre Hyderabad, Hyderabad, India
| | - Subhadra Jalali
- Jasti V Ramanamma Children’s Eye Care Centre, LV Prasad Eye Institute Hyderabad India, Hyderabad, India
- Anant Bajaj Retina Institute, LV Prasad Eye Institute Hyderabad India, Hyderabad, India
| |
Collapse
|
4
|
Gana S, D'Abrusco F, Nicotra R, Ghiberti C, Catalano G, Rognone E, Pichiecchio A, Signorini S, Valente EM. Novel HYLS1 variants associated with Joubert syndrome suggest potential genotype-phenotype correlates. J Med Genet 2024; 62:3-5. [PMID: 39626953 DOI: 10.1136/jmg-2024-110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 01/02/2025]
Abstract
Joubert syndrome (JS) is an inherited neurodevelopmental ciliopathy with wide clinical and genetic heterogeneity, whose paradigmatic sign is a peculiar cerebellar and brainstem malformation known as the 'molar tooth sign'. Recessive pathogenic variants in the HYLS1 gene are associated with hydrolethalus syndrome (HLS), a severe disorder characterised by multiple developmental defects leading to intrauterine or perinatal death. However, HYLS1 biallelic variants were also reported in three individuals with JS.Here, we report a fourth patient with a purely neurological JS carrying two compound heterozygous missense variants in the HYLS1 gene. Notably, while all patients with lethal HLS had both variants falling within the highly conserved HYLS-1 Box, the four patients with milder JS phenotype featured at least one variant external to this evolutionary conserved domain, suggesting a possible correlation between the mutation site and the severity of the phenotype.
Collapse
Affiliation(s)
- Simone Gana
- Neurogenetics Research Center, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Fulvio D'Abrusco
- Neurogenetics Research Center, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Roberta Nicotra
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Lombardia, Italy
- Developmental Neuro-Ophthalmology Unit, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Chiara Ghiberti
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Guido Catalano
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Lombardia, Italy
- Developmental Neuro-Ophthalmology Unit, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Elisa Rognone
- Department of Neuroradiology, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Lombardia, Italy
- Department of Neuroradiology, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Sabrina Signorini
- Developmental Neuro-Ophthalmology Unit, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Enza Maria Valente
- Neurogenetics Research Center, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Noble AR, Masek M, Hofmann C, Cuoco A, Rusterholz TDS, Özkoc H, Greter NR, Phelps IG, Vladimirov N, Kollmorgen S, Stoeckli E, Bachmann-Gagescu R. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system. Biol Open 2024; 13:bio060421. [PMID: 39400299 PMCID: PMC11583916 DOI: 10.1242/bio.060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology. Currently, there is no unifying pathomechanism to explain how dysfunction of such diverse primary cilia-related proteins results in such a highly specific brain abnormality. To identify the shared consequence of JBTS gene dysfunction, we carried out transcriptomic analysis using zebrafish mutants for the JBTS-causative genes cc2d2aw38, cep290fh297, inpp5ezh506, talpid3i264 and togaram1zh510 and the Bardet-Biedl syndrome-causative gene bbs1k742. We identified no commonly dysregulated signalling pathways in these mutants and yet all mutants displayed an enrichment of altered gene sets related to central nervous system function. We found that JBTS mutants have altered primary cilia throughout the brain but do not display abnormal brain morphology. Nonetheless, behavioural analyses revealed reduced locomotion and loss of postural control which, together with the transcriptomic results, hint at underlying abnormalities in neuronal activity and/or neuronal circuit function. These zebrafish models therefore offer the unique opportunity to study the role of primary cilia in neuronal function beyond early patterning, proliferation and differentiation.
Collapse
Affiliation(s)
- Alexandra R. Noble
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Claudia Hofmann
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arianna Cuoco
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | - Hayriye Özkoc
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Nadja R. Greter
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ian G. Phelps
- Department of Pediatrics, University of Washington, Seattle, WA 8057, USA
| | - Nikita Vladimirov
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 98105 Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, 8057 Zurich, Switzerland
| | - Sepp Kollmorgen
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Esther Stoeckli
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Institute for Medical Genetics, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
6
|
Whiting KR, Haer-Wigman L, Florijn RJ, van Beek R, Oud MM, Plomp AS, Boon CJF, Kroes HY, Roepman R. Utilization of automated cilia analysis to characterize novel INPP5E variants in patients with non-syndromic retinitis pigmentosa. Eur J Hum Genet 2024; 32:1412-1418. [PMID: 38806661 PMCID: PMC11576733 DOI: 10.1038/s41431-024-01627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
INPP5E encodes inositol polyphosphate-5-phosphatase E, an enzyme involved in regulating the phosphatidylinositol (PIP) makeup of the primary cilium membrane. Pathogenic variants in INPP5E hence cause a variety of ciliopathies: genetic disorders caused by dysfunctional cilia. While the majority of these disorders are syndromic, such as the neuronal ciliopathy Joubert syndrome, in some cases patients will present with an isolated phenotype-most commonly non-syndromic retinitis pigmentosa (RP). Here, we report two novel variants in INPP5E identified in two patients with non-syndromic RP: patient 1 with compound heterozygous variants (c.1516C > T, p.(Q506*), and c.847G > A, p.(A283T)) and patient 2 with a homozygous variant (c.1073C > T, p.(P358L)). To determine whether these variants were causative for the phenotype in the patients, automated ciliary phenotyping of patient-derived dermal fibroblasts was performed for percent ciliation, cilium length, retrograde IFT trafficking, and INPP5E localization. In both patients, a decrease in ciliary length and loss of INPP5E localization in the primary cilia were seen. With these molecular findings, we can confirm functionally that the novel variants in INPP5E are causative for the RP phenotypes seen in both patients. Additionally, this study demonstrates the usefulness of utilizing ciliary phenotyping as an assistant in ciliopathy diagnosis and phenotyping.
Collapse
Affiliation(s)
- Kae R Whiting
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ralph J Florijn
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald van Beek
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Machteld M Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Y Kroes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Alhashimi I, Zoghoul S, Khalil SK, Yousif ZB, Jumah A, Alkailani Y. Neuroimaging Characteristics as Diagnostic Tools in Joubert Syndrome and Related Disorders: A Case Report and Literature Review. Cureus 2024; 16:e69872. [PMID: 39435230 PMCID: PMC11493382 DOI: 10.7759/cureus.69872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Joubert syndrome and related disorders (JSRD) present diagnostic challenges due to their varied clinical features. Neuroimaging, particularly MRI and CT, is critical for identifying the distinctive "molar tooth sign" and other neuroanatomical abnormalities. This case report and literature review emphasize the role of neuroimaging in diagnosing JSRD. Our search targeted pediatric cases with terms like "Joubert anomaly" and "diagnostic imaging." Key findings include cerebellar vermal agenesis, ataxia, developmental delay, and oculomotor apraxia. Cognitive impairment ranges widely, complicating assessment. CT scans reveal dysplastic or absent cerebellar vermis, while MRI shows the characteristic "molar tooth" sign and additional abnormalities such as malformed cerebellar peduncles and enlarged posterior fossa. Accurate diagnosis of JSRD depends on correlating clinical symptoms with specific radiological findings. A multidisciplinary approach is vital for managing this complex disorder.
Collapse
Affiliation(s)
| | | | | | | | - Ammar Jumah
- Neurology, Henry Ford Health System, Detroit, USA
| | - Yaman Alkailani
- Neuroradiology Section, Neuroscience Institute, Hamad Medical Corporation, Doha, QAT
| |
Collapse
|
8
|
Sekar T, Sebire NJ. Renal Pathology of Ciliopathies. Pediatr Dev Pathol 2024; 27:411-425. [PMID: 38616607 DOI: 10.1177/10935266241242173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Renal ciliopathies are a group of genetic disorders that affect the function of the primary cilium in the kidney, as well as other organs. Since primary cilia are important for regulation of cell signaling pathways, ciliary dysfunction results in a range of clinical manifestations, including renal failure, cyst formation, and hypertension. We summarize the current understanding of the pathophysiological and pathological features of renal ciliopathies in childhood, including autosomal dominant and recessive polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome, as well as skeletal dysplasia associated renal ciliopathies. The genetic basis of these disorders is now well-established in many cases, with mutations in a large number of cilia-related genes such as PKD1, PKD2, BBS, MKS, and NPHP being responsible for the majority of cases. Renal ciliopathies are broadly characterized by development of interstitial fibrosis and formation of multiple renal cysts which gradually enlarge and replace normal renal tissue, with each condition demonstrating subtle differences in the degree, location, and age-related development of cysts and fibrosis. Presentation varies from prenatal diagnosis of congenital multisystem syndromes to an asymptomatic childhood with development of complications in later adulthood and therefore clinicopathological correlation is important, including increasing use of targeted genetic testing or whole genome sequencing, allowing greater understanding of genetic pathophysiological mechanisms.
Collapse
Affiliation(s)
- Thivya Sekar
- Histopathology Department, Level 3 CBL Labs, Great Ormond Street Hospital, London, UK
| | - Neil J Sebire
- Histopathology Department, Level 3 CBL Labs, Great Ormond Street Hospital, London, UK
| |
Collapse
|
9
|
Fang X, Ma M, Rong W, Lian YY, Wu X, Gao Y, Li HP, Sheng X. Exome sequencing confirms the clinical diagnosis of both joubert syndrome and klinefelter syndrome with keratoconus in a han Chinese family. Front Genet 2024; 15:1417584. [PMID: 39076169 PMCID: PMC11284097 DOI: 10.3389/fgene.2024.1417584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Joubert syndrome a rare genetic disorder, is characterized by abnormalities in the development of the central nervous system with "molar signs" on magnetic resonance imaging of the brain and accompanied by cerebellar vermis hypoplasia, ataxia, hypotonia, and developmental delay. Keratoconus (KC) is a kind of genetically predisposed eye disease that causes blindness characterized by a dilated thinning of the central or paracentral cornea conically projected forward, highly irregular astigmatism, and severe visual impairment. Klinefelter syndrome is caused by an extra X chromosome in the cells of male patients, and the main phenotype is tall stature and dysplasia with secondary sex characteristics. This study was intended to identify the genetic etiology and determine the clinical diagnosis of one Han Chinese family with specific clinical manifestations of keratoconus and multiorgan involvement. Methods A comprehensive ocular and related general examination was performed on one patient and his asymptomatic parents and brother. Pathogenic genes were tested by exome sequencing. CNV-seq was used to verify the copy number variation, and peripheral blood was cultured for karyotype analysis. The pathogenicity of the identified variant was determined subject to ACMG guidelines. The Gene Expression Omnibus (GEO) dataset of keratoconus-related genes in the NCBI database was obtained to analyze the differentially expressed genes in corneal tissues of the keratoconus group and the normal control group, and analysis of protein-protein interaction networks (PPI) was performed. Results Proband, a 25-year-old male, had sudden loss of vision in the left eye for 1 week. Best corrected visual acuity (BCVA): 0.5 (-1.00DS/-5.00DC*29°) in the right eye, counting fingers/40 cm in the left eye. Slit-lamp microscopy of the right eye showed mild anterior protrusion of the cornea and thinning of the cone-topped cornea. The left eye showed marked thinning of the central region of the cornea, rounded edema in the form of a cone-like bulge, epithelial bullae, edema and turbidity of the stroma, and bulging of the Descemet's membrane. Cranial magnetic resonance imaging (MRI) revealed changes in the midbrain and cerebellum, with a "molar sign" and a "bat-winged" ventriculus quartus cerebri. General check-up: 168 cm in height, decreased muscle tone in all four limbs, knee jerk elicited, negative Babinski sign, abdominal reflexes elicited, finger-to-nose test positive, intentional tremor evident in both hands, positive Romberg's sign, instability of gait, level I intellectual disability, poor adaptive behavior, communication disorders, teeth all dentures, a peculiar face with blepharophimosis, wide inner canthus distance, mild ptosis, severe positive epicanthus, high palatal arches, exotropia, hypotrichosis of beard and face, inconspicuous prominentia laryngea, and short upper and lower limbs. Exome sequencing detected compound heterozygous frameshift variants M1:c.9279dup:p.His3094Thrfs*18 and M2:c.6515_6522del:p.Lys2172Thrfs*37 in the patient's CPLANE1 gene and the presence of duplication-type CNV on the X chromosome. Sanger sequencing showed that the mother and father carried the M1 and M2 variants, respectively, and the younger brother carried the M2 variant, which was a novel variant. CNV-seq analysis showed the presence of a duplication-type CNV Xp22.33-Xq28 (2757837-156030895) of approximately 155 Mb on the X chromosome of the proband, which was a de novo variant and carried by neither of the parents. The two heterozygous frameshift variants and duplication-type CNV were pathogenic according to the ACMG guidelines. Differential expression analysis of keratoconus-related genes showed that CPLANE1 was upregulated in the corneal tissues of keratoconus patients compared with normal controls, and such a difference was statistically significant (p = 0.000515, <0.05). PPI analysis showed that the CPLANE1-NPHP3 complex protein acted as a bridge between cilia and extracellular matrix tissue. According to the genetic test results and clinical phenotype analysis, the family was finally diagnosed with Joubert syndrome combined with Keratoconus and Klinefelter syndrome. Discussion In this study, we report a proband in a Han Chinese family with both Joubert syndrome and X-linked Klinefelter syndrome as well as keratoconus, and the phenotype spectrum of CPLANE1-Joubert syndrome may be expanded accordingly. Meanwhile, the significance of exome sequencing was emphasized in aiding the clinical diagnosis of complex cases, which is difficult to make.
Collapse
Affiliation(s)
- Xinhe Fang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Meijiao Ma
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Weining Rong
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yuan-Yuan Lian
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Xueli Wu
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Yongying Gao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Hui-Ping Li
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Xunlun Sheng
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| |
Collapse
|
10
|
Lai B, Jiang H, Gao Y, Zhou X. Skeletal ciliopathy: pathogenesis and related signaling pathways. Mol Cell Biochem 2024; 479:811-823. [PMID: 37188988 DOI: 10.1007/s11010-023-04765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cilia are tiny organelles with conserved structures and components in eukaryotic cells. Ciliopathy is a set of diseases resulting from cilium dysfunction classified into first-order and second-order ciliopathy. With the advancement of clinical diagnosis and radiography, numerous skeletal phenotypes, including polydactyly, short limbs, short ribs, scoliosis, a narrow thorax, and numerous anomalies in bone and cartilage, have been discovered in ciliopathies. Mutation in genes encoding cilia core components or other cilia-related molecules have been found in skeletal ciliopathies. Meanwhile, various signaling pathways associated with cilia and skeleton development have been deemed to be significant for the occurrence and progression of diseases. Herein, we review the structure and key components of the cilium and summarize several skeletal ciliopathies with their presumable pathology. We also emphasize the signaling pathways involved in skeletal ciliopathies, which may assist in developing potential therapies for these diseases.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China.
| |
Collapse
|
11
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
12
|
Marshall AE, Lemire G, Liang Y, Davila J, Couse M, Boycott KM, Kernohan KD. RNA sequencing reveals deep intronic CEP120 variant: A report of the diagnostic odyssey for two siblings with Joubert syndrome type 31. Am J Med Genet A 2024; 194:e63485. [PMID: 38050708 DOI: 10.1002/ajmg.a.63485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023]
Affiliation(s)
- Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Yijing Liang
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jorge Davila
- Department of Medical Imaging, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Madeline Couse
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Morelli F, Toni F, Saligari E, D'Abrusco F, Serpieri V, Ballante E, Ruberto G, Borgatti R, Valente EM, Signorini S. Visual function in children with Joubert syndrome. Dev Med Child Neurol 2024; 66:379-388. [PMID: 37593819 DOI: 10.1111/dmcn.15732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
AIM To describe visual function in children with Joubert syndrome and to investigate its possible association with diagnostic and developmental aspects. METHOD This retrospective cross-sectional work included 59 patients (33 male; mean age 9 years 2 months, standard deviation 6 years 3 months, range 4 months to 23 years) diagnosed with Joubert syndrome from January 2002 to December 2020. Data about clinical (neurological, neuro-ophthalmological, developmental/cognitive) and diagnostic (e.g. genetic testing, neuroimaging, systemic involvement) evaluations were collected in a data set during a review of medical records. Clinical and diagnostic variables were described in terms of raw counts and percentages. A χ2 test was conducted to investigate their association with neuropsychological skills. RESULTS Ocular motor apraxia was highly represented in our cohort (75%), with a high prevalence of refractive defects and retinal abnormalities. Developmental delay/intellectual disability was frequent (in 69.5% of the sample), associated with retinal dystrophy (p = 0.047) and reduced visual acuity both for near (p = 0.014) and for far distances (p = 0.017). INTERPRETATION On the basis of the relevance of oculomotor and perceptual alterations and their impact on overall and cognitive impairment, we encourage early and multidisciplinary assessment and follow-up of visual function in children with Joubert syndrome. This would help in planning a personalized rehabilitation to sustain functional vision. Further studies will be important to explore the link between biological aspects and global functioning in children with Joubert syndrome. WHAT THIS PAPER ADDS Perceptual deficits and oculomotor impairments frequently coexist in Joubert syndrome. Retinal dysfunction may be present despite the absence of funduscopic abnormalities. Both perceptual and oculomotor impairments negatively affect cognitive development in Joubert syndrome.
Collapse
Affiliation(s)
- Federica Morelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Federico Toni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Elena Saligari
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvio D'Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Elena Ballante
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Giulio Ruberto
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sabrina Signorini
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Fang L, Wang L, Yang L, Xu X, Pei S, Wu D. Novel variants identified in five Chinese families with Joubert Syndrome: a case report. BMC Med Genomics 2023; 16:221. [PMID: 37735380 PMCID: PMC10512497 DOI: 10.1186/s12920-023-01669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Joubert syndrome (JS) is a group of rare ciliopathies, mainly characterized by cerebellar dysplasia representing the "molar tooth sign (MTS)" on neuroimaging, hypotonia, and developmental delay. Having a complicated genotype-phenotype correlation due to its rich genetic heterogeneity, JS is usually combined with other organic defects affecting the retina, kidney, and liver. This report aimed to present new cases and novel variants of JS. CASE PRESENTATION Five unrelated patients who were diagnosed with JS, with or without typical clinical characteristics, received integrated examinations, including whole-exome sequencing (WES) and Sanger sequencing. We identified nine pathogenic variants in the TCTN2, CPLANE1, INPP5E, NPHP1, and CC2D2A genes. CONCLUSION Four novel pathogenic mutations in the TCTN2, CPLANE1, and INPP5E genes were reported. The findings broadened the genotypic spectrum of JS and contributed to a better understanding of genotype-phenotype correlation.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Lulu Wang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Li Yang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Xiaoyan Xu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Shanai Pei
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
15
|
Sahli E, Kiziltunc PB, Idil A. A Report on Children with CEP290 Mutation, Vision Loss, and Developmental Delay. BEYOGLU EYE JOURNAL 2023; 8:226-232. [PMID: 37766766 PMCID: PMC10521126 DOI: 10.14744/bej.2023.37233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/28/2023] [Accepted: 06/24/2023] [Indexed: 09/29/2023]
Abstract
Mutations in CEP290, which encodes a centrosomal protein, cause Joubert syndrome, retinal dystrophy, and several other manifestations. Retinal dystrophy related to CEP290 mutation (Leber's congenital amaurosis type 10) presents with a severe visual impairment from birth, wandering eye movements, and oculodigital reflex. Fundus examination may initially be normal, but varying degrees of retinal pigmentation can be detected over time. This report presents 4 children who were referred to the ophthalmology clinic with a lack of eye contact and the suspicion of low vision. The ophthalmological examination revealed very poor visual function, the vision slightly improved over time, and enophthalmos became evident. There was neuromotor retardation in their history and mutations in the CEP290 gene were revealed in the whole-exome analysis. Both pediatricians and ophthalmologists should be aware of the coincidence between severe vision loss and neuromotor retardation and should refer patients for genetic testing if they suspect it. Genetic diagnosis will enable patients to be followed both neurologically and ophthalmologically and to benefit from rehabilitation opportunities that will contribute to visual and neurological development. It will also allow the family to receive genetic counseling on disease progression and heredity, and to follow ongoing gene therapy studies for mutations in the relevant gene.
Collapse
Affiliation(s)
- Esra Sahli
- Department of Ophthalmology, Ankara University, Faculty of Medicine, Ankara, Türkiye
| | | | - Aysun Idil
- Department of Ophthalmology, Ankara University, Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
16
|
Strong A, Qu H, Cullina S, McManus M, Zackai EH, Glessner J, Kenny EE, Hakonarson H. TOPORS as a novel causal gene for Joubert syndrome. Am J Med Genet A 2023; 191:2156-2163. [PMID: 37227088 PMCID: PMC10449431 DOI: 10.1002/ajmg.a.63303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Joubert syndrome (JBTS) is a Mendelian disorder of the primary cilium defined by the clinical triad of hypotonia, developmental delay, and a distinct cerebellar malformation called the molar tooth sign. JBTS is inherited in an autosomal recessive, autosomal dominant, or X-linked recessive manner. Though over 40 genes have been identified as causal for JBTS, molecular diagnosis is not made in 30%-40% of individuals who meet clinical criteria. TOPORS encodes topoisomerase I-binding arginine/serine-rich protein, and homozygosity for a TOPORS missense variant (c.29C > A; p.(Pro10Gln)) was identified in individuals with the ciliopathy oral-facial-digital syndrome in two families of Dominican descent. Here, we report an additional proband of Dominican ancestry with JBTS found by exome sequencing to be homozygous for the identical p.(Pro10Gln) TOPORS missense variant. Query of the Mount Sinai BioMe biobank, which includes 1880 individuals of Dominican ancestry, supports a high carrier frequency of the TOPORS p.(Pro10Gln) variant in individuals of Dominican descent. Our data nominates TOPORS as a novel causal gene for JBTS and suggests that TOPORS variants should be considered in the differential of ciliopathy-spectrum disease in individuals of Dominican ancestry.
Collapse
Affiliation(s)
- Alanna Strong
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Huiqi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sinéad Cullina
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Morgan McManus
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H. Zackai
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hakon Hakonarson
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Dong Y, Zhang K, Yao H, Jia T, Wang J, Zhu D, Xu F, Cheng M, Zhao S, Shi X. Clinical and genetic characteristics of 36 children with Joubert syndrome. Front Pediatr 2023; 11:1102639. [PMID: 37547106 PMCID: PMC10401045 DOI: 10.3389/fped.2023.1102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background and aims Joubert syndrome (JBTS, OMIM # 213300) is a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosing JBTS. It is a clinically and genetically heterogeneous disorder involving mutations in more than 40 ciliopathy-related genes. However, long-term follow-up data are scarce, and further research is needed to determine the abundant phenotypes and genetics of this disorder. The study aimed to summarize clinical manifestations, particular appearance on cranial imaging, genetic data, and prognostic features of patients with JBTS. Methods A retrospective case review of 36 cases of JBTS from May 1986 to December 2021 was performed. Clinical data of JBTS patients with development retardation and molar tooth sign on cranial imaging as the main features were analyzed. Genetic testing was performed according to consent obtained from patients and their families. The Gesell Developmental Scale was used to evaluate the intelligence level before and after treatment. The children were divided into a purely neurological JBTS (pure JBTS) group and JBTS with multi-organ system involvement group and then followed up every 3-6 months. Results We enrolled 18 males and 18 females. Thirty-four (94.44%) cases had developmental delay, one patient (2.78%) had strabismus, and one patient (2.78%) had intermittent dizziness. There was one case co-morbid with Lesch-Nyhan syndrome. Three-quarters of cases had one or more other organ or system involvement, with a greater predilection for vision and hearing impairment. JBTS could also involve the skin. Thirty-one cases (86.11%) showed a typical molar tooth sign, and five cases showed a bat wing sign on cranial imaging. Abnormal video electroencephalogram (VEEG) result was obtained in 7.69% of cases. We found six JBTS-related novel gene loci variants: CPLANE1: c.4189 + 1G > A, c.3101T > C(p.Ile1034Thr), c.3733T > C (p.Cys1245Arg), c.4080G > A(p.Lys1360=); RPGRIP1l: c.1351-11A > G; CEP120: c.214 C > T(p.Arg72Cys). The CHD7 gene may be potentially related to the occurrence of JBTS. Analysis showed that the prognosis of pure JBTS was better than that of JBTS with neurological and non-neurological involvement after the formal rehabilitation treatment (P < 0.05). Of the three children with seizures, two cases had epilepsy with a poor prognosis, and another case had breath-holding spells. Conclusion Our findings indicate that early cranial imaging is helpful for the etiological diagnosis of children with unexplained developmental delay and multiple malformations. Patients with JBTS may have coexisting skin abnormalities. The novel gene loci of CPLANE1, RPGRIP1l, and CEP120 were associated with JBTS in our study and provided significant information to enrich the related genetic data. Future works investigating several aspects of the association between CHD7 gene and JBTS merit further investigation. The prognosis of children with pure JBTS is better than that of children with JBTS with non-neurological involvement.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - He Yao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wang
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Zhao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyi Shi
- Department of Pediatric Development and Behavior, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Patra S, Goyal G, Lone YA, Gupta G. Novel variant CPLANE 1: c.5051C>A (p.Ser1684Ter) in an Indian neonate with Joubert syndrome. BMJ Case Rep 2023; 16:e255561. [PMID: 37258045 PMCID: PMC10255207 DOI: 10.1136/bcr-2023-255561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Joubert syndrome (JS) is a rare ciliopathy that presents with the triad of hypotonia, developmental delay and molar tooth sign (MTS) in brain MRI. Next-generation sequencing has identified about 35 genes which are known to cause JS of which CPLANE 1 mutation is found in 8%-10% of cases. We report a case of JS in an Indian neonate who presented with hypotonia, dysmorphic facies, polydactyly, syndactyly and occipital encephalocele. MRI of the brain revealed MTS, and compound heterozygous mutations in CPLANE 1 gene were detected by clinical exome sequencing, one of them a novel variant CPLANE 1: c.5051C>A (p.Ser1684Ter) in exon 26, which was inherited from the parents.
Collapse
Affiliation(s)
- Saikat Patra
- Neonatology, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| | - Garima Goyal
- Neonatology, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| | - Yasir Ahmad Lone
- Paediatric Surgery, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| | - Girish Gupta
- Neonatology, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| |
Collapse
|
19
|
Martínez-Granero F, Martínez-Cayuelas E, Rodilla C, Núñez-Moreno G, Rodríguez de Alba M, Blanco-Kelly F, Romero R, Minguez P, Ayuso C, Lorda-Sanchez I, Corton M, Almoguera B. Biallelic intragenic tandem duplication of CPLANE1 in Joubert syndrome: A case report. Clin Genet 2023; 103:448-452. [PMID: 36719180 DOI: 10.1111/cge.14306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
Joubert syndrome (JS) is a clinically and genetically heterogeneous genetic disorder. To date, 40 JS-causing genes have been reported and CPLANE1 is one of the most frequently mutated, with biallelic pathogenic missense and truncating variants explaining up to 14% of JS cases. We present a case of JS diagnosed after the identification of a novel biallelic intragenic duplication of exons 20-46 of CPLANE1. The quadruplication was identified by short-read sequencing and copy number variant analysis and confirmed in tandem by long PCR with the breakpoints defined by a nanopore-based long-read sequencing approach. Based on the genetic findings and the clinical presentation of the patient, a brain MRI was ordered, evidencing the molar tooth sign, which confirmed the diagnosis of JS in the patient. This is, to the best of our knowledge, the first report of an intragenic duplication in this gene as the potential molecular mechanism of JS.
Collapse
Affiliation(s)
| | | | - Cristina Rodilla
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Bioinformatics Unit, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Marta Rodríguez de Alba
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Raquel Romero
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Bioinformatics Unit, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Pablo Minguez
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Bioinformatics Unit, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Corton
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Berta Almoguera
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
20
|
Wang H, Nie W, Wang C, Wang Z, Zheng Y. Novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant in a child patient with Joubert syndrome. Open Life Sci 2023; 18:20220542. [PMID: 36789003 PMCID: PMC9896164 DOI: 10.1515/biol-2022-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 02/04/2023] Open
Abstract
Joubert syndrome (JBTS) is a class of heterogeneous ciliopathy genetically associated with CPLANE1 mutations. The characteristics of clinical phenotypes and CPLANE1 variants were analyzed in a 2-month-old patient. A 2-month-old patient with JBTS was diagnosed after clinical evaluation including family history, physical examination, cerebral MRI, ultrasonography imaging, VEGG, ocular fundus examination, and comprehensive blood and urine testing. Whole exome sequencing (WES) was performed to detect CPLANE1 variants, and Sanger sequencing was used to confirm the variants. This JBTS patient presented with oculomotor apraxia, dysregulation of breathing pattern, and ataxia. MRI revealed poor continuity of cerebelli, batwing appearance, and molar tooth sign. This patient was noted with abnormal hematology, dysregulation of hepatic function, thyroid function, immunity, and renal function, and encephalopathy. CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) variants were noticed in the patient as a pathogenic variant and caused autosomal recessive inheritance. The JBTS patient with mutations in CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) developed JBTS phenotypes. The novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant will assist clinicians and geneticists in reaching a precise diagnosis for JBTS.
Collapse
Affiliation(s)
- Huiping Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Wensha Nie
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Chunxia Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Zuohua Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Yuxia Zheng
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| |
Collapse
|
21
|
Li C, Wang X, Li F, Ding H, Liu L, Xiong Y, Yang C, Zhang Y, Wu J, Yin A. A novel non-sense variant in the OFD1 gene caused Joubert syndrome. Front Genet 2023; 13:1064762. [PMID: 36704348 PMCID: PMC9871390 DOI: 10.3389/fgene.2022.1064762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Joubert syndrome (JBS) is a rare neurodevelopmental disorder associated with progressive renal, liver, and retinal involvement that exhibits heterogeneity in both clinical manifestations and genetic etiology. Therefore, it is difficult to make a definite prenatal diagnosis. Methods: Whole-exome sequencing and Sanger sequencing were performed to screen the causative gene variants in a suspected JBS family. RNA-seq and protein model prediction were performed to clarify the potential pathogenic mechanism. A more comprehensive review of previously reported cases with OFD1 variants is presented and may help to establish a genotype-phenotype. Results: We identified a novel non-sense variant in the OFD1 gene, OFD1 (NM_003611.3): c.2848A>T (p.Lys950Ter). Sanger sequencing confirmed cosegregation among this family. RNA-seq confirmed that partial degradation of mutant transcripts, which was predicted to be caused by the non-sense-mediated mRNA decay (NMD) mechanism, may explain the reduction in the proportion of mutant transcripts. Protein structure prediction of the non-sense variant transcript revealed that this variant may lead to a change in the OFD1 protein structure. Conclusion: The genetic variation spectrum of JBS10 caused by OFD1 was broadened. The novel variants further deepened our insight into the molecular mechanism of the disease.
Collapse
Affiliation(s)
- Chen Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xingwang Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fake Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ying Xiong
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Medical Imaging Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yan Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China,*Correspondence: Jing Wu, ; Aihua Yin,
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China,*Correspondence: Jing Wu, ; Aihua Yin,
| |
Collapse
|
22
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
23
|
Lee B, Beuhler L, Lee HY. The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome. CEREBELLUM (LONDON, ENGLAND) 2022; 21:801-813. [PMID: 35438410 PMCID: PMC10857775 DOI: 10.1007/s12311-022-01382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Primary cilia are non-motile cilia that function as antennae for cells to sense signals. Deficits of primary cilia cause ciliopathies, leading to the pathogenesis of various developmental disorders; however, the contribution of primary cilia to neurodevelopmental disorders is largely unknown. Fragile X syndrome (FXS) is a genetically inherited disorder and is the most common known cause of autism spectrum disorders. FXS is caused by the silencing of the fragile X mental retardation 1 (FMR1) gene, which encodes for the fragile X mental retardation protein (FMRP). Here, we discovered a reduction in the number of primary cilia and the Sonic hedgehog (Shh) signaling in cerebellar Bergmann glia of Fmr1 KO mice. We further found reduced granule neuron precursor (GNP) proliferation and thickness of the external germinal layer (EGL) in Fmr1 KO mice, implicating that primary ciliary deficits in Bergmann glia may contribute to cerebellar developmental phenotypes in FXS, as Shh signaling through primary cilia in Bergmann glia is known to mediate proper GNP proliferation in the EGL. Taken together, our study demonstrates that FMRP loss leads to primary ciliary deficits in cerebellar Bergmann glia which may contribute to cerebellar deficits in FXS.
Collapse
Affiliation(s)
- Bumwhee Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Laura Beuhler
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
24
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
25
|
Kannauje PK, Pandit V, Wasnik P, Pati SK, Venkatesan N. Diagnosing Joubert Syndrome in Two Adult Siblings: A Very Rare Case Report. Cureus 2022; 14:e27042. [PMID: 35989767 PMCID: PMC9388958 DOI: 10.7759/cureus.27042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/05/2022] Open
Abstract
Joubert syndrome (JS) is a rare genetic disorder usually diagnosed during childhood. Adult Joubert syndrome is rare, and that too in siblings from a non-consanguineous marriage in their adulthood is extremely rare, with very few cases reported worldwide. The need for expensive imaging modality to aid diagnosis has also been cited as a drawback in diagnosing the condition in resource-poor areas. We describe the case of two adult siblings who came for other diseases and were diagnosed with Joubert syndrome.
Collapse
|
26
|
Zhang J, Wang L, Chen W, Duan J, Meng Y, Yang H, Guo Q. Whole exome sequencing facilitated the diagnosis in four Chinese pediatric cases of Joubert syndrome related disorders. Am J Transl Res 2022; 14:5088-5097. [PMID: 35958498 PMCID: PMC9360900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Joubert syndrome is a spectrum of rare genetic disorders, mainly characterized by a distinctive cerebellar and brain stem malformation called the "molar tooth sign" (MTS), hypotonia, and intellectual disability/developmental delay. METHODS In this study, 4 pediatric cases with developmental delay and oculomotor abnormities were recruited, and submitted to a clinical evaluation and magnetic resonance imaging (MRI) examination. Afterwards, genetic detection with whole exome sequencing (WES) was conducted on the 4 patients. RESULTS Imaging results demonstrated cerebellar dysplasia in all probands, yet the MTS findings varied in severity. WES detected diagnostic variations in all four probands, which were distributed in four genes, namely CC2D2A, NPHP1, AHI1, and C5orf42. Two variants were novelly identified, which were the CC2D2A: c.2444delC (p.P815fs*2) and the AIH1: exon (15-17) del. In silico analysis supported the pathogenicity of the variations in this study. CONCLUSIONS Our findings expanded the mutation spectrum of Joubert syndrome related disorders, and provided solid evidence to the affected families for further genetic counseling and pregnancy guidance.
Collapse
Affiliation(s)
- Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Lihui Wang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Wenqi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Jun Duan
- Radiology Department, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yanxin Meng
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Huafang Yang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| |
Collapse
|
27
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|
28
|
Penon-Portmann M, Eldomery MK, Potocki L, Marafi D, Posey JE, Coban-Akdemir Z, Harel T, Grochowski CM, Loucks H, Devine WP, Van Ziffle J, Doherty D, Lupski JR, Shieh JT. De novo heterozygous variants in SLC30A7 are a candidate cause for Joubert syndrome. Am J Med Genet A 2022; 188:2360-2366. [PMID: 35751429 PMCID: PMC9756141 DOI: 10.1002/ajmg.a.62872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/08/2022]
Abstract
Joubert syndrome (JS), a well-established ciliopathy, is characterized by the distinctive molar tooth sign on brain MRI, ataxia, and neurodevelopmental features. Other manifestations can include polydactyly, accessory frenula, renal, or liver disease. Here, we report individuals meeting criteria for JS with de novo heterozygous variants in SLC30A7 (Chr1p21.2). The first individual is a female with history of unilateral postaxial polydactyly, classic molar tooth sign on MRI, macrocephaly, ataxia, ocular motor apraxia, neurodevelopmental delay, and precocious puberty. Exome sequencing detected a de novo heterozygous missense variant in SLC30A7: NM_133496.5: c.407 T > C, (p.Val136Ala). The second individual had bilateral postaxial polydactyly, molar tooth sign, macrocephaly, developmental delay, and an extra oral frenulum. A de novo deletion-insertion variant in SLC30A7, c.490_491delinsAG (p.His164Ser) was found. Both de novo variants affect highly conserved residues. Variants were not identified in known Joubert genes for either case. SLC30A7 has not yet been associated with a human phenotype. The SLC30 family of zinc transporters, like SLC30A7, permit cellular efflux of zinc, and although it is expressed in the brain its functions remain unknown. Published data from proteomic studies support SLC30A7 interaction with TCTN3, another protein associated with JS. The potential involvement of such genes in primary cilia suggest a role in Sonic Hedgehog signaling. SLC30A7 is a candidate JS-associated gene. Future work could be directed toward further characterization of SLC30A7 variants and understanding its function.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Hailey Loucks
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Walter Patrick Devine
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Jessica Van Ziffle
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
30
|
Badv RS, Mahdiannasser M, Rasoulinezhad M, Habibi L, Rashidi-Nezhad A. CEP104 gene may involve in the pathogenesis of a new developmental disorder other than joubert syndrome. Mol Biol Rep 2022; 49:7231-7237. [PMID: 35359234 DOI: 10.1007/s11033-022-07353-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The CEP104 gene (OMIM: 616,690) encodes the centrosome protein 104 (CEP104) that is involved in cilia function. Pathogenic variants in this gene have been described in four patients diagnosed with Joubert syndrome (JBTS) 25. Here, we challenged the concept that pathogenic variants in CEP104 gene are only involved in the development of JBTS 25. METHODS AND RESULTS In a clinical setting, whole-exome sequencing (WES) was applied to investigate pathogenic variants in patients with unexplained developmental delay or intellectual disability (DD/ID).WES revealed a novel homozygous nonsense variant (c.643C > T) in CEP104 (NM _014704.3) in a girl with mild intellectual disability, hypotonia, and imbalanced gait. Her brain MRI data did not show molar tooth sign (MTS) or any other brain anomalies. CONCLUSION Our study introduced a novel variant in the CEP104 gene that results in an ID phenotype other than JBTS25. Comparison of her phenotype with that of eight previously published DD/ID patients harboring pathogenic variants in CEP104 gene revealed that more than half of them did not show JBTS related symptoms. Therefore, we suggest that the CEP104 gene might also be involved in a disorder other than JBTS 25, a point that deserves to be emerged in the OMIM database.
Collapse
Affiliation(s)
- Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mahdiannasser
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasoulinezhad
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Genetic Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. .,Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Valiasr Hospital, 2nd floor, Baqerkhan st., P.O.Box:1419733141, Tehran, Iran.
| |
Collapse
|
31
|
Clinical Applications of Fetal MRI in the Brain. Diagnostics (Basel) 2022; 12:diagnostics12030764. [PMID: 35328317 PMCID: PMC8947742 DOI: 10.3390/diagnostics12030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Fetal magnetic resonance imaging (MRI) has become a widely used tool in clinical practice, providing increased accuracy in prenatal diagnoses of congenital abnormalities of the brain, allowing for more accurate prenatal counseling, optimization of perinatal management, and in some cases fetal intervention. In this article, a brief description of how fetal ultrasound (US) and fetal MRI are used in clinical practice will be followed by an overview of the most common reasons for referral for fetal MRI of the brain, including ventriculomegaly, absence of the cavum septi pellucidi (CSP) and posterior fossa anomalies.
Collapse
|
32
|
Lin T, Ma Y, Zhou D, Sun L, Chen K, Xiang Y, Tong K, Jia C, Jiang K, Liu D, Huang G. Case Report: Preimplantation Genetic Testing for Meckel Syndrome Induced by Novel Compound Heterozygous Mutations of MKS1. Front Genet 2022; 13:843931. [PMID: 35360848 PMCID: PMC8963843 DOI: 10.3389/fgene.2022.843931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Meckel syndrome (MKS), also known as the Meckel–Gruber syndrome, is a severe pleiotropic autosomal recessive developmental disorder caused by dysfunction of the primary cilia during early embryogenesis. The diagnostic criteria are based on clinical variability and genetic heterogeneity. Mutations in the MKS1 gene constitute approximately 7% of all MKS cases. Herein, we present a non-consanguineous couple with three abnormal pregnancies as the fetuses showed MKS-related phenotypes of the central nervous system malformation and postaxial polydactyly. Whole-exome sequencing identified two novel heterozygous mutations of MKS1: c.350C>A and c.1408-14A>G. The nonsense mutation c.350C>A produced a premature stop codon and induced the truncation of the MKS1 protein (p.S117*). Reverse-transcription polymerase chain reaction (RT-PCR) showed that c.1408-14A>G skipped exon 16 and encoded the mutant MKS1 p.E471Lfs*92. Functional studies showed that these two mutations disrupted the B9–C2 domain of the MKS1 protein and attenuated the interactions with B9D2, the essential component of the ciliary transition zone. The couple finally got a healthy baby through preimplantation genetic testing for monogenic disorder (PGT-M) with haplotype linkage analysis. Thus, this study expanded the mutation spectrum of MKS1 and elucidated the genetic heterogeneity of MKS1 in clinical cases.
Collapse
Affiliation(s)
- Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yongyi Ma
- The Southwest Hospital of Army Medical University, Chongqing, China
| | - Danni Zhou
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Liwei Sun
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ke Chen
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yezhou Xiang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Keya Tong
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chaoli Jia
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kean Jiang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Dongyun Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Dongyun Liu, ; Guoning Huang,
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Dongyun Liu, ; Guoning Huang,
| |
Collapse
|
33
|
Spahiu L, Behluli E, Grajçevci-Uka V, Liehr T, Temaj G. Joubert syndrome: Molecular basis and treatment. JOURNAL OF MOTHER AND CHILD 2022; 26:118-123. [PMID: 36803942 PMCID: PMC10032320 DOI: 10.34763/jmotherandchild.20222601.d-22-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 02/23/2023]
Abstract
Joubert syndrome (JS; MIM PS213300) is a rare genetic autosomal recessive disease characterized by cerebellar vermis hypoplasia, a distinctive malformation of the cerebellum and the so-called "molar tooth sign." Other characteristic features are hypotonia with lateral ataxia, intellectual disability/mental retardation, oculomotor apraxia, retinal dystrophy, abnormalities in the respiratory system, renal cysts, hepatic fibrosis, and skeletal changes. Such pleiotropic characteristics are typical of many disorders involving primary cilium aberrations, providing a significant overlap between JS and other ciliopathies such as nephronophthisis, Meckel syndrome, and Bardet-Biedl syndrome. This review will describe some characteristics of JS associated with changes in 35 genes, and will also address subtypes of JS, clinical diagnosis, and the future of therapeutic developments.
Collapse
Affiliation(s)
- Lidvana Spahiu
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | - Emir Behluli
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | | | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich Schiller Universität, Jena, Germany
| | - Gazmend Temaj
- Human Genetics, College UBT, Faculty of Pharmacy Prishtina, PrishtinaKosovo
| |
Collapse
|
34
|
Pezzella N, Bove G, Tammaro R, Franco B. OFD1: One gene, several disorders. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:57-71. [PMID: 35112477 PMCID: PMC9303915 DOI: 10.1002/ajmg.c.31962] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
The OFD1 protein is necessary for the formation of primary cilia and left–right asymmetry establishment but additional functions have also been ascribed to this multitask protein. When mutated, this protein results in a variety of phenotypes ranging from multiorgan involvement, such as OFD type I (OFDI) and Joubert syndromes (JBS10), and Primary ciliary dyskinesia (PCD), to the engagement of single tissues such as in the case of retinitis pigmentosa (RP23). The inheritance pattern of these condition differs from X‐linked dominant male‐lethal (OFDI) to X‐linked recessive (JBS10, PCD, and RP23). Distinctive biological peculiarities of the protein, which can contribute to explain the extreme clinical variability and the genetic mechanisms underlying the different disorders are discussed. The extensive spectrum of clinical manifestations observed in OFD1‐mutated patients represents a paradigmatic example of the complexity of genetic diseases. The elucidation of the mechanisms underlying this complexity will expand our comprehension of inherited disorders and will improve the clinical management of patients.
Collapse
Affiliation(s)
- Nunziana Pezzella
- Scuola Superiore Meridionale, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Guglielmo Bove
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Brunella Franco
- Scuola Superiore Meridionale, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:72-88. [PMID: 35238134 PMCID: PMC9314610 DOI: 10.1002/ajmg.c.31963] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 01/20/2023]
Abstract
Joubert syndrome (JS) is a genetically heterogeneous primary ciliopathy characterized by a pathognomonic cerebellar and brainstem malformation, the “molar tooth sign,” and variable organ involvement. Over 40 causative genes have been identified to date, explaining up to 94% of cases. To date, gene‐phenotype correlates have been delineated only for a handful of genes, directly translating into improved counseling and clinical care. For instance, JS individuals harboring pathogenic variants in TMEM67 have a significantly higher risk of liver fibrosis, while pathogenic variants in NPHP1, RPGRIP1L, and TMEM237 are frequently associated to JS with renal involvement, requiring a closer monitoring of liver parameters, or renal functioning. On the other hand, individuals with causal variants in the CEP290 or AHI1 need a closer surveillance for retinal dystrophy and, in case of CEP290, also for chronic kidney disease. These examples highlight how an accurate description of the range of clinical symptoms associated with defects in each causative gene, including the rare ones, would better address prognosis and help guiding a personalized management. This review proposes to address this issue by assessing the available literature, to confirm known, as well as to propose rare gene‐phenotype correlates in JS.
Collapse
Affiliation(s)
- Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Pollara L, Sottile V, Valente EM. Patient-derived cellular models of primary ciliopathies. J Med Genet 2022; 59:517-527. [DOI: 10.1136/jmedgenet-2021-108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Primary ciliopathies are rare inherited disorders caused by structural or functional defects in the primary cilium, a subcellular organelle present on the surface of most cells. Primary ciliopathies show considerable clinical and genetic heterogeneity, with disruption of over 100 genes causing the variable involvement of several organs, including the central nervous system, kidneys, retina, skeleton and liver. Pathogenic variants in one and the same gene may associate with a wide range of ciliopathy phenotypes, supporting the hypothesis that the individual genetic background, with potential additional variants in other ciliary genes, may contribute to a mutational load eventually determining the phenotypic manifestations of each patient. Functional studies in animal models have uncovered some of the pathophysiological mechanisms linking ciliary gene mutations to the observed phenotypes; yet, the lack of reliable human cell models has previously limited preclinical research and the development of new therapeutic strategies for primary ciliopathies. Recent technical advances in the generation of patient-derived two-dimensional (2D) and three-dimensional (3D) cellular models give a new spur to this research, allowing the study of pathomechanisms while maintaining the complexity of the genetic background of each patient, and enabling the development of innovative treatments to target specific pathways. This review provides an overview of available models for primary ciliopathies, from existing in vivo models to more recent patient-derived 2D and 3D in vitro models. We highlight the advantages of each model in understanding the functional basis of primary ciliopathies and facilitating novel regenerative medicine, gene therapy and drug testing strategies for these disorders.
Collapse
|
37
|
Hibino E, Ichiyama Y, Tsukamura A, Senju Y, Morimune T, Ohji M, Maruo Y, Nishimura M, Mori M. Bex1 is essential for ciliogenesis and harbours biomolecular condensate-forming capacity. BMC Biol 2022; 20:42. [PMID: 35144600 PMCID: PMC8830175 DOI: 10.1186/s12915-022-01246-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Primary cilia are sensory organelles crucial for organ development. The pivotal structure of the primary cilia is a microtubule that is generated via tubulin polymerization reaction that occurs in the basal body. It remains to be elucidated how molecules with distinct physicochemical properties contribute to the formation of the primary cilia. RESULTS Here we show that brain expressed X-linked 1 (Bex1) plays an essential role in tubulin polymerization and primary cilia formation. The Bex1 protein shows the physicochemical property of being an intrinsically disordered protein (IDP). Bex1 shows cell density-dependent accumulation as a condensate either in nucleoli at a low cell density or at the apical cell surface at a high cell density. The apical Bex1 localizes to the basal body. Bex1 knockout mice present ciliopathy phenotypes and exhibit ciliary defects in the retina and striatum. Bex1 recombinant protein shows binding capacity to guanosine triphosphate (GTP) and forms the condensate that facilitates tubulin polymerization in the reconstituted system. CONCLUSIONS Our data reveals that Bex1 plays an essential role for the primary cilia formation through providing the reaction field for the tubulin polymerization.
Collapse
Affiliation(s)
- Emi Hibino
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Atsushi Tsukamura
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Takao Morimune
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshihiro Maruo
- Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
38
|
Wang H, Luo G, Hu W, Mei J, Shen Y, Wang M, Tan Y, Yang Y, Lu C, Zhao Y, Qi M. Whole Exome Sequencing Identified Novel ARMC9 Variations in Two Cases With Joubert Syndrome. Front Genet 2022; 13:817153. [PMID: 35186037 PMCID: PMC8855066 DOI: 10.3389/fgene.2022.817153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Biallelic variations in the armadillo repeat-containing 9 (ARMC9) gene were recently defined to cause Joubert syndrome (JS) type thirty. In this study, two unrelated families with probands displaying typical indications of JS were enrolled and underwent a series of clinical and genetic investigations. Methods: Routine evaluation including magnetic resonance imaging (MRI) was carried out. Whole-exome sequencing (WES) was performed on the probands to detect causative variants. Next, in silico structural and molecular dynamic (MD) analysis was conducted on the missense variant for analyzing its intramolecular impact. Meanwhile, an in vitro study with the minigene system was performed to explore the specific impact on mRNA splicing of another variant. Results: Two unrelated patients from two different families came to our hospital exhibiting typical JS presentations, such as the “molar tooth sign.” Using WES, we identified that both probands carried the compound heterogeneous variants in ARMC9 (NM_025139.6), with c.1878+1G > A and c.895C > T (p.Arg299Ter) in family 1 and c.1878+1G > A and c.1027C > T (p.Arg343Cys) in family 2. These variants were inherited from their unaffected parents by Sanger sequencing, respectively, and ARMC9 c.895C > T (p.Arg299Ter) and c.1878+1G > A were novel variants. In silico analysis indicated the c.1027C > T (p.Arg343Cys) would likely affect the secondary structure of the ARMC9 protein. The minigene study demonstrated that the splice site variant c.1878+1G > A abolished the canonical donor site, resulting in an 18bp intronic retention of intron 20. Conclusion: The findings in this study expanded the mutation spectrum of ARMC9-associated JS, and we suggested that the function of ARMC9 in the pathogenesis of JS might involve the development of primary cilia, after discussing the function of the ARMC9 protein.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Prenatal Diagnosis Center, Hangzhou Women’s Hospital, Hangzhou, China
| | - Guanjun Luo
- Child Rehabilitation Department, Nanhai Affiliated Maternity and Children’s Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Wensheng Hu
- Prenatal Diagnosis Center, Hangzhou Women’s Hospital, Hangzhou, China
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital Hangzhou, Hangzhou, China
| | - Jin Mei
- Prenatal Diagnosis Center, Hangzhou Women’s Hospital, Hangzhou, China
| | - Yue Shen
- National Research Institute for Family Planning, Beijing, China
| | - Min Wang
- Prenatal Diagnosis Center, Hangzhou Women’s Hospital, Hangzhou, China
| | - Yuan Tan
- Child Rehabilitation Department, Nanhai Affiliated Maternity and Children’s Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yang Yang
- Prenatal Diagnosis Center, Hangzhou Women’s Hospital, Hangzhou, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China
| | - Yong Zhao
- Child Rehabilitation Department, Nanhai Affiliated Maternity and Children’s Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- *Correspondence: Ming Qi, ; Yong Zhao,
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Ming Qi, ; Yong Zhao,
| |
Collapse
|
39
|
Fei H, Wu Y, Wang Y, Zhang J. Exome sequencing and RNA analysis identify two novel CPLANE1 variants causing Joubert syndrome. Mol Genet Genomic Med 2022; 10:e1877. [PMID: 35092359 PMCID: PMC8922956 DOI: 10.1002/mgg3.1877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Joubert syndrome (JS) is a genetically heterogeneous disorder; its genetic etiology involves more than 35 genes, and a limited number of studies have investigated the pathogenic mechanism of variants in patients with JS. RNA splicing analysis is critical to determine the functional significance for noncanonical splicing variants. METHODS Whole exome sequencing was performed to screen the causative gene variants in a JS family. Sanger sequencing was used to verify the variants. cDNA PCR products were analyzed and functional experiments were performed to determine the pathogenicity of the variants. RESULTS The clinical phenotypes and CPLANE1 variants in the JS patient were analyzed and proved consistent. We identified two novel heterozygous variants of CPLANE1 in the proband first, including c.4459del (frameshift variant) and c.7534-14G > A (intronic variant). We analyzed the pathogenic consequences of the 2 variants and classified the c.4459del as likely pathogenic according to the ACMG/AMP guidelines; however, the pathogenic significance of c.7534-14G > A was uncertain. Furthermore, we performed RNA splicing analysis and revealed that the noncanonical splicing variant (c.7534-14G > A) caused aberrant exon 37 skipping. It produced an aberrant transcript that was predicted to encode a C-terminal truncated protein. CONCLUSIONS The genetic variation spectrum of JS caused by CPLANE1 was updated. Two novel variants further deepened our insight into the disease's molecular mechanism and confirmed the significance of diagnostic whole-exome sequencing.
Collapse
Affiliation(s)
- Hongjun Fei
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wu
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlin Wang
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyu Zhang
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Three Novel Variants of CEP290 and CC2D2DA and a Link Between ZNF77 and SHH Signaling Pathway Are Found in Two Meckel-Gruber Syndrome Fetuses. Reprod Sci 2022; 29:2322-2332. [PMID: 34981460 PMCID: PMC9352615 DOI: 10.1007/s43032-021-00835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
Meckel-Gruber syndrome (MKS) is a rare lethal autosomal recessive inherited disorder. Missed diagnosis might happen in clinical works due to an unclear genotype–phenotype correlation. We analyzed two families visiting our center; the parents are normal; each of the family aborted a fetus at 12WG. Following ultrasonography and pathological examination, both were diagnosed as MKS. Whole exome sequencing identified a compound heterozygous of two novel variants of CEP290 and a heterozygous of a novel variant of CC2D2A. Frameshift mutations in ZNF77 were also detected. Western blot analyzing whole-brain tissue showed that the expression of ZNF77, CC2D2A, and CEP290 was enhanced. HEK293T transfected with over-expression wildtype/mutated ZNF77 plasmid showed that SHH was increased in wildtype ZNF77 cells, while SHH and CC2D2A were increased in mutated ZNF77 cells. Our research provided two novel pathogenic variants of CEP290 and CC2D2A and suggested that ZNF77 might promote the expression of CC2D2A and regulate the amount of SHH.
Collapse
|
41
|
Inskeep KA, Zarate YA, Monteil D, Spranger J, Doherty D, Stottmann RW, Weaver KN. Genetic and phenotypic heterogeneity in KIAA0753-related ciliopathies. Am J Med Genet A 2022; 188:104-115. [PMID: 34523780 PMCID: PMC9274454 DOI: 10.1002/ajmg.a.62497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023]
Abstract
Primary ciliopathies are heterogenous disorders resulting from perturbations in primary cilia form and/or function. Primary cilia are cellular organelles which mediate key signaling pathways during development, such as the sonic hedgehog (SHH) pathway which is required for neuroepithelium and central nervous system development. Joubert syndrome is a primary ciliopathy characterized by cerebellar/brain stem malformation, hypotonia, and developmental delays. At least 35 genes are associated with Joubert syndrome, including the gene KIAA0753, which is part of a complex required for primary ciliogenesis. The phenotypic spectrum associated with biallelic pathogenic variants in KIAA0753 is broad and not well-characterized. We describe four individuals with biallelic pathogenic KIAA0753 variants, including five novel variants. We report in vitro results assessing the function of each variant indicating that mutant proteins are not fully competent to promote primary ciliogenesis. Ablation of KIAA0753 in vitro blocks primary ciliogenesis and SHH pathway activity. Correspondingly, KIAA0753 patient fibroblasts have a deficit in primary ciliation and improper SHH and WNT signaling, with a particularly blunted response to SHH pathway stimulation. Our work expands the phenotypic spectrum of KIAA0753 ciliopathies and demonstrates the utility of patient-focused functional assays for proving causality of genetic variants.
Collapse
Affiliation(s)
- Katherine A. Inskeep
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Yuri A. Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Danielle Monteil
- Department of Pediatrics, Naval Medical Center Portsmouth, Portsmouth, VA
| | | | | | - Rolf W. Stottmann
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - K. Nicole Weaver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
42
|
Baiardi V, Battistin T. The Child with Cerebral Palsy and Visual Impairment. CEREBRAL PALSY 2022:401-435. [DOI: 10.1007/978-3-030-85619-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Barroso‐Gil M, Olinger E, Ramsbottom SA, Molinari E, Miles CG, Sayer JA. Update of genetic variants in CEP120 and CC2D2A-With an emphasis on genotype-phenotype correlations, tissue specific transcripts and exploring mutation specific exon skipping therapies. Mol Genet Genomic Med 2021; 9:e1603. [PMID: 33486889 PMCID: PMC8683696 DOI: 10.1002/mgg3.1603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mutations in ciliary genes cause a spectrum of both overlapping and distinct clinical syndromes (ciliopathies). CEP120 and CC2D2A are paradigmatic examples for this genetic heterogeneity and pleiotropy as mutations in both cause Joubert syndrome but are also associated with skeletal ciliopathies and Meckel syndrome, respectively. The molecular basis for this phenotypical variability is not understood but basal exon skipping likely contributes to tolerance for deleterious mutations via tissue-specific preservation of the amount of expressed functional protein. METHODS We systematically reviewed and annotated genetic variants and clinical presentations reported in CEP120- and CC2D2A-associated disease and we combined in silico and ex vivo approaches to study tissue-specific transcripts and identify molecular targets for exon skipping. RESULTS We confirmed more severe clinical presentations associated with truncating CC2D2A mutations. We identified and confirmed basal exon skipping in the kidney, with possible relevance for organ-specific disease manifestations. Finally, we proposed a multimodal approach to classify exons amenable to exon skipping. By mapping reported variants, 14 truncating mutations in 7 CC2D2A exons were identified as potentially rescuable by targeted exon skipping, an approach that is already in clinical use for other inherited human diseases. CONCLUSION Genotype-phenotype correlations for CC2D2A support the deleteriousness of null alleles and CC2D2A, but not CEP120, offers potential for therapeutic exon skipping approaches.
Collapse
Affiliation(s)
- Miguel Barroso‐Gil
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Eric Olinger
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Simon A. Ramsbottom
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Elisa Molinari
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Colin G. Miles
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - John A. Sayer
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Renal ServicesThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle Upon TyneUK
- NIHR Newcastle Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
44
|
Fetal ciliopathies: a retrospective observational single-center study. Arch Gynecol Obstet 2021; 306:71-83. [PMID: 34596737 PMCID: PMC9300526 DOI: 10.1007/s00404-021-06265-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022]
Abstract
Purpose Report on the diagnosis of prenatally suspected multisystem ciliopathies in a single center between 2002 and 2020. Methods Retrospective observational single-center study including pregnancies with prenatal ultrasound features of multisystem ciliopathies, such as hyperechogenic kidneys together with polydactyly and/or other skeletal and extraskeletal findings. Cases were compared according to their prenatal findings and outcomes. Results 36 cases of multisystem ciliopathies were diagnosed. Meckel-Gruber syndrome (MKS) was the most common ciliopathy (n = 19/36, 52.8%), followed by disorders that belong to the group of short-rib thoracic dysplasia (SRTD, n = 10/36, 27.8%) McKusick–Kaufmann syndrome (MKKS, n = 4/36, 11.1%), Bardet–Biedl syndrome (BBS, n = 2/36, 5.5%) and Joubert syndrome (n = 1/36, 2.8%). All cases showed abnormalities of the kidneys, most often hyperechogenic parenchyma (n = 26/36, 72.2%), cystic dysplasia (n = 24/36, 66.7%), and/or bilateral kidney enlargement (n = 22/36, 61.1%). Oligohydramnios was mainly present in fetuses with MKS. Polydactyly (n = 18/36), abnormalities of the CNS (n = 25/36), and heart defects (n = 10/36) were associated in 50%, 69.4%, and 27.8%, respectively. Conclusion Prenatal detection of renal abnormalities associated with skeletal or brain abnormalities should raise the suspicion for multisystem ciliopathies. Prenatal ultrasound can help to differentiate between different diseases and pave the way for subsequent targeted genetic testing.
Collapse
|
45
|
Zhongling K, Guoming L, Yanhui C, Xiaoru C. Case Report: Second Report of Joubert Syndrome Caused by Biallelic Variants in IFT74. Front Genet 2021; 12:738157. [PMID: 34539760 PMCID: PMC8440907 DOI: 10.3389/fgene.2021.738157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Joubert syndrome (JBTS) is a rare ciliopathy characterized by developmental delay, hypotonia, and distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). We reported a 15-month-old female with dysmorphic features (flat nasal bridge, almond-shaped eye, and a minor midline notch in the upper lips), hypotonia, polydactyly, development delay, and MTS. Whole exome sequencing revealed biallelic heterozygous mutations c.535C>G(p.Q179E/c.853G>T) (p.E285*) in IFT74, which were inherited from the parents. So far, only one article reported JBTS associated with IFT74 gene mutation, and this is the second report of the fifth patient with JBTS due to variants in IFT74. All five patients had developmental delay, postaxial polydactyly, subtle cleft of the upper lip, hypotonia, and MTS, but notably without renal and retinal anomalies or significant obesity, and they shared the same mutation c.535C>G(p.Q179E) in IFT74, and c.853G>T(p.E285*) that we found was a new mutation in IFT74 that related with Joubert syndrome. Those findings highlight the need for the inclusion of IFT74 in gene panels for JBST testing.
Collapse
Affiliation(s)
- Ke Zhongling
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Li Guoming
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Chen Yanhui
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Chen Xiaoru
- Guankou Hospital of Xiamen Jimei District, Xiamen, China
| |
Collapse
|
46
|
Ng B, De Silva S, Bindra M. Papillorenal syndrome: a systemic diagnosis not to be missed on funduscopy. BMJ Case Rep 2021; 14:14/7/e241708. [PMID: 34285019 DOI: 10.1136/bcr-2021-241708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 45-year-old man presented to the ophthalmology department with visual symptoms in his left eye. Almost two decades ago, he required a renal transplant for focal segmental glomerular sclerosis and a detailed enquiry revealed a strong family history of renal and ocular disease. Fundus examination demonstrated significant optic disc dysplasia in his left eye and optical coherence tomography showed intraretinal fluid bilaterally. The diagnosis of papillorenal syndrome was suspected and genetic testing identified a heterozygous pathogenic variant in the PAX2 gene c.76dupG, p.Val26Glyfs*28, confirming the diagnosis. The patient was treated conservatively, and his vision eventually improved and stabilised. His renal disease and transplant were concurrently monitored by nephrologists. In this case, history-taking and ophthalmic examination raised suspicion of this rare systemic condition, which led to genetic testing and molecular confirmation of the diagnosis. We therefore highlight this case to raise awareness of papillorenal syndrome, which has significant systemic implications and also impacts familial screening and genetic counselling.
Collapse
Affiliation(s)
- Benjamin Ng
- Department of Ophthalmology, Stoke Mandeville Hospital, Aylesbury, UK
| | - Samantha De Silva
- Department of Ophthalmology, Stoke Mandeville Hospital, Aylesbury, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mandeep Bindra
- Department of Ophthalmology, Stoke Mandeville Hospital, Aylesbury, UK
| |
Collapse
|
47
|
Stembalska A, Rydzanicz M, Pollak A, Kostrzewa G, Stawinski P, Biela M, Ploski R, Smigiel R. Prenatal Versus Postnatal Diagnosis of Meckel-Gruber and Joubert Syndrome in Patients with TMEM67 Mutations. Genes (Basel) 2021; 12:genes12071078. [PMID: 34356094 PMCID: PMC8304314 DOI: 10.3390/genes12071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Renal cystic diseases are characterized by genetic and phenotypic heterogeneity. Congenital renal cysts can be classified as developmental disorders and are commonly diagnosed prenatally using ultrasonography and magnetic resonance imaging. Progress in molecular diagnostics and availability of exome sequencing procedures allows diagnosis of single-gene disorders in the prenatal period. Two patients with a prenatal diagnosis of polycystic kidney disease are presented in this article. TMEM67 mutations were identified in both fetuses using a whole-exome sequencing (WES) study. In one of them, the phenotypic syndrome diagnosed prenatally was different from that diagnosed in the postnatal period.
Collapse
Affiliation(s)
- Agnieszka Stembalska
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence: (A.S.); (R.S.)
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.P.); (G.K.); (P.S.); (R.P.)
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.P.); (G.K.); (P.S.); (R.P.)
| | - Grazyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.P.); (G.K.); (P.S.); (R.P.)
| | - Piotr Stawinski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.P.); (G.K.); (P.S.); (R.P.)
| | - Mateusz Biela
- Department of Paediatrics, Division of Paediatric Propedeutics and Rare Disorders, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.P.); (G.K.); (P.S.); (R.P.)
| | - Robert Smigiel
- Department of Paediatrics, Division of Paediatric Propedeutics and Rare Disorders, Wroclaw Medical University, 51-618 Wroclaw, Poland;
- Correspondence: (A.S.); (R.S.)
| |
Collapse
|
48
|
Brunetti-Pierri R, Karali M, Testa F, Cappuccio G, Onore ME, Romano F, De Rosa G, Tedeschi E, Brunetti-Pierri N, Banfi S, Simonelli F. Mild Clinical Presentation of Joubert Syndrome in a Male Adult Carrying Biallelic MKS1 Truncating Variants. Diagnostics (Basel) 2021; 11:diagnostics11071218. [PMID: 34359301 PMCID: PMC8303764 DOI: 10.3390/diagnostics11071218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Pathogenic variants in the MKS1 gene are responsible for a ciliopathy with a wide spectrum of clinical manifestations ranging from Meckel and Joubert syndrome (JBTS) to Bardet-Biedl syndrome, and involving the central nervous system, liver, kidney, skeleton, and retina. We report a 39-year-old male individual presenting with isolated Retinitis Pigmentosa (RP), as assessed by full ophthalmological evaluation including Best-Corrected Visual Acuity measurements, fundus examination, Goldmann Visual Field test, and full-field Electroretinography. A clinical exome identified biallelic nonsense variants in MKS1 that prompted post-genotyping investigations for systemic abnormalities of ciliopathy. Brain magnetic resonance imaging revealed malformations of the posterior cranial fossa with the ‘molar tooth sign’ and cerebellar folia dysplasia, which are both distinctive features of JBTS. No other organ or skeletal abnormalities were detected. This case illustrates the power of clinical exome for the identification of the mildest forms of a disease spectrum, such as a mild JBTS with RP in the presented case of an individual carrying biallelic truncating variants in MKS1.
Collapse
Affiliation(s)
- Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (N.B.-P.); (S.B.)
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
- Correspondence:
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Via Pansini 5, 80131 Naples, Italy;
| | - Maria Elena Onore
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy; (M.E.O.); (F.R.)
| | - Francesca Romano
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy; (M.E.O.); (F.R.)
| | - Giuseppe De Rosa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy;
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (N.B.-P.); (S.B.)
- Department of Translational Medicine, Federico II University, Via Pansini 5, 80131 Naples, Italy;
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (N.B.-P.); (S.B.)
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy; (M.E.O.); (F.R.)
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy; (R.B.-P.); (M.K.); (G.D.R.); (F.S.)
| |
Collapse
|
49
|
Karamzade A, Babaei M, Saberi M, Golchin N, Khalil Nejad Sani Banaei A, Eshaghkhani Y, Golchehre Z, Keramatipour M. Identification of a novel truncating variant in AHI1 gene and a brief review on mutations spectrum. Mol Biol Rep 2021; 48:5339-5345. [PMID: 34191236 DOI: 10.1007/s11033-021-06508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Joubert syndrome (JS) is a rare inherited neurodevelopmental condition characterized by hypotonia, ataxia, developmental delay, abnormal eye movements, neonatal respiratory disturbance and unique midbrain-hindbrain malformation, known as the molar tooth sign. JS is a genetically heterogeneous disorder with nearly 35 ciliary genes are implicated in its pathogenesis. AHI1 gene is one of the most frequently mutated gene in JS patients which is accounted for 8-11% of cases, particularly in Arab population. AHI1 encodes a cilium-localized protein with a significant role in mediating vesicle trafficking, ciliogenesis and cell polarity. Here, we report a novel pathogenic variant in AHI1 gene and review previously published mutations in AHI1 gene briefly. Whole exome sequencing was employed to determine the causative mutation in an Iranian Arab family with JS from southwestern Iran. Segregation analysis of the candidate variant in the family members was performed using PCR-Sanger sequencing. This approach found a novel homozygous nonsense variant c.832C > T (p.Gln278Ter) in AHI1. Segregation analysis was consistent with individual's phenotype and an autosomal recessive pattern in the family. The variant residing in a relatively highly conserved region and fulfilled the criteria required to be classified as a pathogenic variant based on American College of Medical Genetics and Genomics guidelines. This study confirms the diagnosis of JS in this family and highlights the efficiency of next-generation sequencing-based technique to identify the genetic causes of hereditary disorders with locus heterogeneity.
Collapse
Affiliation(s)
- Arezou Karamzade
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Watson Genetic Laboratory, North Kargar street, Tehran, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Saberi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Golchin
- Watson Genetic Laboratory, North Kargar street, Tehran, Iran
| | | | - Yeganeh Eshaghkhani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Watson Genetic Laboratory, North Kargar street, Tehran, Iran.
| |
Collapse
|
50
|
Gilloteaux J, Bouchat J, Bielarz V, Brion JP, Nicaise C. A primary cilium in oligodendrocytes: a fine structure signal of repairs in thalamic Osmotic Demyelination Syndrome (ODS). Ultrastruct Pathol 2021; 45:128-157. [PMID: 34154511 DOI: 10.1080/01913123.2021.1891161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A murine osmotic demyelination syndrome (ODS) model of the central nervous system included the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei. Morphologic comparisons between treatments have revealed oligodendrocyte changes and, already 12 hours following the osmolality restoration, some heavily contrasted oligodendrocytes formed a unique intracellular primary cilium. This unique structure, found in vivo, in mature CNS oligodendrocytes, could account for a local awakening of some of the developmental proteome as it can be expressed in oligodendrocyte precursor cells. This resilience accompanied the emergence of arl13b protein expression along with restoration of nerve cell body axon hillocks shown in a previous issue of this journal. Additionally, the return of several thalamic oligodendrocyte fine features (nucleus, organelles) was shown 36 h later, including some mitosis. Those cell restorations and recognized translational activities comforted that local repairs could again take place, due to oligodendrocyte resilience after ODS instead or added to a postulated immigration of oligodendrocyte precursor cells distant from the sites of myelinolysis.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium.,Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at UNN, School of Health and Life Sciences, Newcastle upon Tyne, UK
| | - Joanna Bouchat
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Valery Bielarz
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| |
Collapse
|