1
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
2
|
Yu Y, Xiang L, Zhang X, Zhang L, Ni Z, Zhu Z, Liu Y, Lan J, Liu W, Xie G, Feng G, Tang BZ. Pure Organic AIE Nanoscintillator for X-ray Mediated Type I and Type II Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302395. [PMID: 37424049 PMCID: PMC10502865 DOI: 10.1002/advs.202302395] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
X-ray induced photodynamic therapy (X-PDT) circumvents the poor penetration depth of conventional PDT with minimal radio-resistance generation. However, conventional X-PDT typically requires inorganic scintillators as energy transducers to excite neighboring photosensitizers (PSs) to generate reactive oxygen species (ROS). Herein, a pure organic aggregation-induced emission (AIE) nanoscintillator (TBDCR NPs) that can massively generate both type I and type II ROS under direct X-ray irradiation is reported for hypoxia-tolerant X-PDT. Heteroatoms are introduced to enhance X-ray harvesting and ROS generation ability, and AIE-active TBDCR exhibits aggregation-enhanced ROS especially less oxygen-dependent hydroxyl radical (HO•- , type I) generation ability. TBDCR NPs with a distinctive PEG crystalline shell to provide a rigid intraparticle microenvironment show further enhanced ROS generation. Intriguingly, TBDCR NPs show bright near-infrared fluorescence and massive singlet oxygen and HO•- generation under direct X-ray irradiation, which demonstrate excellent antitumor X-PDT performance both in vitro and in vivo. To the best of knowledge, this is the first pure organic PS capable of generating both 1 O2 and radicals (HO•- ) in response to direct X-ray irradiation, which shall provide new insights for designing organic scintillators with excellent X-ray harvesting and predominant free radical generation for efficient X-PDT.
Collapse
Affiliation(s)
- Yuewen Yu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Lisha Xiang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyDepartment of Radiation OncologyCancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyDepartment of Radiation OncologyCancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Le Zhang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Zhiqiang Ni
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Zhong‐Hong Zhu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Yubo Liu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Jie Lan
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyDepartment of Radiation OncologyCancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Liu
- Analysis and Testing Research CenterEast China University of TechnologyNanchang330013China
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangsha410082China
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer CentreRadiation Treatment CentreSouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
3
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Lei C, Li S, Fan Y, Hua L, Pan Q, Li Y, Long Z, Yang R. LncRNA DUXAP8 induces breast cancer radioresistance by modulating the PI3K/AKT/mTOR pathway and the EZH2-E-cadherin/RHOB pathway. Cancer Biol Ther 2022; 23:1-13. [PMID: 36329030 PMCID: PMC9635553 DOI: 10.1080/15384047.2022.2132008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Radiation resistance poses a major clinical challenge in breast cancer (BC) treatment, but little is known about how long noncoding RNA (lncRNA) may regulate this phenomenon. Here, we reported that DUXAP8 was highly expressed in radioresistant BC tissues, and high expression of DUXAP8 was associated with poor prognosis. We found that the overexpression of DUXAP8 promoted radioresistance, while the knockdown of DUXAP8 expression increased radiosensitivity. Further studies revealed that DUXAP8 enhanced the radioresistance of BC cells by activating the PI3K/AKT/mTOR pathway and by repressing the expression of E-cadherin and RHOB through interaction with EZH2. Together, our work demonstrates that the overexpression of DUXAP8 promotes the resistance of BC cells toward radiation through modulating PI3K/AKT/mTOR pathway and EZH2-E-cadherin/RHOB axis. Targeting DUXAP8 may serve as a potential strategy to overcome radioresistance in BC treatment.
Collapse
Affiliation(s)
- Changjiang Lei
- Department of General Surgery, the Fifth Hospital of Wuhan, Wuhan, China
| | - Shaoting Li
- Department of Pharmacy, the Fifth Hospital of Wuhan, Wuhan, China
| | - Ying Fan
- Department of Cardiology, the Fifth Hospital of Wuhan, Wuhan, China
| | - Li Hua
- Department of Medical Examination Center, the Fifth Hospital of Wuhan, Wuhan, China
| | - Qingyun Pan
- Department of Blood Endocrinology, the Fifth Hospital of Wuhan, Wuhan, China
| | - Yuan Li
- Department of General Surgery, the Fifth Hospital of Wuhan, Wuhan, China
| | - Zhixiong Long
- Department of Oncology, the Fifth Hospital of Wuhan, Wuhan, China
| | - Rui Yang
- Department of General Surgery, the Fifth Hospital of Wuhan, Wuhan, China,CONTACT Rui Yang Department of General Surgery, the Fifth Hospital of Wuhan, NO. 122, Xianzheng Street, Hanyang District, Wuhan, Hubei430050, China
| |
Collapse
|
5
|
Kolářová I, Melichar B, Vaňásek J, Sirák I, Petera J, Horáčková K, Pohanková D, Šinkorová Z, Hošek O, Vošmik M. Special Techniques of Adjuvant Breast Carcinoma Radiotherapy. Cancers (Basel) 2022; 15:298. [PMID: 36612294 PMCID: PMC9818986 DOI: 10.3390/cancers15010298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Modern radiotherapy techniques are designed to permit reduced irradiation of healthy tissue, resulting in a diminished risk of adverse effects and shortened recovery times. Several randomized studies have demonstrated the benefits of increased dosage to the tumor bed area in combination with whole breast irradiation (WBI). Conventional WBI treatment following breast-conserving procedures, which required 5-7 weeks of daily treatments, has been reduced to 3-4 weeks when using hyperfractionated regimens. The dosage administration improves local control, albeit with poorer cosmesis. The method of accelerated partial breast irradiation (APBI) shortens the treatment period whilst reducing the irradiated volume. APBI can be delivered using intraoperative radiation, brachytherapy, or external beam radiotherapy. Currently available data support the use of external beam partial breast irradiation in selected patients. Modern radiotherapy techniques make it possible to achieve favorable cosmesis in most patients undergoing immediate breast reconstruction surgery, and studies confirm that current methods of external beam radiation allow an acceptable coverage of target volumes both in the reconstructed breast and in the regional lymphatic nodes.
Collapse
Affiliation(s)
- Iveta Kolářová
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
- Faculty of Health Studies, Pardubice University, 532 10 Pardubice, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Jaroslav Vaňásek
- Faculty of Health Studies, Pardubice University, 532 10 Pardubice, Czech Republic
- Oncology Centre, Multiscan, 532 03 Pardubice, Czech Republic
| | - Igor Sirák
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Jiří Petera
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Kateřina Horáčková
- Faculty of Health Studies, Pardubice University, 532 10 Pardubice, Czech Republic
| | - Denisa Pohanková
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Oldřich Hošek
- Faculty of Health Studies, Pardubice University, 532 10 Pardubice, Czech Republic
| | - Milan Vošmik
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Mäurer M, Schott D, Pizon M, Drozdz S, Wendt T, Wittig A, Pachmann K. Increased Circulating Epithelial Tumor Cells (CETC/CTC) over the Course of Adjuvant Radiotherapy Is a Predictor of Less Favorable Outcome in Patients with Early-Stage Breast Cancer. Curr Oncol 2022; 30:261-273. [PMID: 36661670 PMCID: PMC9857667 DOI: 10.3390/curroncol30010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Adjuvant radiotherapy (RT) is an integral component of a multidisciplinary treatment strategy for early-stage breast cancer. It significantly reduces the incidence of loco-regional recurrence but also of distant events. Distant events are due to tumor cells disseminated from the primary tumor into lymphatic fluid or blood, circulating epithelial tumor cells (CETC/CTC), which can reach distant tissues and regrow into metastases. The purpose of this study is to determine changes in the number of CETC/CTC in the course of adjuvant RT, and to evaluate whether they are correlated to local recurrence and distant metastases in breast cancer patients. METHODS Blood from 165 patients irradiated between 2002 and 2012 was analyzed 0-6 weeks prior to and 0-6 weeks after RT using the maintrac® method, and patients were followed over a median period of 8.97 (1.16-19.09) years. RESULTS Patients with an increase in CETC/CTC numbers over the course of adjuvant RT had a significantly worse disease-free survival (p = 0.004) than patients with stable or decreasing CETC/CTC numbers. CETC/CTC behavior was the most important factor in predicting subsequent relapse-free survival. In particular, patients who had received neoadjuvant chemotherapy were disproportionately more likely to develop metastases when cell counts increased over the course of RT (p = 0.003; hazard ratio 4.886). CONCLUSIONS Using the maintrac® method, CETC/CTC were detected in almost all breast cancer patients after surgery. The increase in CETC/CTC numbers over the course of RT represents a potential predictive biomarker to judge relative risk/benefit in patients with early breast cancer. The results of this study highlight the need for prospective clinical trials on CETC/CTC status as a predictive criterion and for individualization of treatment. CLINICAL TRIAL REGISTRATION The trial is registered (2 May 2019) at trials.gov under NCT03935802.
Collapse
Affiliation(s)
- Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
- Clinician Scientist Program OrganAge, Interdisciplinary Center for Clinical Research (IZKF), Jena University Hospital, 07747 Jena, Germany
| | - Dorothea Schott
- Transfusionsmedizinisches Zentrum Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany
| | - Monika Pizon
- Transfusionsmedizinisches Zentrum Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany
| | - Sonia Drozdz
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
| | - Thomas Wendt
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
| | - Katharina Pachmann
- Transfusionsmedizinisches Zentrum Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany
| |
Collapse
|
7
|
Zhao L, Yin XX, Qin J, Wang W, He XF. Association Between the TP53 Polymorphisms and Breast Cancer Risk: An Updated Meta-Analysis. Front Genet 2022; 13:807466. [PMID: 35571038 PMCID: PMC9091657 DOI: 10.3389/fgene.2022.807466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The relationship of TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms with breast cancer (BC) risk has been analyzed in seventeen published meta-analyses. However, the credibility of statistically significant associations was ignored and many new studies have been reported on these themes. Objectives: To explore whether TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms are associated with BC risk and the clinical phenomena. Methods: To comprehensively search the data (through October 25, 2021), we provided a clear search strategy and reviewed the references of published meta-analyses. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were used. Results: The current meta-analysis had a larger sample size than the previous ones: 99 studies with 43,951 BC and 48,479 controls for TP53 codon 72 polymorphism, 35 studies with 8,705 BC and 7,516 controls for IVS3 16 bp polymorphism, and 25 studies with 12,222 BC and 12,895 controls for IVS6+62A > G polymorphism. Five gene models were used to explore the association between the three polymorphisms and BC risk, and partial positive results were similar to published meta-analyses results. However, a large number of significant results were considered to be unreliable after correcting with Bayesian false-discovery probability (BFDP), except for the association between TP53 IVS3 16 bp polymorphism and BC risk in overall analysis (GG vs. CC: BFDP = 0.738), matched studies (GG vs. CC: BFDP = 0.173; GG vs. CC + CG: BFDP = 0.447), and tumor size below 2 cm (GG vs. CC: BFDP = 0.088; GG + CG vs. CC: BFDP = 0.730; GG vs. CC + CG: BFDP = 0.311). These unreliable results were confirmed again without new solid results emerging in further sensitivity analysis (only studies in compliance with the quality assessment standard). Conclusion: After considering the quality of the included studies and the reliability of the results, the present meta-analysis suggested that TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms were not significantly associated with the BC risk. Those results which prove that these three polymorphisms increase BC risk are more likely to be false-positive results due to various confounding factors.
Collapse
Affiliation(s)
- Lin Zhao
- Teaching Reform Class of 2018 of the First Clinical College, Changzhi Medical College, Changzhi, China
| | - Xiang-Xiongyi Yin
- Fifth Class of 2018 of the Second Clinical College, Changzhi Medical College, Changzhi, China
| | - Jun Qin
- General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wei Wang
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing, China
- *Correspondence: Wei Wang, ; Xiao-Feng He,
| | - Xiao-Feng He
- Institute of Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Wang, ; Xiao-Feng He,
| |
Collapse
|
8
|
Xu HG, Reshetnikov V, Wondrak M, Eckhardt L, Kunz-Schughart LA, Janko C, Tietze R, Alexiou C, Borchardt H, Aigner A, Gong W, Schmitt M, Sellner L, Daum S, Özkan HG, Mokhir A. Intracellular Amplifiers of Reactive Oxygen Species Affecting Mitochondria as Radiosensitizers. Cancers (Basel) 2021; 14:208. [PMID: 35008371 PMCID: PMC8750417 DOI: 10.3390/cancers14010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) efficacy can be improved by using radiosensitizers, i.e., drugs enhancing the effect of ionizing radiation (IR). One of the side effects of RT includes damage of normal tissue in close proximity to the treated tumor. This problem can be solved by applying cancer specific radiosensitizers. N-Alkylaminoferrocene-based (NAAF) prodrugs produce reactive oxygen species (ROS) in cancer cells, but not in normal cells. Therefore, they can potentially act as cancer specific radiosensitizers. However, early NAAF prodrugs did not exhibit this property. Since functional mitochondria are important for RT resistance, we assumed that NAAF prodrugs affecting mitochondria in parallel with increasing intracellular ROS can potentially exhibit synergy with RT. We applied sequential Cu+-catalyzed alkyne-azide cycloadditions (CuAAC) to obtain a series of NAAF derivatives with the goal of improving anticancer efficacies over already existing compounds. One of the obtained prodrugs (2c) exhibited high anticancer activity with IC50 values in the range of 5-7.1 µM in human ovarian carcinoma, Burkitt's lymphoma, pancreatic carcinoma and T-cell leukemia cells retained moderate water solubility and showed cancer specificity. 2c strongly affects mitochondria of cancer cells, leading to the amplification of mitochondrial and total ROS production and thus causing cell death via necrosis and apoptosis. We observed that 2c acts as a radiosensitizer in human head and neck squamous carcinoma cells. This is the first demonstration of a synergy between the radiotherapy and NAAF-based ROS amplifiers.
Collapse
Affiliation(s)
- Hong-Gui Xu
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| | - Viktor Reshetnikov
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| | - Marit Wondrak
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.W.); (L.E.); (L.A.K.-S.)
| | - Lisa Eckhardt
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.W.); (L.E.); (L.A.K.-S.)
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.W.); (L.E.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.J.); (R.T.); (C.A.)
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.J.); (R.T.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.J.); (R.T.); (C.A.)
| | - Hannes Borchardt
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany; (H.B.); (A.A.)
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany; (H.B.); (A.A.)
| | - Wenjie Gong
- Department of Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (W.G.); (M.S.); (L.S.)
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Michael Schmitt
- Department of Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (W.G.); (M.S.); (L.S.)
| | - Leopold Sellner
- Department of Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (W.G.); (M.S.); (L.S.)
- Takeda Pharmaceuticals, Cambridge, MA 02139, USA
| | - Steffen Daum
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
- Merck, Im Laternenacker 5, 8200 Schaffhausen, Switzerland
| | - Hülya Gizem Özkan
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| | - Andriy Mokhir
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| |
Collapse
|
9
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Gorsky SS, Rosenthal-Green A, Arazi-Kleinman T, Papa M, Heller L. A novel approach to breast-conserving surgery in patients with silicone breast implants and newly diagnosed breast cancer. EUROPEAN JOURNAL OF PLASTIC SURGERY 2021. [DOI: 10.1007/s00238-021-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Chen H, Luo M, Wang X, Liang T, Huang C, Huang C, Wei L. Inhibition of PAD4 enhances radiosensitivity and inhibits aggressive phenotypes of nasopharyngeal carcinoma cells. Cell Mol Biol Lett 2021; 26:9. [PMID: 33726680 PMCID: PMC7962337 DOI: 10.1186/s11658-021-00251-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a tumor deriving from nasopharyngeal epithelium. Peptidyl-arginine deiminase 4 (PAD4) is a vital mediator of histone citrullination and plays an essential role in regulating disease process. Radiotherapy is an essential method to treat NPC. In this research, we explored the effect of PAD4 on NPC radiosensitivity. METHODS We enrolled 50 NPC patients, established mice xenograft model, and purchased cell lines for this study. Statistical analysis and a series of experiments including RT-qPCR, clonogenic survival, EdU, Transwell, and wound healing assays were done. RESULTS Our data manifested that PAD4 (mRNA and protein) presented a high expression in NPC tissues and cells. GSK484, an inhibitor of PAD4, could inhibit activity of PAD4 in NPC cell lines. PAD4 overexpression promoted the radioresistance, survival, migration, and invasion of NPC cells, whereas treatment of GSK484 exerted inhibitory effects on radioresistance and aggressive phenotype of NPC cells. Additionally, GSK484 could attenuate the effect of PAD4 of NPC cell progression. More importantly, we found that GSK484 significantly inhibited tumor size, tumor weight and tumor volume in mice following irradiation. CONCLUSIONS PAD4 inhibitor GSK484 attenuated the radioresistance and cellular progression in NPC.
Collapse
Affiliation(s)
- Hao Chen
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Luo
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiangping Wang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ting Liang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoyuan Huang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Changjie Huang
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Lining Wei
- Department of Oncology, The Second Nanning People's Hospital, No.13 Dancun Road, Jiangnan District, Nanning, 530031, Guangxi, China.
| |
Collapse
|
12
|
The effect of postmastectomy radiotherapy in node-positive triple-negative breast cancer. BMC Cancer 2020; 20:1146. [PMID: 33238939 PMCID: PMC7687757 DOI: 10.1186/s12885-020-07639-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background The value of postmastectomy radiotherapy (PMRT) for pathological node-positive triple-negative breast cancers (TNBC) remains debatable. The aim of this population-based retrospective study was to evaluate the effect of PMRT on survival outcomes in this population. Methods Patients diagnosed with stage T1-4N1-N3M0 TNBC between 2010 and 2014 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. We used univariate and multivariate Cox regression hazards method to determine the independent prognostic factors associated with 3-year breast cancer-specific survival (BCSS). The effect of PMRT on 3-year BCSS was analyzed after stratification by pathological staging of groups. Results Of the 4398 patients included in this study, 2649 (60.2%) received PMRT. Younger age, black ethnicity, and advanced tumor (T) and nodal (N) stage were the independent predictors associated with PMRT receipt (all P < 0.05). Patients who received PMRT showed better 3-year BCSS (OR = 0.720, 95% CI = 0.642–0.808, P < 0.001) than those that did not. The effect of PMRT on 3-year BCSS was analyzed after stratification by pathological staging of groups. The results showed that PMRT was associated with better 3-year BCSS in patients with stage T3–4N1 (P = 0.042), T1-4N2 (P < 0.001), and T1-4N3 (P < 0.001), while comparable 3-year BCSS was found between the PMRT and non-PMRT cohorts with T1–2N1 disease (P = 0.191). Conclusions Radiotherapy achieved better 3-year BCSS in TNBC patients with stage T3–4N1 and T1-4N2–3 disease. However, no survival benefit was found with the addition of PMRT in patients with T1–2N1 TNBC.
Collapse
|
13
|
Taussky D, Delouya G. Is pelvic prophylactic radiotherapy in prostate cancer just right? Transl Androl Urol 2020; 9:2296-2298. [PMID: 33209698 PMCID: PMC7658169 DOI: 10.21037/tau-20-881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Daniel Taussky
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal (CHUM), Canada
| | - Guila Delouya
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal (CHUM), Canada
| |
Collapse
|
14
|
Recent advances in novel drug delivery systems and approaches for management of breast cancer: A comprehensive review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Wang B, Zheng J, Li R, Tian Y, Lin J, Liang Y, Sun Q, Xu A, Zheng R, Liu M, Ji A, Bu J, Yuan Y. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells. Cell Death Dis 2019; 10:764. [PMID: 31601781 PMCID: PMC6787210 DOI: 10.1038/s41419-019-1996-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023]
Abstract
Radiotherapy is essential to treat breast cancer and microRNA (miRNA) miR-200c is considered as a radiosensitizer of breast cancer. However, the molecular mechanisms by which miR-200c regulates radiosensitivity remain largely unknown. In the present study, we showed that induction of miR-200c led to widespread alteration in long noncoding RNA (lncRNA) expression in breast cancer cells. We identified lncRNA LINC02582 as a target of miR-200c. Inhibition of LINC02582 expression increased radiosensitvity, while overexpression of LINC02582 promoted radioresistance. Mechanistically, LINC02582 interacts with deubiquitinating enzyme ubiquitin specific peptidase 7 (USP7) to deubiquitinate and stabilize checkpoint kinase 1 (CHK1), a critical effector kinase in DNA damage response, thus promoting radioresistance. Furthermore, we detected an inverse correlation between the expression of miR-200c vs. LINC02582 and CHK1 in breast cancer samples. These findings identified LINC02582 as a downstream target of miR-200c linking miR-200c to CHK1, in which miR-200c increases radiosensitivity by downregulation of CHK1.
Collapse
Affiliation(s)
- Baiyao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jieling Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yingying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mengzhong Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Aimin Ji
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Junguo Bu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. .,Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
16
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
17
|
Miao W, Fan M, Huang M, Li JJ, Wang Y. Targeted Profiling of Heat Shock Proteome in Radioresistant Breast Cancer Cells. Chem Res Toxicol 2019; 32:326-332. [PMID: 30596229 DOI: 10.1021/acs.chemrestox.8b00330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in women. Radioresistance remains one of the most critical barriers in radiation therapy for breast cancer. In this study, we employed a parallel-reaction monitoring (PRM)-based targeted proteomic method to examine the reprogramming of the heat shock proteome during the development of radioresistance in breast cancer. In particular, we investigated the differential expression of heat shock proteins (HSPs) in two pairs of matched parental/radioresistant breast cancer cell lines. We were able to quantify 43 and 42 HSPs in the MCF-7 and MDA-MB-231 pairs of cell lines, respectively. By analyzing the commonly altered proteins, we found that several members of the HSP70 and HSP40 subfamilies of HSPs exhibited substantially altered expression upon development of radioresistance. Moreover, the expression of HSPB8 is markedly elevated in the radioresistant lines relative to the parental MCF-7 and MDA-MB-231 cells. Together, our PRM-based targeted proteomics method revealed the reprogramming of the heat shock proteome during the development of radioresistance in breast cancer cells and offered potential targets for sensitizing breast cancer cells toward radiation therapy.
Collapse
|
18
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:87. [PMID: 29688867 PMCID: PMC5914062 DOI: 10.1186/s13046-018-0758-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably changes, which may result in the development of resistance to radiation. MAIN BODY Here, we discussed the relationships between radioresistance and mitochondrial and glucose metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways. SHORT CONCLUSION The aim of this review was to provide a theoretical basis and relevant references, which may lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Jabbari N, Zarei L, Esmaeili Govarchin Galeh H, Mansori Motlagh B. Assessment of synergistic effect of combining hyperthermia with irradiation and calcium carbonate nanoparticles on proliferation of human breast adenocarcinoma cell line (MCF-7 cells). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:364-372. [PMID: 29616844 DOI: 10.1080/21691401.2018.1457537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study was undertaken to evaluate the synergistic effect of combining hyperthermia with irradiation and calcium carbonate nanoparticles (CC NPs) on proliferation of MCF-7 cells. The cells were randomly allocated to 19 groups: one negative control, three positive controls and 15 treatment groups. MCF-7 cells were treated with three concentrations of CC NPs (50, 100 and 150 μg/mL), gamma radiation (200 cGy), hyperthermia (41 °C for 1 h) and three concentrations of doxorubicin (200, 400 and 800 nm) and incubated at 37 °C for 24 h. Then the cell viability, the percentage of apoptosis and the levels of caspase-3, -8 and -9 proteins were measured. The results indicated that the combination group (150 µg/mL CC NPs + thermoradiotherapy) had a significant (p < .001) decrease in cell viability (48.65 ± 4.8%) and a significant (p < .001) increase in apoptosis percentage (45 ± 1.63%) of MCF-7 cells, as compared with the negative control and most of the other treatment groups. Moreover, a significant (p < .05) increase was observed in the activity of caspase-3 and caspase-9. Our findings revealed that CC NPs in combination with irradiation and hyperthermia could significantly reduce the cell viability and enhance the apoptosis of the MCF-7 breast cancer cells, the same as doxorubicin anti-cancer drug.
Collapse
Affiliation(s)
- Nasrollah Jabbari
- a Solid Tumor Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Leila Zarei
- a Solid Tumor Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | | | | |
Collapse
|
20
|
Wang H, Kong L, Zhang C, Chen D, Zhu H, Yu J. Should all breast cancer patients with four or more positive lymph nodes who underwent modified radical mastectomy be treated with postoperative radiotherapy? A population-based study. Oncotarget 2018; 7:75492-75502. [PMID: 27690343 PMCID: PMC5342755 DOI: 10.18632/oncotarget.12260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/12/2016] [Indexed: 02/05/2023] Open
Abstract
Postmastectomy radiotherapy (PMRT) has become a standard adjuvant postoperative therapy for breast cancer patients with four or more positive lymph nodes. However, some studies have demonstrated that some subgroups of the breast cancer patients with four or more positive lymph nodes did not benefit substantially from PMRT. Therefore, it is of great necessity to identify whether all breast cancer patients with four or more positive lymph nodes who underwent modified radical mastectomy be treated with PMRT. In our study, we first established a prognostic model using the Surveillance Epidemiology and End Results (SEER) database between 1998 and 2001. Univariate and multivariate Cox models were used to assess the prognostic factors, and five risk factors individually associated with prognosis including AJCC stage, AJCC T, Grade, ER status, PR status. Prognostic index of PMRT were defined as the number of risk factor (NRF). The NRF scores correlated well with overall survival of PMRT even if the patients were in the sub-poor prognosis group. Then the prognostic model was validated using the SEER database between 2006 and 2009, and the same results were obtained. In conclusion, different from others studies, our study demonstrated that all patients with four or more positive lymph nodes after modified radical mastectomy need to be treated with PMRT ever if the patients belonged to AJCC T4 in a poor prognosis group.
Collapse
Affiliation(s)
- Haiyong Wang
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 250117, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 250117, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 250117, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 250117, China
| |
Collapse
|
21
|
Bertozzi N, Pesce M, Santi P, Raposio E. One-Stage Immediate Breast Reconstruction: A Concise Review. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6486859. [PMID: 29098159 PMCID: PMC5643043 DOI: 10.1155/2017/6486859] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND One-stage direct-to-implant immediate breast reconstruction (IBR) is performed simultaneously with breast cancer resection. We explored indications, techniques, and outcomes of IBR to determine its feasibility, safety, and effectiveness. MATERIAL AND METHODS We reviewed the available literature on one-stage direct-to-implant IBR, with or without acellular dermal matrix (ADM), synthetic mesh, or autologous fat grafting. We analyzed the indications, preoperative work-up, surgical technique, postoperative care, outcomes, and complications. RESULTS IBR is indicated for small-to-medium nonptotic breasts and contraindicated in patients who require or have undergone radiotherapy, due to unacceptably high complications rates. Only patients with thick, well-vascularized mastectomy flaps are IBR candidates. Expandable implants should be used for ptotic breasts, while anatomical shaped implants should be used to reconstruct small-to-medium nonptotic breasts. ADMs can be used to cover the implant during IBR and avoid muscle elevation, thereby minimizing postoperative pain. Flap necrosis, reoperation, and implant loss are more common with IBR than conventional two-staged reconstruction, but IBR has advantages such as lack of secondary surgery, faster recovery, and better quality of life. CONCLUSIONS IBR has good outcomes and patient-satisfaction rates. With ADM use, a shift from conventional reconstruction to IBR has occurred. Drawbacks of IBR can be overcome by careful patient selection.
Collapse
Affiliation(s)
- Nicolò Bertozzi
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- Cutaneous, Mini-Invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Marianna Pesce
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Plastic Surgery Department, IRCCS San Martino University Hospital, National Institute for Cancer Research Genoa, Genoa, Italy
| | - Pierluigi Santi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Plastic Surgery Department, IRCCS San Martino University Hospital, National Institute for Cancer Research Genoa, Genoa, Italy
| | - Edoardo Raposio
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- Cutaneous, Mini-Invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| |
Collapse
|
22
|
Lu Y, Huang H, Yang H, Chen D. Randomized controlled trial of late-course concurrent versus sequential chemoradiotherapy after mastectomy and axillary surgery in locally advanced breast cancer. Medicine (Baltimore) 2017; 96:e8252. [PMID: 29019894 PMCID: PMC5662317 DOI: 10.1097/md.0000000000008252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Concurrent chemoradiotherapy could increase the local control rate in patients with high recurrence risk after breast-conserving surgery, but the effect of concurrent chemoradiotherapy after mastectomy and axillary dissection is not clear. The aim of the study was to compare the effects of late-course concurrent chemoradiotherapy (CCRT) versus sequential therapy (SCRT) after mastectomy and axillary surgery in locally advanced breast cancer. METHODS This was a randomized controlled trial of 155 patients with stage pT3-4p N1-3c M0 or pAnyT pN2-3c M0 breast cancer undergoing 5-fluorouracil+epirubicin+cyclophosphamide followed by docetaxel (FEC-D) chemotherapy after mastectomy and axillary dissection. Patients were randomized to the CCRT group (intensity-modulated radiation therapy was performed concurrently with docetaxel) or to the SCRT group (radiotherapy after chemotherapy). Recurrences, adverse reactions, and short-term effects were observed. RESULTS All the patients completed the planned therapy. The median follow-up was 39 (range, 16-62) months. Compared with SCRT, the 3-year local-regional recurrence-free survival (LRFS) in the CCRT group was improved (81.8% vs 92.3%, P = .046). There was no significant difference in 3-year disease-free survival (DFS) and overall survival (OS). In the pT3-4 pN1-3 cM0 subgroup, the 3-year local recurrence-free survival and DFS were significantly improved in the CCRT group (69.4% vs 88.2%, P = .036; and 41.7% vs 72.6%, P = .049, respectively). No significant difference was observed adverse reactions between the 2 groups. CONCLUSION LRFS of patients with locally advanced invasive breast cancer after mastectomy and axillary surgery was better with CCRT than with SCRT and with similar profiles of adverse reactions. The DFS of patients staged pT3-4 pN1-3 cM0 was also improved.
Collapse
|
23
|
The appropriate number of ELNs for lymph node negative breast cancer patients underwent MRM: a population-based study. Oncotarget 2017; 8:65668-65676. [PMID: 29029462 PMCID: PMC5630362 DOI: 10.18632/oncotarget.20052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Whether number of examed lymph nodes (ELNs) would bring survival benefit for patients with negative lymph nodes after modified radical mastectomy (MRM) is uncertain. In our study, using the Surveillance Epidemiology and End Results (SEER) database between 2004 and 2009, we screened the appropriate patients with negative lymph nodes underwent MRM. The Cox proportional hazard analysis was used to determine the effect of number of ELNs on cancer specific survival (CSS). The results showed that the number of ELNs was not an independent prognostic factor on CSS (P = 0.940). Then the X-tile mode was used to determine the appropriate threshold for ELNs count. The results showed that 9 was the appropriate cut-off point. Next, the log-rank χ2 test was used to analyze the CSS based on different subgroup variables. The results showed that some subgroup variables including age < 50/ ≥ 50, grade I/III, AJCC T1/T2, ER positive/negative and PR positive/negative ,demonstrated significant CSS benefits among the patients with the number of ELNs ≤ 9 (all, P < 0.05). However, three subgroup variables including grade II, AJCC T3 and AJCC T4, the patients with the number of ELNs ≤ 9 did not bring significant CSS benefits (all, P > 0.1). In conclusion, our study demonstrated that the number of ELNs was not an independent prognostic factor on CSS, and 9 can be selected as the appropriate cut-off point of ELNs for patients with negative lymph nodes who underwent MRM.
Collapse
|
24
|
Park JE, Piao MJ, Kang KA, Shilnikova K, Hyun YJ, Oh SK, Jeong YJ, Chae S, Hyun JW. A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress. Biomol Ther (Seoul) 2017; 25:404-410. [PMID: 28554201 PMCID: PMC5499619 DOI: 10.4062/biomolther.2017.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an IC50 value of 6 μM JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.
Collapse
Affiliation(s)
- Jeong Eon Park
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Kristina Shilnikova
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Yu Jae Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Sei Kwan Oh
- Department of Neuroscience, College of Medicine, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yong Joo Jeong
- Department of Bio and Nanochemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sungwook Chae
- Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
25
|
An Oncoplastic Breast Augmentation Technique for Immediate Partial Breast Reconstruction following Breast Conservation. Plast Reconstr Surg 2017; 139:348e-357e. [DOI: 10.1097/prs.0000000000003005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Kim H, Park W, Yu JI, Choi DH, Huh SJ, Kim YJ, Lee ES, Lee KS, Kang HS, Park IH, Shin KH, Wee CW, Kim K, Park KR, Kim YB, Ahn SJ, Lee JH, Kim JH, Chun M, Lee HS, Kim JS, Cha J. Prognostic Impact of Elective Supraclavicular Nodal Irradiation for Patients with N1 Breast Cancer after Lumpectomy and Anthracycline Plus Taxane-Based Chemotherapy (KROG 1418): A Multicenter Case-Controlled Study. Cancer Res Treat 2017; 49:970-980. [PMID: 28052649 PMCID: PMC5654147 DOI: 10.4143/crt.2016.382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose This study was conducted to evaluate the impact of supraclavicular lymph node radiotherapy (SCNRT) on N1 breast cancer patients receiving post-lumpectomy whole-breast irradiation (WBI) and anthracycline plus taxane-based (AT) chemotherapy. Materials and Methods We performed a case-control analysis to compare the outcomes of WBI and WBI plus SCNRT (WBI+SCNRT). Among 1,147 patients with N1 breast cancer who received post-lumpectomy radiotherapy and AT-based chemotherapy in 12 hospitals, 542 were selected after propensity score matching. Patterns of failure, disease-free survival (DFS), distant metastasis-free survival (DMFS), and treatment-related toxicity were compared between groups. Results A total of 41 patients (7.6%) were found to have recurrence. Supraclavicular lymph node (SCN) failure was detected in three patients, two in WBI and one in WBI+SCNRT. All SCN failures were found simultaneously with distant metastasis. There was no significant difference in patterns of failure or survival between groups. The 5-year DFS and DMFS for patients with WBI and WBI+SCNRT were 94.4% versus 92.6% (p=0.50) and 95.1% versus 94.5% (p=0.99), respectively. The rates of lymphedema and radiation pneumonitis were significantly higher in the WBI+SCNRT than in the WBI. Conclusion We did not find a benefit of SCNRT for N1 breast cancer patients receiving AT-based chemotherapy.
Collapse
Affiliation(s)
- Haeyoung Kim
- Department of Radiation Oncology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Jae Huh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon-Joo Kim
- Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Eun Sook Lee
- Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Keun Seok Lee
- Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Han-Sung Kang
- Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - In Hae Park
- Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Kyung Hwan Shin
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyubo Kim
- Department of Radiation Oncology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kyung Ran Park
- Department of Radiation Oncology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Ja Ahn
- Department of Radiation Oncology, Chonnam National University Medical School, Gwangju, Korea
| | - Jong Hoon Lee
- Department of Radiation Oncology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Hee Kim
- Department of Radiation Oncology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Mison Chun
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Hyung-Sik Lee
- Department of Radiation Oncology, Dong-A University Hospital, Dong-A University School of Medicine, Busan, Korea
| | - Jung Soo Kim
- Department of Radiation Oncology, Chonbuk National University Medical School, Jeonju, Korea
| | - Jihye Cha
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Wonju, Korea
| |
Collapse
|
27
|
Wang H, Zhang C, Kong L, Zhu H, Yu J. Better survival in PMRT of female breast cancer patients with >5 negative lymph nodes: A population-based study. Medicine (Baltimore) 2017; 96:e5998. [PMID: 28121956 PMCID: PMC5287980 DOI: 10.1097/md.0000000000005998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many studies have confirmed the role of postmastectomy radiotherapy (PMRT) for breast cancer patients with at least 4 lymph nodes invasion in the postoperative therapy. Recently, the number of negative lymph nodes (NLNs) has been increasingly paid attention to and recognized as a prognostic indicator in different kinds of caners. Therefore, it is very necessary to study the association between the number of NLNs and the prognosis of PMRT in breast cancer patients. In our study, we used Surveillance, Epidemiology, and End Results (SEER) population-based data and identified 16,686 breast cancer patients to explore their correlation. The ROC curve and the log-rank χ test were applied to determine the appropriate cutoff point of the number of NLNs and 5 was selected as the cutoff point. Furthermore, the cutoff point 5 was validated as an independent prognostic factor affecting cancer-specific survival (CSS) and overall survival (OS) in breast cancer patients, as confirmed by both univariate and multivariate analysis (P < 0.001). In addition, subgroup analysis showed that the number of NLNs >5 can be a prognostic indicator in patients with PMRT according to different clinical variables (all, P < 0.001). Importantly, our results showed that PMRT obviously improved CSS and OS in patients regardless of the number of NLNs (P < 0.001). In conclusion, our study showed the number of NLNs is an independent prognostic factor for breast cancer patients with PMRT, and those who have higher number of NLNs have an increased CSS and OS.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong
| |
Collapse
|
28
|
Xu T, Jin Z, Yuan Y, Zheng H, Li C, Hou W, Guo Q, Hua B. Tat-Interacting Protein 30 (TIP30) Expression Serves as a New Biomarker for Tumor Prognosis: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0168408. [PMID: 28036326 PMCID: PMC5201241 DOI: 10.1371/journal.pone.0168408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tat-interacting protein 30 (TIP30) is a tumor suppressor protein that has been found to be expressed in a wide variety of tumor tissues. TIP30 is involved in the control of cell apoptosis, growth, metastasis, angiogenesis, DNA repair, and tumor cell metabolism. The methylation of the TIP30 promoter is also associated with tumor prognosis. To evaluate this topic further, we conducted a systematic meta-analysis to explore the clinicopathological and prognostic significance of TIP30 for tumor patients. METHODS We searched PubMed and EMBASE for eligible studies. We manually searched for printed journals and relevant textbooks. Subgroup analyses were performed based on the region, manuscript quality, methods of vasculogenic mimicry identification, pathology, and number of patients. RESULTS Fourteen studies with 1705 patients were included in this meta-analysis. A significant association was observed between high expression of TIP30 in patients with cancer with a good overall survival (hazard ratio = 0.53, 95% confidence interval: 0.41-0.69), and good recurrence-free survival or disease free survival (hazard ratio = 0.49, 95% confidence interval: 0.37-0.66). Lack of expression of TIP30 had an association with lymph node metastasis (odds ratio = 3.90, 95% confidence interval: 2.21-6.89) and high tumor node metastasis clinical stage (odds ratio = 2.10, 95% confidence interval: 1.68-2.62). The methylation of the TIP30 promoter did not significantly influence the overall survival (hazard ratio = 0.99, 95% confidence interval: 0.88-1.13) or disease free survival (hazard ratio = 0.62, 95% confidence interval: 0.19-2.02). CONCLUSIONS TIP30 expression is associated with a good prognosis in patients with tumors. Clinical studies with large samples are needed worldwide and standardized protocols should be adopted in the future to achieve a better understanding of the relationship between tumor prognosis and TIP30.
Collapse
Affiliation(s)
- Tao Xu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Haidian District, Beijing, China
| | - Zhichao Jin
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Yuan Yuan
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Conghuang Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
- * E-mail: (BH); (QG)
| | - Baojin Hua
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- * E-mail: (BH); (QG)
| |
Collapse
|
29
|
Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model. Sci Rep 2016; 6:28433. [PMID: 27329316 PMCID: PMC4916474 DOI: 10.1038/srep28433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Gene modified or cytokine activated mesenchymal stem cells (MSCs) have been used as a treatment in various types of cancer. Moreover, irradiation is usually applied as either a standard primary or adjuvant therapy. Here, we showed that the expression of TNF related apoptosis-inducing ligand (TRAIL) and Dickouf-3 (Dkk-3), the promising anticancer proteins, increased in murine adipose-derived mesenchymal stromal cells (AD-MSCs) following activation with TNF-α, resulting in the induction of apoptosis in cancer cells. Also, anticancer effects of TNF-α activated AD-MSCs were intensified with irradiation. In vivo results showed that TNF-α preactivated AD-MSCs combined with irradiation decreased tumor size and increased survival rate in tumor bearing mice. On the other hands, both TNF-α preactivated AD-MSCs with or without irradiation prevented metastasis in ling and liver, and increased apoptosis in tumor mass. Finally, flowcytometry assay demonstrated that naïve AD-MSCs combined with irradiation but not TNF-α activated MSCs with irradiation increased Treg population in lymph node and spleen. Altogether, obtained results suggest that TNF-α activated MSCs combined with irradiation therapy can serve as new strategy in breast cancer therapy.
Collapse
|
30
|
Yan Y, Li Z, Xu X, Chen C, Wei W, Fan M, Chen X, Li JJ, Wang Y, Huang J. All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:113. [PMID: 27036550 PMCID: PMC4815257 DOI: 10.1186/s12906-016-1088-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
Abstract
Background Radiotherapy is of critical importance in the treatment of breast cancer. However, not all patients derive therapeutic benefit and some breast cancers are resistant to the treatment, and are thus evidenced with prospective distant metastatic spread and local recurrence. In this study, we investigated the potential therapeutic effects of all-trans retinoic acid (ATRA) on radiation-resistant breast cancer cells and the associated invasiveness. Methods The MCF7/C6 cells with gained radiation resistance after a long term treatment with fractionated ionizing radiation were derived from human breast cancer MCF7 cell line, and are enriched with cells expressing putative breast cancer stem cell biomarker CD44+/CD24-/low/ALDH+. The enhanced invasiveness and the acquired resistances to chemotherapeutic treatments of MCF7/C6 cells were measured, and potential effects of all-trans retinoic acid (ATRA) on the induction of differentiation, invasion and migration, and on the sensitivities to chemotherapies in MCF7/C6 cells were investigated. Results MCF7/C6 cells are with enrichment of cancer stem-cell like cells with positive staining of CD44+/CD24-/low, OCT3/4 and NANOG. MCF7/C6 cells showed an increased tumoregensis potential and enhanced aggressiveness of invasion and migration. Treatment with ATRA induces the differentiation in MCF7/C6 cells, resulting in reduced invasiveness and migration, and increased sensitivity to Epirubincin treatment. Conclusion Our study suggests a potential clinic impact for ATRA as a chemotherapeutic agent for treatment of therapy-resistant breast cancer especially for the metastatic lesions. The study also provides a rationale for ATRA as a sensitizer of Epirubincin, a first-line treatment option for breast cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1088-y) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Number of negative lymph nodes can predict survival of breast cancer patients with four or more positive lymph nodes after postmastectomy radiotherapy. Radiat Oncol 2014; 9:284. [PMID: 25511525 PMCID: PMC4278342 DOI: 10.1186/s13014-014-0284-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/02/2014] [Indexed: 12/03/2022] Open
Abstract
Background This study was conducted to assess the prognostic value of the number of negative lymph nodes (NLNs) in breast cancer patients with four or more positive lymph nodes after postmastectomy radiotherapy (PMRT). Methods This retrospective study examined 605 breast cancer patients with four or more positive lymph nodes who underwent mastectomy. A total of 371 patients underwent PMRT. The prognostic value of the NLN count in patients with and without PMRT was analyzed. The log-rank test was used to compare survival curves, and Cox regression analysis was performed to identify prognostic factors. Results The median follow-up was 54 months, and the overall 8-year locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival (OS) were 79.8%, 50.0%, 46.8%, and 57.9%, respectively. The optimal cut-off points for NLN count was 12. Univariate analysis showed that the number of NLNs, lymph node ratio (LNR) and pN stage predicted the LRFS of non-PMRT patients (p < 0.05 for all). Multivariate analysis showed that the number of NLNs was an independent prognostic factor affecting the LRFS, patients with a higher number of NLNs had a better LRFS (hazard ratio = 0.132, 95% confidence interval = 0.032-0.547, p =0.005). LNR and pN stage had no effect on LRFS. PMRT improved the LRFS (p < 0.001), DMFS (p = 0.018), DFS (p = 0.001), and OS (p = 0.008) of patients with 12 or fewer NLNs, but it did not any effect on survival of patients with more than 12 NLNs. PMRT improved the regional lymph node recurrence-free survival (p < 0.001) but not the chest wall recurrence-free survival (p = 0.221) in patients with 12 or fewer NLNs. Conclusions The number of NLNs can predict the survival of breast cancer patients with four or more positive lymph nodes after PMRT. Electronic supplementary material The online version of this article (doi:10.1186/s13014-014-0284-5) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Wu SG, Huang SJ, Zhou J, Sun JY, Guo H, Li FY, Lin Q, Lin HX, He ZY. Dosimetric analysis of the brachial plexus among patients with breast cancer treated with post-mastectomy radiotherapy to the ipsilateral supraclavicular area: report of 3 cases of radiation-induced brachial plexus neuropathy. Radiat Oncol 2014; 9:292. [PMID: 25499205 PMCID: PMC4271326 DOI: 10.1186/s13014-014-0292-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
Abstract
Background The purpose of this study was to evaluate the brachial plexus (BP) dose of postmastectomy radiotherapy (PMRT) to the ipsilateral supraclavicular (ISCL) area, and report the characteristics of radiation-induced brachial plexus neuropathy (RIBPN). Methods The BP dose of 31 patients who received adjuvant PMRT to the ISCL area and chest wall using three-dimensional conformal radiotherapy (3DCRT) and the records of 3 patients with RIBPN were retrospectively analyzed based on the standardized Radiation Therapy Oncology Group-endorsed guidelines. The total dose to the ISCL area and chest wall was 50 Gy in 25 fractions. Results Patients with a higher number of removed lymph nodes (RLNs) had a higher risk of RIBPN (hazard ratio [HR]: 1.189, 95% confidence interval [CI]: 1.005-1.406, p = 0.044). In 31 patients treated with 3DCRT, the mean dose to the BP without irradiation to the ISCL area was significantly less than that with irradiation to the ISCL area (0.97 ± 0.20 vs. 44.39 ± 4.13 Gy, t = 136.75, p <0.001). In the 3DCRT plans with irradiation to the ISCL area and chest wall, the maximum dose to the BP was negatively correlated with age (r = −0.40, p = 0.026), body mass index (BMI) (r = −0.44, p = 0.014), and body weight (r = −0.45, p = 0.011). Symptoms of the 3 patients with RIBPN occurred 37–65 months after radiotherapy, and included progressive upper extremity numbness, pain, and motor disturbance. After treatment, 1 patient was stable, and the other 2 patients’ symptoms worsened. Conclusions The incidence of RIBPN was higher in patients with a higher number of RLNs after PMRT. The dose to the BP is primarily from irradiation of the ISCL area, and is higher in slim and young patients. Prevention should be the main focus of managing RIBPN, and the BP should be considered an organ-at-risk when designing a radiotherapy plan for the ISCL area.
Collapse
Affiliation(s)
- San-Gang Wu
- Department of Radiation Oncology, Xiamen Cancer Center, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China.
| | - Si-Juan Huang
- Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Juan Zhou
- Department of Obstetrics and Gynecology, Xiamen Cancer Center, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China.
| | - Jia-Yuan Sun
- Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Han Guo
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, 361003, People's Republic of China.
| | - Feng-Yan Li
- Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China.
| | - Huan-Xin Lin
- Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Zhen-Yu He
- Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
33
|
Spitzner M, Ebner R, Wolff HA, Ghadimi BM, Wienands J, Grade M. STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy. Cancers (Basel) 2014; 6:1986-2011. [PMID: 25268165 PMCID: PMC4276953 DOI: 10.3390/cancers6041986] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
Abstract
Chemoradiotherapy (CRT) represents a standard treatment for many human cancers, frequently combined with radical surgical resection. However, a considerable percentage of primary cancers are at least partially resistant to CRT, which represents a substantial clinical problem, because it exposes cancer patients to the potential side effects of both irradiation and chemotherapy. It is therefore exceedingly important to determine the molecular characteristics underlying CRT-resistance and to identify novel molecular targets that can be manipulated to re-sensitize resistant tumors to CRT. In this review, we highlight much of the recent evidence suggesting that the signal transducer and activator of transcription 3 (STAT3) plays a prominent role in mediating CRT-resistance, and we outline why inhibition of STAT3 holds great promise for future multimodal treatment concepts in oncology.
Collapse
Affiliation(s)
- Melanie Spitzner
- Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Reinhard Ebner
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hendrik A Wolff
- Department of Radiotherapy and Radiooncology, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Jürgen Wienands
- Department of Cellular and Molecular Immunology, University Medicine Göttingen, Humboldtallee 34, Göttingen 37073, Germany.
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| |
Collapse
|
34
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|