1
|
Naffaa MM, Al-Ewaidat OA, Gogia S, Begiashvili V. Neoantigen-based immunotherapy: advancing precision medicine in cancer and glioblastoma treatment through discovery and innovation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002313. [PMID: 40309350 PMCID: PMC12040680 DOI: 10.37349/etat.2025.1002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Neoantigen-based immunotherapy has emerged as a transformative approach in cancer treatment, offering precision medicine strategies that target tumor-specific antigens derived from genetic, transcriptomic, and proteomic alterations unique to cancer cells. These neoantigens serve as highly specific targets for personalized therapies, promising more effective and tailored treatments. The aim of this article is to explore the advances in neoantigen-based therapies, highlighting successful treatments such as vaccines, tumor-infiltrating lymphocyte (TIL) therapy, T-cell receptor-engineered T cells therapy (TCR-T), and chimeric antigen receptor T cells therapy (CAR-T), particularly in cancer types like glioblastoma (GBM). Advances in technologies such as next-generation sequencing, RNA-based platforms, and CRISPR gene editing have accelerated the identification and validation of neoantigens, moving them closer to clinical application. Despite promising results, challenges such as tumor heterogeneity, immune evasion, and resistance mechanisms persist. The integration of AI-driven tools and multi-omic data has refined neoantigen discovery, while combination therapies are being developed to address issues like immune suppression and scalability. Additionally, the article discusses the ongoing development of personalized immunotherapies targeting tumor mutations, emphasizing the need for continued collaboration between computational and experimental approaches. Ultimately, the integration of cutting-edge technologies in neoantigen research holds the potential to revolutionize cancer care, offering hope for more effective and targeted treatments.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ola A Al-Ewaidat
- Department of Internal Medicine, Ascension Saint Francis Hospital, Evanston, IL 60202, USA
| | - Sopiko Gogia
- Department of Internal Medicine, Ascension Saint Francis Hospital, Evanston, IL 60202, USA
| | - Valiko Begiashvili
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
2
|
Liu F, Chen H, Wu S, Zhu C, Zhang M, Rui W, Zhou D, Wang Y, Lin X, Zhao X, Ye Y. Neoepitope BTLA P267L-specific TCR-T cell immunotherapy unlocks precision treatment for hepatocellular carcinoma. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0434. [PMID: 40205806 PMCID: PMC12032833 DOI: 10.20892/j.issn.2095-3941.2024.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVE The high heterogeneity of hepatocellular carcinoma (HCC) renders traditional therapies unable to effectively activate the patient's immune system to combat tumors. Patients with advanced HCC and T cell functional deficiencies may benefit more from cellular immunotherapy, especially tumor neoepitope-targeted T cell receptor (TCR)-T cells. Neoepitopes with strong immunogenicity provide precise targets for HCC, further enhancing the efficacy of cellular immunotherapy. METHODS A scalable workflow for identifying neoepitopes from 7 HLA-A*02:01-restricted patients with HCC was established based on whole exome sequencing and bioinformatics analyses, followed by identification of neoepitope-specific TCRs through tetramer-based screening and single-cell TCR cloning technology, which were further validated in the JC4 cell model. The cytotoxicity of CD8+ TCR-T cells was evaluated in neoepitope-positive tumor cell lines or NCG mice. RESULTS Ten specific neoepitopes were identified, among which neoepitope B and T lymphocyte attenuatorP267L [BTLAP267L (SLNHSVIGL)] exhibited advantageous properties as a potential tumor target. Three TCRs (85-3, 126-5, and 52-3) were confirmed to specifically recognize the neoepitope BTLAP267L, while no cross-recognition of irrelevant or wild-type epitopes was observed. Activated BTLAP267L-specific CD8+ TCR-T cells released extensive perforin, granzyme B, IFN-γ, and TNF-α in vitro, thereby inducing strong cytotoxic effects against BTLAP267L-positive T2 or HCC cell lines. BTLAP267L-specific CD8+ TCR-T cells mediated robust tumor regression due to long-lasting survival and released perforin without causing significant cytotoxic effects on normal organs in murine experiments. CONCLUSIONS This preclinical study demonstrated the beneficial effects of neoepitope BTLAP267L-specific TCR-T cell immunotherapy, unlocking a novel strategy for personalized precision therapy in HCC.
Collapse
Affiliation(s)
- Fang Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Hua Chen
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Suxin Wu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Chenlu Zhu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Mingji Zhang
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
- The Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Wei Rui
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Zhou
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
- The Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yang Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Xin Lin
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqiang Zhao
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| |
Collapse
|
3
|
Giri S, Lamichhane G, Pandey J, Khadayat R, K. C. S, Devkota HP, Khadka D. Immune Modulation and Immunotherapy in Solid Tumors: Mechanisms of Resistance and Potential Therapeutic Strategies. Int J Mol Sci 2025; 26:2923. [PMID: 40243502 PMCID: PMC11989189 DOI: 10.3390/ijms26072923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Understanding the modulation of specific immune cells within the tumor microenvironment (TME) offers new hope in cancer treatments, especially in cancer immunotherapies. In recent years, immune modulation and resistance to immunotherapy have become critical challenges in cancer treatments. However, novel strategies for immune modulation have emerged as promising approaches for oncology due to the vital roles of the immunomodulators in regulating tumor progression and metastasis and modulating immunological responses to standard of care in cancer treatments. With the progress in immuno-oncology, a growing number of novel immunomodulators and mechanisms are being uncovered, offering the potential for enhanced clinical immunotherapy in the near future. Thus, gaining a comprehensive understanding of the broader context is essential. Herein, we particularly summarize the paradoxical role of tumor-related immune cells, focusing on how targeted immune cells and their actions are modulated by immunotherapies to overcome immunotherapeutic resistance in tumor cells. We also highlight the molecular mechanisms employed by tumors to evade the long-term effects of immunotherapeutic agents, rendering them ineffective.
Collapse
Affiliation(s)
- Suman Giri
- Asian College for Advance Studies, Purbanchal University, Satdobato, Lalitpur 44700, Nepal;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jitendra Pandey
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Ramesh Khadayat
- Patan Hospital, Patan Academic of Health Sciences, Lagankhel, Lalitpur 44700, Nepal;
| | - Sindhu K. C.
- Department of Pharmacology, Chitwan Medical College, Tribhuwan University, Bharatpur-05, Chitwan 44200, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | - Dipendra Khadka
- NADIANBIO Co., Ltd., Wonkwang University School of Medicine, Business Incubation Center R201-1, Iksan 54538, Jeonbuk, Republic of Korea
- KHAS Health Pvt. Ltd., Dhangadhi-04, Kailali 10910, Nepal
| |
Collapse
|
4
|
Bedi D, Hassan M, Yirsaw A, Vikas B, Datta P, Samuel T. The immunopeptidome of colon cancer cells treated with topoisomerase inhibiting drug reveals differential as well as common endogenous protein sampling and display of MHC I-associated peptides. Mol Cell Oncol 2025; 12:2471640. [PMID: 40051755 PMCID: PMC11881837 DOI: 10.1080/23723556.2025.2471640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/05/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Immunotherapy options for microsatellite stable (MSS) colorectal cancer are currently very limited. The lack of detectably unique or altered immunogens in the tumor microenvironment may be a factor. Radiation and chemotherapy may enhance immunotherapy by increasing cancer cell visibility through Major Histocompatibility Complex I (MHC I) expression. To investigate this, we treated MSS and microsatellite-instable (MSI) colon cancer cells with a topoisomerase inhibitor and analyzed MHC I-associated peptides. Treatment increased peptide numbers by 5% in RKO (MSI) cells and 83% in SW620 (MSS) cells, with 40-50% of peptides being exclusive to treatment. Additionally, clustering analysis revealed a set of peptides with uniquely conserved residues displayed only in treated MSS SW620 cells. Gene Ontology analysis of MHC I-displayed proteins revealed a treatment-induced increase in extracellular vesicle- and nuclear-derived proteins, alongside reduced cytosolic protein sampling. Overall, we present evidence for treatment-inducible differential display of peptides, some of which may affect interactions and functions of immune cells. Given the multitude of factors that modulate the effects of increased MHC I expression and associated peptides, further studies are needed to elucidate the pathophysiological implications of these changes.
Collapse
Affiliation(s)
- Deepa Bedi
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Mohammed Hassan
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Alehegne Yirsaw
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Biba Vikas
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Pran Datta
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Temesgen Samuel
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| |
Collapse
|
5
|
Meng Y, Yao Z, Ke X, Hu M, Ren H, Gao S, Zhang H. Extracellular vesicles-based vaccines: Emerging immunotherapies against cancer. J Control Release 2025; 378:438-459. [PMID: 39667569 DOI: 10.1016/j.jconrel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Cancer vaccines are promising therapeutic approaches to enhance specific T-cell immunity against most solid tumors. By stimulating anti-tumor immunity, clearing minimal residual disease, and minimizing adverse effects, these vaccines target tumor cells and are effective when combined with immune checkpoint blockade or other immunotherapies. However, the development of tumor cell-based vaccines faces quality issues due to poor immunogenicity, tumor heterogeneity, a suppressive tumor immune microenvironment, and ineffective delivery methods. In contrast, extracellular vesicles (EVs), naturally released by cells, are considered the ideal drug carriers and vaccine platforms. EVs offer highly organ-specific targeting, induce broader and more effective immune responses, and demonstrate superior tissue delivery ability. The development of EV vaccines is crucial for advancing cancer immunotherapy. Compared to cell-based vaccines, EV vaccines produced under Good Manufacturing Practices (GMP) offer advantages such as high safety, ease of preservation and transport, and a wide range of sources. This review summarizes the latest research findings on EV vaccine and potential applications in this field. It also highlights novel neoantigens for the development of EV vaccines against cancer.
Collapse
Affiliation(s)
- Yuhua Meng
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mengyuan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongzheng Ren
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Hao Zhang
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China; Department of Pathology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of Thoracic Surgery and General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Akram F, Ali AM, Akhtar MT, Fatima T, Shabbir I, Ul Haq I. The journey of antibody-drug conjugates for revolutionizing cancer therapy: A review. Bioorg Med Chem 2025; 117:118010. [PMID: 39586174 DOI: 10.1016/j.bmc.2024.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a powerful class of targeted cancer therapies that harness the specificity of monoclonal antibodies to deliver cytotoxic payloads directly to tumor cells, minimizing off-target effects. This review explores the advancements in ADC technologies, focusing on advancing next-generation ADCs with novel payloads, conjugation strategies, and enhanced pharmacokinetic profiles. In particular, we highlight innovative payloads, including microtubule inhibitors, spliceosome modulators, and RNA polymerase inhibitors, that offer new mechanisms of cytotoxicity beyond traditional apoptosis induction. Additionally, the introduction of sophisticated conjugation techniques, such as site-specific conjugation using engineered cysteines, enzymatic methods, and integration of non-natural amino acids, has greatly improved the homogeneity, efficacy, and safety of ADCs. Furthermore, the review delves into the mechanistic insights into ADC action, detailing the intracellular pathways that facilitate drug release and cell death, and discussing the significance of bioconjugation methods in optimizing drug-antibody ratios (DARs). The establishment of comprehensive databases like ADCdb, which catalog vital pharmacological and biological data for ADCs, is also explored as a critical resource for advancing ADC research and clinical application. Finally, the clinical landscape of ADCs is examined, with a focus on the evolution of FDA-approved ADCs, such as Gemtuzumab Ozogamicin and Trastuzumab Emtansine, as well as emerging candidates in ongoing trials. As ADCs continue to evolve, their potential to revolutionize cancer therapy remains immense, offering new hope for more effective and personalized treatment options. ADCs also offer a significant advancement in targeted cancer therapy by merging the specificity of monoclonal antibodies with cytotoxic potency of chemotherapeutic agents. Hence, this dual mechanism intensifies tumor selectivity while minimizing systemic toxicity, paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Amna Murrawat Ali
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Muhammad Tayyab Akhtar
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Taseer Fatima
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ikram Ul Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
7
|
Shi R, Ran L, Tian Y, Guo W, Zhao L, Jin S, Cheng J, Zhang Z, Ma Y. Prospects and challenges of neoantigen applications in oncology. Int Immunopharmacol 2024; 143:113329. [PMID: 39405926 DOI: 10.1016/j.intimp.2024.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Neoantigen, unique peptides resulting from tumor-specific mutations, represent a promising frontier in oncology for personalized cancer immunotherapy. Their unique features allow for the development of highly specific and effective cancer treatments, which can potentially overcome the limitations of conventional therapies. This paper explores the current prospects and challenges associated with the application of neoantigens in oncology. We examine the latest advances in neoantigen identification, vaccine development, and adoptive T cell therapy. Additionally, we discuss the obstacles related to neoantigen heterogeneity, immunogenicity prediction, and the tumor microenvironment. Through a comprehensive analysis of current research and clinical trials, this paper aims to provide a detailed overview of how neoantigens could revolutionize cancer treatment and the hurdles that must be overcome to realize their full potential.
Collapse
Affiliation(s)
- Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Ling Ran
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Yuan Tian
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Wei Guo
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China
| | - Lifang Zhao
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Shaoju Jin
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Jiang Cheng
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Zhe Zhang
- School of Sciences, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongchao Ma
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China.
| |
Collapse
|
8
|
Fiordoro S, Rosano C, Pechkova E, Barocci S, Izzotti A. Epigenetic modulation of immune cells: Mechanisms and implications. Adv Biol Regul 2024; 94:101043. [PMID: 39305736 DOI: 10.1016/j.jbior.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 12/12/2024]
Abstract
Epigenetic modulation of the immune response entails modifiable and inheritable modifications that do not modify the DNA sequence. While there have been many studies on epigenetic changes in tumor cells, there is now a growing focus on epigenetically mediated changes in immune cells of both the innate and adaptive systems. These changes have significant implications for both the body's response to tumors and the development of potential therapeutic vaccines. This study primarily discusses the key epigenetic alterations, with a specific emphasis on pseudouridination, as well as non-coding RNAs and their transportation, which can lead to the development of cancer and the acquisition of new phenotypic traits by immune cells. Furthermore, the advancement of therapeutic vaccinations targeting the tumor will be outlined.
Collapse
Affiliation(s)
- S Fiordoro
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - C Rosano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - E Pechkova
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - S Barocci
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| |
Collapse
|
9
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Bhattacharya A, Dasgupta AK. Multifaceted perspectives of detecting and targeting solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:1-66. [PMID: 39396844 DOI: 10.1016/bs.ircmb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Solid tumors are the most prevalent form of cancer. Considerable technological and medical advancements had been achieved for the diagnosis of the disease. However, detection of the disease in an early stage is of utmost importance, still far from reality. On the contrary, the treatment and therapeutic area to combat solid tumors are still in its infancy. Conventional treatments like chemotherapy and radiation therapy pose challenges due to their indiscriminate impact on healthy and cancerous cells. Contextually, efficient drug targeting is a pivotal approach in solid tumor treatment. This involves the precise delivery of drugs to cancer cells while minimizing harm to healthy cells. Targeted drugs exhibit superior efficacy in eradicating cancer cells while impeding tumor growth and mitigate side effects by optimizing absorption which further diminishes the risk of resistance. Furthermore, tailoring targeted therapies to a patient's tumor-specific molecular profile augments treatment efficacy and reduces the likelihood of relapse. This chapter discuss about the distinctive characteristics of solid tumors, the possibility of early detection of the disease and potential therapeutic angle beyond the conventional approaches. Additionally, the chapter delves into a hitherto unknown attribute of magnetic field effect to target cancer cells which exploit the relatively less susceptibility of normal cells compared to cancer cells to magnetic fields, suggesting a future potential of magnetic nanoparticles for selective cancer cell destruction. Lastly, bioinformatics tools and other unconventional methodologies such as AI-assisted codon bias analysis have a crucial role in comprehending tumor biology, aiding in the identification of futuristic targeted therapies.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
11
|
Al-Hawary SIS, Jasim SA, Hjazi A, Oghenemaro EF, Kaur I, Kumar A, Al-Ani AM, Alwaily ER, Redhee AH, Mustafa YF. Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside. Cell Biochem Funct 2024; 42:e3978. [PMID: 38515237 DOI: 10.1002/cbf.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after The First President of Russia, Yekaterinburg, Russia
| | | | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
12
|
YE XING, TUO ZHOUTING, CHEN KAI, WU RUICHENG, WANG JIE, YU QINGXIN, YE LUXIA, MIYAMOTO AKIRA, YOO KOOHAN, ZHANG CHI, WEI WURAN, LI DENGXIONG, FENG DECHAO. Pan-cancer analysis of RNA 5-methylcytosine reader (ALYREF). Oncol Res 2024; 32:503-515. [PMID: 38361753 PMCID: PMC10865740 DOI: 10.32604/or.2024.045050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024] Open
Abstract
The increasing interest in RNA modifications has significantly advanced epigenomic and epitranscriptomic technologies. This study focuses on the immuno-oncological impact of ALYREF in human cancer through a pan-cancer analysis, enhancing understanding of this gene's role in cancer. We observed differential ALYREF expression between tumor and normal samples, correlating strongly with prognosis in various cancers, particularly kidney renal papillary cell carcinoma (KIRP) and liver hepatocellular carcinoma (LIHC). ALYREF showed a negative correlation with most tumor-infiltrating cells in lung squamous cell carcinoma (LUSC) and lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), while positive correlations were noted in LIHC, kidney chromophobe (KICH), mesothelioma (MESO), KIRP, pheochromocytoma and paraganglioma (PARD), and glioma (GBMLGG). Additionally, ALYREF expression was closely associated with tumor heterogeneity, stemness indices, and a high mutation rate in TP53 across these cancers. In conclusion, ALYREF may serve as an oncogenic biomarker in numerous cancers, meriting further research attention.
Collapse
Affiliation(s)
- XING YE
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - ZHOUTING TUO
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - KAI CHEN
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - RUICHENG WU
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - JIE WANG
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QINGXIN YU
- Department of Pathology, Ningbo Diagnostic Pathology Center, Ningbo, 315021, China
| | - LUXIA YE
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - AKIRA MIYAMOTO
- Department of Rehabilitation, West Kyushu University, Kanzaki-shi, 842-8585, Japan
| | - KOO HAN YOO
- Department of Urology, Kyung Hee University, Seoul, 446 701, South Korea
| | - CHI ZHANG
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - WURAN WEI
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - DENGXIONG LI
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - DECHAO FENG
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
Ruan D, Wu H, Meng Q, Xu R. Development of antibody-drug conjugates in cancer: Overview and prospects. Cancer Commun (Lond) 2024; 44:3-22. [PMID: 38159059 PMCID: PMC10794012 DOI: 10.1002/cac2.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
In recent years, remarkable breakthroughs have been reported on antibody-drug conjugates (ADCs), with 15 ADCs successfully entering the market over the past decade. This substantial development has positioned ADCs as one of the fastest-growing domains in the realm of anticancer drugs, demonstrating their efficacy in treating a wide array of malignancies. Nonetheless, there is still an unmet clinical need for wider application, better efficacy, and fewer side effects of ADCs. An ADC generally comprises an antibody, a linker and a payload, and the combination has profound effects on drug structure, pharmacokinetic profile and efficacy. Hence, optimization of the key components provides an opportunity to develop ADCs with higher potency and fewer side effects. In this review, we comprehensively reviewed the current development and the prospects of ADC, provided an analysis of marketed ADCs and the ongoing pipelines globally as well as in China, highlighted several ADC platforms and technologies specific to different pharmaceutical enterprises and biotech companies, and also discussed the new related technologies, possibility of next-generation ADCs and the directions of clinical research.
Collapse
Affiliation(s)
- Dan‐Yun Ruan
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Hao‐Xiang Wu
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Qi Meng
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Rui‐Hua Xu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
14
|
Swamy K. Therapeutic In Situ Cancer Vaccine Using Pulsed Stereotactic Body Radiotherapy-A Translational Model. Vaccines (Basel) 2023; 12:7. [PMID: 38276666 PMCID: PMC10819354 DOI: 10.3390/vaccines12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Both radiation and cancer therapeutic vaccine research are more than 100 years old, and their potential is likely underexplored. Antiangiogenics, nanoparticle targeting, and immune modulators are some other established anticancer therapies. In the meantime, immunotherapy usage is gaining momentum in clinical applications. This article proposes the concept of a pulsed/intermittent/cyclical endothelial-sparing single-dose in situ vaccination (ISVRT) schedule distinguishable from the standard therapeutic stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) plans. This ISVRT schedule can repeatedly generate tumor-specific neoantigens and epitopes for primary and immune modulation effects, augment supplementary immune enhancement techniques, activate long-term memory cells, avoid extracellular matrix fibrosis, and essentially synchronize with the vascular normalized immunity cycle. The core mechanisms of ISVRT impacting in situ vaccination would be optimizing cascading antigenicity and adjuvanticity. The present proposed hypothesis can be validated using the algorithm presented. The indications for the proposed concept are locally progressing/metastatic cancers that have failed standard therapies. Immunotherapy/targeted therapy, chemotherapy, antiangiogenics, and vascular-lymphatic normalization are integral to such an approach.
Collapse
|
15
|
Xing P, Wang S, Cao Y, Liu B, Zheng F, Guo W, Huang J, Zhao Z, Yang Z, Lin X, Sang L, Liu Z. Treatment strategies and drug resistance mechanisms in adenocarcinoma of different organs. Drug Resist Updat 2023; 71:101002. [PMID: 37678078 DOI: 10.1016/j.drup.2023.101002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023]
Abstract
Adenocarcinoma is a common type of malignant tumor, originating from glandular epithelial cells in various organs, such as pancreas, breast, lung, stomach, colon, rectus, and prostate. For patients who lose the opportunity for radical surgery, medication is available to provide potential clinical benefits. However, drug resistance is a big obstacle to obtain desired clinical prognosis. In this review, we provide a summary of treatment strategies and drug resistance mechanisms in adenocarcinoma of different organs, including pancreatic cancer, gastric adenocarcinoma, colorectal adenocarcinoma, lung adenocarcinoma, and prostate cancer. Although the underlying molecular mechanisms involved in drug resistance of adenocarcinoma vary from one organ to the other, there are several targets that are universal for drug resistance in adenocarcinoma, and targeting these molecules could potentially reverse drug resistance in the treatment of adenocarcinomas.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Feifei Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Junhao Huang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zimo Zhao
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Ziyi Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xingda Lin
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|