1
|
Klutstein M, Gonen N. Epigenetic aging of mammalian gametes. Mol Reprod Dev 2023; 90:785-803. [PMID: 37997675 DOI: 10.1002/mrd.23717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Pallotti F, Barbonetti A, Rastrelli G, Santi D, Corona G, Lombardo F. The impact of male factors and their correct and early diagnosis in the infertile couple's pathway: 2021 perspectives. J Endocrinol Invest 2022; 45:1807-1822. [PMID: 35349114 PMCID: PMC8961097 DOI: 10.1007/s40618-022-01778-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/24/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The current clinical practice in reproductive medicine should pose the couple at the centre of the diagnostic-therapeutic management of infertility and requires intense collaboration between the andrologist, the gynaecologist and the embryologist. The andrologist, in particular, to adequately support the infertile couple, must undertake important biological, psychological, economical and ethical task. Thus, this paper aims to provide a comprehensive overview of the multifaceted role of the andrologist in the study of male factor infertility. METHODS A comprehensive Medline, Embase and Cochrane search was performed including publications between 1969 and 2021. RESULTS Available evidence indicates that a careful medical history and physical examination, followed by semen analysis, always represent the basic starting points of the diagnostic work up in male partner of an infertile couple. Regarding treatment, gonadotropins are an effective treatment in case of hypogonadotropic hypogonadism and FSH may be used in men with idiopathic infertility, while evidence supporting other hormonal and nonhormonal treatments is either limited or conflicting. In the future, pharmacogenomics of FSHR and FSHB as well as innovative compounds may be considered to develop new therapeutic strategies in the management of infertility. CONCLUSION To provide a high-level of care, the andrologist must face several critical diagnostical and therapeutical steps. Even though ART may be the final and decisive stage of this decisional network, neglecting to treat the male partner may ultimately increase the risks of negative outcome, as well as costs and psychological burden for the couple itself.
Collapse
Affiliation(s)
- F Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Barbonetti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Careggi Hospital-Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| | - D Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G Corona
- Endocrinology Unit, Medical Department, Maggiore-Bellaria Hospital, Azienda-Usl Bologna, 40139, Bologna, Italy
| | - F Lombardo
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
3
|
Arya D, Balasinor N, Singh D. Varicocele associated male infertility: cellular and molecular perspectives of pathophysiology. Andrology 2022; 10:1463-1483. [PMID: 36040837 DOI: 10.1111/andr.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Varicocele is a common risk factor associated with reduced male fertility potential. The current understanding of varicocele pathophysiology does not completely explain the clinical manifestation of infertility. The present treatment options such as antioxidant supplementation and varicocelectomy only helps ∼35% of men to achieve spontaneous pregnancy. OBJECTIVE This review aims to summarize the available knowledge on cellular and molecular alterations implicated to varicocele associated male infertility and also highlights the new knowledge generated by 'Omics' technologies. MATERIALS AND METHODS PubMed, MEDLINE, Cochrane and Google Scholar databases are searched using different combinations of keywords (varicocele, infertile/fertile men with varicocele, cellular changes, molecular mechanisms, proteome, epigenome, transcriptome and metabolome). A total of 229 relevant human and animal studies published till 2021 were included in this review. RESULTS Current understanding advocates oxidative stress (OS) as a major contributory factor to the varicocele associated male infertility. Excessive OS causes alteration in testicular microenvironment and sperm DNA fragmentation which further contributes to infertility. Molecular and omics studies have identified several promising biomarkers such as AAMP, SPINT1, MKI67 (genetic markers), sperm quality and function related protein markers, global sperm DNA methylation level (epigenetic marker), Hspa2, Protamine, Gadd7, Dynlt1 and Beclin1 (mRNA markers), PRDX2, HSPA, APOA2, YKL40 (seminal protein markers), total choline and PHGDH (metabolic markers). DISCUSSION Mature spermatozoa harbours a plethora of molecular information in form of proteome, epigenome and transcriptome; which could provide very important clues regarding pathophysiology of varicocele associated infertility. Recent molecular and omics studies in infertile men with varicocele have identified several promising biomarkers. Upon further validation with larger and well-defined studies, some of these biomarkers could aid in varicocele management. CONCLUSION The present evidences suggest inclusion of OS and sperm DNA fragmentation tests could be useful to the diagnostic workup for men with varicocele. Furthermore, including precise molecular markers may assist in diagnostics and prognostics of varicocele associated male infertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| |
Collapse
|
4
|
Ren S, Chen X, Tian X, Yang D, Dong Y, Chen F, Fang X. The expression, function, and utilization of Protamine1: a literature review. Transl Cancer Res 2022; 10:4947-4957. [PMID: 35116345 PMCID: PMC8799248 DOI: 10.21037/tcr-21-1582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Objective Protamine 1 (PRM1) is specific in sperm and plays essential roles in fertilization, also a member of cancer testis antigen (CTA) family. This study aims to summarize the expression and function of PRM1 in spermatogenesis, and to broaden the current knowledge and inspire future development of PRM1-based therapeutic strategies in cancer treatment and nanomedicine. Background The protamine proteins, are characterized by an arginine-rich core and cysteine residues. Humans express two types of protamine: PRM1 and PRM2. The abnormal expression or proportion of PRM1 and PRM2 is known to be associated with subfertility and infertility, especially for PRM1 which is highly evolutionary conserved in mammalians and expressed in all vertebrates. Biological functions of PRM1 have been unveiled in diverse cellular processes, such as tumorigenesis, somatic cell nucleus transfer, and drug delivery systems. Moreover, PRM1 is identified as a CTA in chronic leukemia (CLL) and colorectal cancer (CRC). Methods Literature was obtained using PubMed and the keywords protamine 1, PRM1, or P1, from January 1, 1980, through July 20, 2021. We also collect the additional evidence through screening references of articles identified through the PubMed searches. Conclusions PRM1 is well-studied in male infertility, and further researches and attempts to develop PRM1 as novel tumor marker, as well as drug delivery vector, will be of important clinical significance.
Collapse
Affiliation(s)
- Shengnan Ren
- Department of Breast, Thyroid, Hepatobiliary and Pancreatic Surgery, Xinmin Division of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuebo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaofeng Tian
- Department of Breast, Thyroid, Hepatobiliary and Pancreatic Surgery, Xinmin Division of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dingquan Yang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yongli Dong
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Fangfang Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.,Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Paoli D, Pallotti F, Nigro G, Mazzuti L, Hirsch MN, Valli MB, Colangelo S, Mastroianni CM, Antonelli G, Lenzi A, Turriziani O, Lombardo F. Molecular diagnosis of SARS-CoV-2 in seminal fluid. J Endocrinol Invest 2021; 44:2675-2684. [PMID: 33929709 PMCID: PMC8085093 DOI: 10.1007/s40618-021-01580-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Due to relevant repercussions on reproductive medicine, we aimed to evaluate feasibility of RT-PCR as a detection method of SARS-CoV-2 RNA in seminal fluid. METHODS A qualitative determination of the RT-PCR assays in semen was performed through different approaches: (1) efficiency of RNA extraction from sperm and seminal plasma was determined using PRM1 and PRM2 mRNA and a heterologous system as control; (2) samples obtained by diluting viral preparation from a SARS-CoV-2 panel (virus cultured in Vero E6 cell lines) were tested; (3) viral presence in different fractions of seminal fluid (whole sample, seminal plasma and post-centrifugation pellet) was evaluated. Semen samples from mild and recovered COVID-19 subjects were collected by patients referring to the Infectious Disease Department of the Policlinico Umberto I Hospital - "Sapienza" University of Rome. Control subjects were recruited at the Laboratory of Seminology-Sperm Bank "Loredana Gandini'' of the same hospital. RESULTS The control panel using viral preparations diluted in saline and seminal fluid showed the capability to detect viral RNA presence with Ct values depending on the initial viral concentration. All tested semen samples were negative for SARS-CoV-2, regardless of the nasopharyngeal swab result or seminal fluid fraction. CONCLUSION These preliminary data show that RT-PCR for SARS-CoV-2 RNA testing appears to be a feasible method for the molecular diagnosis of SARS-CoV-2 in seminal fluid, supported by results of the control panel. The ability to detect SARS-CoV-2 in semen is extremely important for reproductive medicine, especially in assisted reproductive technology and sperm cryopreservation.
Collapse
Affiliation(s)
- D. Paoli
- Laboratory of Seminology-Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - F. Pallotti
- Laboratory of Seminology-Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - G. Nigro
- Laboratory of Seminology-Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - L. Mazzuti
- Laboratory of Virology, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - M. N. Hirsch
- Laboratory of Seminology-Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. B. Valli
- National Institute for Infectious Diseases, INMI (Istituto Nazionale Per Le Malattie Infettive), “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - S. Colangelo
- Laboratory of Seminology-Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - C. M. Mastroianni
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - G. Antonelli
- Laboratory of Virology, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - A. Lenzi
- Laboratory of Seminology-Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - O. Turriziani
- Laboratory of Virology, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - F. Lombardo
- Laboratory of Seminology-Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
6
|
Faja F, Pallotti F, Cargnelutti F, Senofonte G, Carlini T, Lenzi A, Lombardo F, Paoli D. Molecular Analysis of DPY19L2, PICK1 and SPATA16 in Italian Unrelated Globozoospermic Men. Life (Basel) 2021; 11:life11070641. [PMID: 34209343 PMCID: PMC8307282 DOI: 10.3390/life11070641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
This study aims to evaluate genetic contribution and sperm DNA fragmentation (SDF) in a cohort of 18 unrelated globozoospermic Italian men (Group G). Semen samples were assessed according to the WHO 2010 Laboratory Manual and compared with 31 fertile controls. We focused our genetic analysis on the exons of the main globozoospermia-associated genes, performing qualitative PCR to assess deletion of DPY19L2 and sequencing to detect mutations of SPATA16 and PICK1. SDF was evaluated using the TUNEL assay. In Group G, 10 patients had a complete form of globozoospermia, whereas 8 patients had a partial form. Molecular analysis revealed deletion of DPY19L2 in six of the patients, all of them with complete globozoospermia, while no mutations were found in the examined exons of PICK1 and SPATA16. TUNEL analysis showed a higher SDF% in Group G. Our findings confirm DPY19L2 defects as the most frequent genetic alteration in Italian patients contributing to globozoospermic phenotypes. Furthermore, spermatozoa with acrosomal defects could also display high levels of SDF as a possible consequence of abnormally remodeled chromatin. The possible effect on offspring of chromatin structure abnormalities and altered DNA integrity should be carefully evaluated by clinicians, especially regarding the feasibility and safety of artificial reproductive techniques, which represent the only treatment that allows these patients to conceive.
Collapse
|
7
|
Nemati H, Sadeghi M, Nazeri M, Mohammadi M. Evaluation of the association between polymorphisms of PRM1 and PRM2 and the risk of male infertility: a systematic review, meta-analysis, and meta-regression. Sci Rep 2020; 10:17228. [PMID: 33057064 PMCID: PMC7560625 DOI: 10.1038/s41598-020-74233-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Studies have reported the genetic gives rise to male infertility. The aim of the present meta-analysis was to evaluate the association between PRM1 (rs737008 and rs2301365) and PRM2 (rs1646022 and rs2070923) polymorphisms and susceptibility to male infertility. The association between PRM1 and PRM2 polymorphisms and the risk of male infertility was evaluated using specific search terms in the Web of Science, Cochrane Library, PubMed, and Scopus databases without language restriction until January 28, 2020. The association was determined by odds ratio (OR) and 95% confidence interval (CI) on five genetic models using Review Manager 5.3 software. The funnel plot analysis and sensitivity analysis were done by the Comprehensive Meta-analysis 2.0 software. Out of 261 records retrieved from the databases, 17 studies were analyzed in the meta-analysis, including the four PRM polymorphisms. The pooled results as OR (P-value) showed 0.96 (0.44), 1.04 (0.70), 0.94 (0.51), 0.94 (0.48), and 1.03 (0.72) for PRM1 rs737008 polymorphism and 1.67 (0.0007), 1.73 (0.06), 1.50 (0.007), 1.56 (0.004), and 1.62 (0.33) for PRM1 rs2301365 polymorphism in allele, homozygous, heterozygous, recessive, and dominant models, respectively. Moreover, the pooled results as OR (P-value) showed 1.19 (0.004), 1.15 (0.26), 1.08 (0.70), 1.05 (0.76), and 0.98 (0.82) for PRM2 rs1646022 and 0.88 (0.04), 0.84 (0.10), 1.05 (0.81), 0.90 (0.24), and 0.80 (0.02) for PRM2 rs2070923 in allele, homozygous, heterozygous, recessive, and dominant models, respectively. The results showed PRM1 rs2301365 and PRM2 rs1646022 polymorphisms were associated with an elevated risk of male infertility and PRM2 rs2070923 polymorphism had a protective role in infertile men.
Collapse
Affiliation(s)
- Houshang Nemati
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehri Nazeri
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohana Mohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Giacone F, Cannarella R, Mongioì LM, Alamo A, Condorelli RA, Calogero AE, La Vignera S. Epigenetics of Male Fertility: Effects on Assisted Reproductive Techniques. World J Mens Health 2018; 37:148-156. [PMID: 30588778 PMCID: PMC6479088 DOI: 10.5534/wjmh.180071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/16/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
During the last decades the study of male infertility and the introduction of the assisted reproductive techniques (ARTs) has allowed to understand that normal sperm parameters do not always predict fertilization. Sperm genetic components could play an important role in the early stages of embryonic development. Based on these acquisitions, several epigenetic investigations have been developed on spermatozoa, with the aim of understanding the multifactorial etiology of male infertility and of showing whether embryonic development may be influenced by sperm epigenetic abnormalities. This article reviews the possible epigenetic modifications of spermatozoa and their effects on male fertility, embryonic development and ART outcome. It focuses mainly on sperm DNA methylation, chromatin remodeling, histone modifications and RNAs.
Collapse
Affiliation(s)
- Filippo Giacone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angela Alamo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
9
|
Paoli D, Pallotti F, Lenzi A, Lombardo F. Fatherhood and Sperm DNA Damage in Testicular Cancer Patients. Front Endocrinol (Lausanne) 2018; 9:506. [PMID: 30271379 PMCID: PMC6146098 DOI: 10.3389/fendo.2018.00506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 01/28/2023] Open
Abstract
Testicular cancer (TC) is one of the most treatable of all malignancies and the management of the quality of life of these patients is increasingly important, especially with regard to their sexuality and fertility. Survivors must overcome anxiety and fears about reduced fertility and possible pregnancy-related risks as well as health effects in offspring. There is thus a growing awareness of the need for reproductive counseling of cancer survivors. Studies found a high level of sperm DNA damage in TC patients in comparison with healthy, fertile controls, but no significant difference between these patients and infertile patients. Sperm DNA alterations due to cancer treatment persist from 2 to 5 years after the end of the treatment and may be influenced by both the type of therapy and the stage of the disease. Population studies reported a slightly reduced overall fertility of TC survivors and a more frequent use of ART than the general population, with a success rate of around 50%. Paternity after a diagnosis of cancer is an important issue and reproductive potential is becoming a major quality of life factor. Sperm chromatin instability associated with genome instability is the most important reproductive side effect related to the malignancy or its treatment. Studies investigating the magnitude of this damage could have a considerable translational importance in the management of cancer patients, as they could identify the time needed for the germ cell line to repair nuclear damage and thus produce gametes with a reduced risk for the offspring.
Collapse
|
10
|
Jiang W, Zhu P, Zhang J, Wu Q, Li W, Liu S, Ni M, Yu M, Cao J, Li Y, Cui Y, Xia X. Polymorphisms of protamine genes contribute to male infertility susceptibility in the Chinese Han population. Oncotarget 2017; 8:61637-61645. [PMID: 28977892 PMCID: PMC5617452 DOI: 10.18632/oncotarget.18660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Protamine (PRM) plays important roles in the packaging of DNA within the sperm nucleus. To investigate the role of PRM1/2 and transition protein 1 (TNP1) polymorphisms in male infertility, 636 infertile men and 442 healthy individuals were recruited into this case-controlled study of the Chinese Han population, using MassARRAY technology to analyze genotypes. Our analysis showed that there were no significant differences between controls and infertile cases among the five single nucleotide polymorphisms identified in PRM1, PRM2 and TNP1 [rs737008 (G/A), rs2301365 (C/A), rs2070923 (C/A), rs1646022 (C/G) and rs62180545 (A/G)]. However, we found that the PRM1 and PRM2 haplotypes GCTGC, TCGCA and TCGCC exhibited significant protective effects against male infertility compared to fertile men, while TCGGA, GCTCC and TCGGC represented significant risk factors for spermatogenesis. Our data showed that rs737008 and rs2301365 in PRM1, and rs1646022 in PRM2, were significantly associated with male infertility and that gene–gene interaction played a role in male infertility. A linkage disequilibrium plot for the five SNPs showed that rs737008 was strongly linked with both rs2301365 and rs2070923. These findings are likely to help improve our understanding of the etiology of male infertility. Further studies should include a larger number of genes and SNPs, particularly growing critical genes; such studies will help us to unravel the effect of individual genetic factors upon male infertility.
Collapse
Affiliation(s)
- Weijun Jiang
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Peiran Zhu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Jing Zhang
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Qiuyue Wu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Weiwei Li
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Shuaimei Liu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Mengxia Ni
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Maomao Yu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Jin Cao
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Yi Li
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Yingxia Cui
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Xinyi Xia
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| |
Collapse
|
11
|
Polymorphisms in Protamine 1 and Protamine 2 predict the risk of male infertility: a meta-analysis. Sci Rep 2015; 5:15300. [PMID: 26472740 PMCID: PMC4607923 DOI: 10.1038/srep15300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
Several studies have investigated the association between polymorphisms in protamine 1 and 2 genes and male infertility risk, with inconsistent results to date. This meta-analysis based on the 13 published case-control studies, including 7350 cases and 6167 controls, was performed to further establish the potential association between the 6 common single nucleotide polymorphisms (rs35576928, rs737008, rs35262993, rs2301365, rs1646022, rs2070923) in protamines 1 and 2 and male infertility. The -190C > A (rs2301365) polymorphism was identified as a risk factor for male infertility under all models. Interestingly, rs1646022 and rs737008 polymorphisms exerted protective effects against male sterility in Asian and population-based under some models. No associations between the remaining SNPs and male sterility were observed.
Collapse
|
12
|
Lombardo F, Toselli L, Grassetti D, Paoli D, Masciandaro P, Valentini F, Lenzi A, Gandini L. Hormone and genetic study in male to female transsexual patients. J Endocrinol Invest 2013; 36:550-7. [PMID: 23324476 DOI: 10.3275/8813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Data of the literature demonstrated controversial results of a correlation between transsexualism and genetic mutations. AIM To evaluate the hormone and gene profile of male-female (M-F) transsexual. SUBJECTS AND METHODS Thirty M-F transsexuals aged 24-39. Seventeen had already undergone sex reassignment surgery, 13 were awaiting. All subjects had been undergoing estrogen and antiandrogen therapy. We studied hormones of the hypothalamus- pituitary-testicular axis, thyroid and adrenal profile, GH basal and after GHRH stimulation, IGF-I. The gene study analyzed SRY, AR, DAX1, SOX9, AZF region of the Y chromosome. RESULTS Pre-surgery subjects had elevated PRL, reduced testosterone and gonadotropins. Post-surgery subjects showed reduced androgens, a marked increase in LH and FSH and normal PRL. Cortisol and ACTH were similar to reference values in pre- and post-surgery patients. There was a marked increase in the baseline and post-stimulation GH values in 6 of the 13 pre-surgery patients, peaking at T15. IGF-I was similar to reference values in both groups except for one post-surgery patient, whose level was below the normal range. There were no polymorphisms in the amplified gene region for SOX9, and a single nucleotide synonimous polymorphism for DAX1. No statistically significant differences were seen in the mean of CAG repeats between controls and transsexual subjects. SRY gene was present in all subjects. Qualitative analysis of the AZFa, AZFb, and AZFc regions did not reveal any microdeletions in any subject. CONCLUSIONS This gender disorder does not seem to be associated with any molecular mutations of some of the main genes involved in sexual differentiation.
Collapse
Affiliation(s)
- F Lombardo
- Department of Experimental Medicine, Policlinico "Umberto I", University of Rome "La Sapienza, Viale del Policlinico 155, 00161, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|