1
|
Gorgich EA, Heidari Z, Mahmoudzadeh-Sagheb H, Rustamzadeh A, Shabani A, Amirzadeh A, Haghi Ashtiani B. Brain Metabolite Profiles are Associated with Selective Neuronal Vulnerability and Underlying Mechanisms in Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2025; 16:1469-1480. [PMID: 40156516 DOI: 10.1021/acschemneuro.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurological syndrome accompanied by selective degeneration of somatic motor neurons and neurochemistry alterations. Nevertheless, eye movement's nuclei are relatively spared from ALS damage. This survey was to probe metabolite changes in the primary motor cortex (PMC) and interstitial nucleus of Cajal (INC) of ALS patients using proton magnetic resonance spectroscopy (1H-MRS). In this case-control study, 20 patients with ALS and 20 healthy controls underwent 1.5 T MRI and multivoxel 1H-MRS. 1H-MRS spectra to determine metabolite profiles including tNAA, mIns, tCr, tCho, and also tNAA/tCr, tNAA/tCho, and mIns/tNAA metabolite ratios from the PMC and INC were quantified via a point resolved spectroscopy pulse (PRESS) sequence in two groups. Further, the associations between 1H-MRS markers with forced vital capacity (FVC), ALS functional rating scale (ALSFRS-R), and disease progression rate (ΔFS) were investigated. In the PMC, tNAA and tNAA/tCr were significantly lower in ALS patients than the healthy controls, but mIns and mIns/tNAA were significantly greater in these patients (p < 0.05). In the INC, tCho and mIns concentrations, and mIns/tNAA ratio were significantly increased (p < 0.05) in ALS patients, while tNAA and tNAA/tCr ratio did not show significant discriminations between the two groups (p > 0.05). The PMC tNAA/Cr ratio is associated with ALSFRS-R (p = 0.001, r = 0.71), FVC (p = 0.03, r = 0.58), and ΔFS (p = 0.01, r = -0.33). The mIns/tNAA ratio in PMC is also associated with ΔFS (p = 0.02, r = 0.41). In the INC, tCho concentrations (p = 0.04, r = -0.54) and mIns/tNAA ratio (p = 0.02, r = -0.38) were negatively associated with ALSFRS-R and positively correlated with ΔFS (p = 0.01, r = 0.33) and (p = 0.001, r = 0.61), respectively. The study suggests that neurochemistry changes in ALS patients' brains are linked to selective neuronal vulnerability and the underlying pathophysiology of the disease.
Collapse
Affiliation(s)
- Enam Alhagh Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr 99166-43535, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin 34148-53135, Iran
| | - Arash Shabani
- Department of Advanced Imaging and Image Processing, Saadatabad Medical Imaging Center, Tehran 14496-14535, Iran
| | - Ali Amirzadeh
- Department of Advanced Imaging and Image Processing, Saadatabad Medical Imaging Center, Tehran 14496-14535, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran 15937-48711, Iran
| |
Collapse
|
2
|
Yazici Demir K, Kaya Z, Dayanan R, Mercantepe T, Mercantepe F. Does Radioactive Iodine Treatment Affect Thyroid Size and Tracheal Diameter? J Clin Med 2024; 14:115. [PMID: 39797198 PMCID: PMC11721412 DOI: 10.3390/jcm14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: There exist three principal treatment modalities employed in the management of hyperthyroidism attributable to excessive hormone secretion by the thyroid gland: antithyroid pharmacotherapy, surgical intervention, and radioactive iodine (RAI) therapy. Surgical intervention is typically indicated for markedly enlarged thyroid glands that exert pressure on the trachea. The objective of this investigation was to ascertain the influence of RAI on thyroid volume and tracheal diameter. Methods: This study included 20 patients, six females and 14 males, who received 20 mCi radioactive iodine treatment for toxic nodular goiter at a tertiary university hospital between March 2019 and February 2020. Pre-treatment and six-month post-treatment neck MRI scans were conducted on the cohort. Thyroid and tracheal volumes were quantified using the Cavalieri method based on MRI sections, and comparisons were conducted pre-and post-treatment. Statistical analysis of the comparative values was performed using the dependent samples t-test. Results: A statistically significant reduction in thyroid volume was observed among the 20 patients, averaging a decrease of 36.06% following RAI treatment compared to baseline measurements (p < 0.001). Additionally, an average increase of 12.76% in tracheal volume was noted post-treatment in comparison to initial measurements, which was also statistically significant (p < 0.05). None of the patients exhibited respiratory distress in the immediate postoperative period. Conclusions: The findings indicate that RAI therapy leads to a reduction in thyroid size, accompanied by an increase in tracheal diameters subsequent to treatment. Given the potential complications and risks associated with surgical intervention, it may be prudent to consider large thyroids for RAI therapy as an alternative to surgery.
Collapse
Affiliation(s)
- Kadriye Yazici Demir
- Department of Otorhinolaryngology, Faculty of Medicine, University of Ataturk, Erzurum 25240, Türkiye; (K.Y.D.); (Z.K.)
| | - Zulkuf Kaya
- Department of Otorhinolaryngology, Faculty of Medicine, University of Ataturk, Erzurum 25240, Türkiye; (K.Y.D.); (Z.K.)
| | - Ramazan Dayanan
- Department of Endocrinology and Metabolism, Batman Training and Research Hospital, Batman 72070, Türkiye;
| | - Tolga Mercantepe
- Department of Histology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53100, Türkiye
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53100, Türkiye
| |
Collapse
|
3
|
Rustamzadeh A, Sadigh N, Vahabi Z, Khamseh F, Mohebi N, Ghobadi Z, Moradi F. Effects silymarin and rosuvastatin on amyloid-carriers level in dyslipidemic Alzheimer's patients: A double-blind placebo-controlled randomized clinical trial. IBRO Neurosci Rep 2024; 17:108-121. [PMID: 39139290 PMCID: PMC11321388 DOI: 10.1016/j.ibneur.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose The production/excretion rate of Amyloid-β (Aβ) is the basis of the plaque burden in alzheimer's disease (AD), which depends on both central and peripheral clearance. In this study, the effect of silymarin and rosuvastatin on serum markers and clinical outcomes in dyslipidemic AD patients was investigated. Methods Participants (n=36) were randomized to silymarin (140 mg), placebo, and rosuvastatin 10 mg orally three times a day for 6 months. Serum collection and clinical outcome tests were performed at baseline and after completion of treatment. Lipid profile markers, oxidative stress markers, Aβ1-42/Aβ1-40 ratio, and Soluble Low-density lipoprotein receptor-Related Protein-1 (sLRP1)/Soluble Receptor for Advanced Glycation End Products (sRAGE) ratio were measured. Results There was a statistically significant increase in Δ-high density lipoprotein (ΔHDL) between silymarin and placebo (P<0.000) and also between rosuvastatin and placebo (p=0.044). The level of Δ-triglycerides (ΔTG) in the silymarin group has a significant decrease compared to both the placebo and the rosuvastatin group (p<0.000 and p=0.036, respectively). The Δ-superoxide dismutase (ΔSOD) level in the silymarin group compared to placebo and rosuvastatin had a significant increase (p<0.000 and p=0.008, respectively). The ΔAβ1-42/Aβ1-40 in the silymarin group compared to both the placebo and rosuvastatin groups had a significant increase (p<0.05). There was an inverse relationship between ΔTG and ΔAβ1-42/Aβ1-40 (p=-0.493 and p=0.004). ΔAβ1-42/Aβ1-40 has a direct statistical relationship with ΔSOD marker (p=0.388 and p=0.031). Also, there was a direct correlation between the level of ΔAβ1-42/Aβ1-40 and ΔsLRP1/sRAGE (p=0.491 and p=0.005). Conclusion Our study showed the relationship between plasma lipids, especially ΔTG and ΔHDL, with ΔAβ1-42/Aβ1-40 in dyslipidemic AD patients, and modulation of these lipid factors can be used to monitor the response to treatments.
Collapse
Affiliation(s)
- Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, School of Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khamseh
- Department of Neurology, Faculty of Medicine, Islamic Azad University, Tehran, Iran
| | - Nafiseh Mohebi
- Department of Neurology, Rasool Akram Hospital, School of Medicine, Iran University of Medial Sciences, Tehran, Iran
| | - Zahra Ghobadi
- Neuroimaging and Clinical Biomarkers Research Group, Pars Darman Medical Imaging Center, Karaj, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
5
|
Charkhat Gorgich EA, Rigi MG, Fanaei H, Parsaei H, Ghanbarzehi A. Brain-derived neurotrophic factor serum levels as a candidate biomarker for withdrawal in crack heroin dependence. Subst Abuse Treat Prev Policy 2024; 19:9. [PMID: 38245698 PMCID: PMC10800061 DOI: 10.1186/s13011-024-00591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Crack heroin is a novel opiate derivative with highly addictive properties and unfamiliar health consequences. It causes a variety of brain dysfunctions that are mediated by neurochemical alterations and abnormal neuroplasticity. Brain-derived neurotrophic factor (BDNF) is a widely recognized biological marker implicated in the neuropathology of substance use during substance use disorder and withdrawal. Its involvement can significantly contribute to the severity of withdrawal symptoms. Hence, this study aimed to evaluate BDNF levels in crack heroin users before and after withdrawal. METHODS In this cross-sectional study, 148 male participants were recruited and divided into two groups: persons with crack heroin use disorder (n = 74) and the controls (n = 74). The BDNF serum levels were measured in both crack heroin users and control groups upon hospitalization and again after twenty-one days of withdrawal using the enzyme-linked immunosorbent assay. RESULTS The results demonstrated that BDNF levels in persons with crack heroin use disorder upon admission were significantly lower than the levels observed upon discharge and in the control group (p < 0.05). Additionally, a significant difference in BDNF levels was found between persons with crack heroin use disorder at admission and discharge (p = 0.038). Furthermore, BDNF levels showed an inverse correlation with the daily dose of substance use (r= -0.420, p = 0.03) and the duration of crack heroin use (r= -0.235, p = 0.001). CONCLUSIONS A progressive increment in BDNF levels during early detoxification is associated with the daily amount of substance use and the duration of substance use. Our findings suggest that changes in BDNF serum levels during crack heroin use disorder and withdrawal could serve as potential biomarkers for assessing the intensity of withdrawal symptoms and substance use-related behaviors.
Collapse
Affiliation(s)
| | | | - Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdolhakim Ghanbarzehi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|