1
|
Alesawy A, Alotaibi N, Alalshaikh M, Aljofi FE, Aldossary N, Al-Zahrani N, Omar O, Madi M. Impact of phenytoin and valproic acid on cytotoxicity and inflammatory mediators in human mononuclear cells: with and without lipopolysaccharide stimulation. PeerJ 2025; 13:e19102. [PMID: 40115275 PMCID: PMC11925041 DOI: 10.7717/peerj.19102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Background Valproic acid (VPA) is known for its broad-spectrum antiepileptic effects and is recommended for generalized epilepsy, in contrast to phenytoin, which has a more limited spectrum. This study investigated the cytotoxic and inflammatory responses to phenytoin and VPA in peripheral blood mononuclear cells (PBMCs), with and without bacterial lipopolysaccharide (LPS) stimulation. Methods PBMCs from healthy donors were divided into 12 groups: control (Ctrl), phenytoin (Phy), and four concentrations of VPA (Val-50, Val-75, Val-100, Val-200), with and without LPS. Assessments were conducted on days 1 and 3, including total, live, and dead cell counts, cell viability, and lactic acid dehydrogenase (LDH) cytotoxicity assays. Inflammatory mediators (IL-6, IL-1β) and immune markers (IL-18, IgA) were measured using enzyme-linked immunosorbent assay (ELISA) on day 3. Statistical analysis involved two-way ANOVA, Tukey's HSD tests, and paired t-tests. Results All treatment groups showed significant declines in cell counts and viability from day 1 to day 3, which were exacerbated by LPS. Val-50 + LPS maintained higher cell counts compared to Ctrl + LPS and Phy + LPS. Elevated LDH levels were primarily observed in the Val-100 and Val-200 groups, with and without LPS. In the absence of LPS, the Val-75 and Val-100 groups showed notable reductions in IL-18 and IgA levels, while all VPA treatments reduced IL-6 levels compared to controls. This effect was enhanced under LPS exposure, although IL-1β reductions in the Val-75, Val-100, and Val-200 groups were reversed in the presence of LPS. Val-75 demonstrated lower cytotoxic and inflammatory responses compared to Phy and higher VPA doses, showing moderate LDH increases and reduced IL-18, IgA, IL-1β, and IL-6 levels, particularly under LPS challenge. Conclusion Phenytoin and VPA induced significant cytotoxic and inflammatory responses, influenced by dosage and LPS exposure. Val-75 exhibited a dose-specific immunomodulatory effect, reducing both pro-inflammatory and immune markers.
Collapse
Affiliation(s)
- Aminah Alesawy
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Norah Alotaibi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Marwa Alalshaikh
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal E Aljofi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nada Aldossary
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nada Al-Zahrani
- Blood Bank, Laboratory Medicine, King Fahad University Hospital, Al Khobar, Saudi Arabia
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Marwa Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Moran B, Davern M, Reynolds JV, Donlon NE, Lysaght J. The impact of histone deacetylase inhibitors on immune cells and implications for cancer therapy. Cancer Lett 2023; 559:216121. [PMID: 36893893 DOI: 10.1016/j.canlet.2023.216121] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Many cancers possess the ability to suppress the immune response to malignant cells, thus facilitating tumour growth and invasion, and this has fuelled research to reverse these mechanisms and re-activate the immune system with consequent important therapeutic benefit. One such approach is to use histone deacetylase inhibitors (HDACi), a novel class of targeted therapies, which manipulate the immune response to cancer through epigenetic modification. Four HDACi have recently been approved for clinical use in malignancies including multiple myeloma and T-cell lymphoma. Most research in this context has focussed on HDACi and tumour cells, however, little is known about their impact on the cells of the immune system. Additionally, HDACi have been shown to impact the mechanisms by which other anti-cancer therapies exert their effects by, for example, increasing accessibility to exposed DNA through chromatin relaxation, impairing DNA damage repair pathways and increasing immune checkpoint receptor expression. This review details the effects of HDACi on immune cells, highlights the variability in these effects depending on experimental design, and provides an overview of clinical trials investigating the combination of HDACi with chemotherapy, radiotherapy, immunotherapy and multimodal regimens.
Collapse
Affiliation(s)
- Brendan Moran
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Maria Davern
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Noel E Donlon
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
3
|
Are the Effects of Old and New-Generation Antiepileptic Drugs on Hemogram Parameters Different? JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.994411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Xie J, Wang Z, Fan W, Liu Y, Liu F, Wan X, Liu M, Wang X, Zeng D, Wang Y, He B, Yan M, Zhang Z, Zhang M, Hou Z, Wang C, Kang Z, Fang W, Zhang L, Lam EWF, Guo X, Yan J, Zeng Y, Chen M, Liu Q. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6:333. [PMID: 34482361 PMCID: PMC8418605 DOI: 10.1038/s41392-021-00702-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Application of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA. Mechanistically, LMP1 upregulates STAT5A and recruits HDAC1/2 to the CEBPA locus to reduce its histone acetylation. HDAC inhibition restored CEBPA expression, reversing cellular dedifferentiation and stem-like status in mouse xenograft models. These findings provide a novel mechanistic epigenetic-based insight into virus-induced cellular plasticity and propose a promising concept of differentiation therapy in solid tumor by using HDAC inhibitors to target cellular plasticity.
Collapse
Affiliation(s)
- Jiajun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Youping Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiangbo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xuan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Mengjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Kang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenfeng Fang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinsong Yan
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China.
| | - Yixin Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- Sun Yat-sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
6
|
Transcriptomic and Epigenomic Profiling of Histone Deacetylase Inhibitor Treatment Reveals Distinct Gene Regulation Profiles Leading to Impaired Neutrophil Development. Hemasphere 2019; 3:e270. [PMID: 31723844 PMCID: PMC6745919 DOI: 10.1097/hs9.0000000000000270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
Supplemental Digital Content is available in the text The clinical use of histone deacetylase inhibitors (HDACi) for the treatment of bone marrow failure and hematopoietic malignancies has increased dramatically over the last decades. Nonetheless, their effects on normal myelopoiesis remain poorly evaluated. Here, we treated cord blood derived CD34+ progenitor cells with two chemically distinct HDACi inhibitors MS-275 or SAHA and analyzed their effects on the transcriptome (RNA-seq), epigenome (H3K27ac ChIP-seq) and functional and morphological characteristics during neutrophil development. MS-275 (entinostat) selectively inhibits class I HDACs, with a preference for HDAC1, while SAHA (vorinostat) is a non-selective class I/II HDACi. Treatment with individual HDACi resulted in both overlapping and distinct effects on both transcriptome and epigenome, whereas functional effects were relatively similar. Both HDACi resulted in reduced expansion and increased apoptosis in neutrophil progenitor cells. Morphologically, HDACi disrupted normal neutrophil differentiation what was illustrated by decreased percentages of mature neutrophils. In addition, while SAHA treatment clearly showed a block at the promyelocytic stage, MS-275 treatment was characterized by dysplastic features and skewing towards the monocytic lineage. These effects could be mimicked using shRNA-mediated knockdown of HDAC1. Taken together, our data provide novel insights into the effects of HDAC inhibition on normal hematopoietic cells during neutrophil differentiation. These findings should be taken into account when considering the clinical use of MS-275 and SAHA, and can be potentially utilized to tailor more specific, hematopoietic-directed HDACi in the future.
Collapse
|
7
|
Bewersdorf JP, Ardasheva A, Podoltsev NA, Singh A, Biancon G, Halene S, Zeidan AM. From clonal hematopoiesis to myeloid leukemia and what happens in between: Will improved understanding lead to new therapeutic and preventive opportunities? Blood Rev 2019; 37:100587. [DOI: 10.1016/j.blre.2019.100587] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
8
|
Wiggers CRM, Govers AMAP, Lelieveld D, Egan DA, Zwaan CM, Sonneveld E, Coffer PJ, Bartels M. Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia. Pediatr Blood Cancer 2019; 66:e27785. [PMID: 31044544 DOI: 10.1002/pbc.27785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease regarding morphology, immunophenotyping, genetic abnormalities, and clinical behavior. The overall survival rate of pediatric AML is 60% to 70%, and has not significantly improved over the past two decades. Children with Down syndrome (DS) are at risk of developing acute megakaryoblastic leukemia (AMKL), which can be preceded by a transient myeloproliferative disorder during the neonatal period. Intensification of current treatment protocols is not feasible due to already high treatment-related morbidity and mortality. Instead, more targeted therapies with less severe side effects are highly needed. PROCEDURE To identify potential novel therapeutic targets for myeloid disorders in children, including DS-AMKL and non-DS-AML, we performed an unbiased compound screen of 80 small molecules targeting epigenetic regulators in three pediatric AML cell lines that are representative for different subtypes of pediatric AML. Three candidate compounds were validated and further evaluated in normal myeloid precursor cells during neutrophil differentiation and in (pre-)leukemic pediatric patient cells. RESULTS Candidate drugs LMK235, NSC3852, and bromosporine were effective in all tested pediatric AML cell lines with antiproliferative, proapoptotic, and differentiation effects. Out of these three compounds, the pan-histone deacetylase inhibitor NSC3852 specifically induced growth arrest and apoptosis in pediatric AML cells, without disrupting normal neutrophil differentiation. CONCLUSION NSC3852 is a potential candidate drug for further preclinical testing in pediatric AML and DS-AMKL.
Collapse
Affiliation(s)
- Caroline R M Wiggers
- Department of Pediatric Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anita M A P Govers
- Department of Pediatric Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daphne Lelieveld
- Cell Screening Core, Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David A Egan
- Cell Screening Core, Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C Michel Zwaan
- Prinsess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Edwin Sonneveld
- Prinsess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Dutch Childhood Oncology Group (DCOG), Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Megakaryocyte lineage development is controlled by modulation of protein acetylation. PLoS One 2018; 13:e0196400. [PMID: 29698469 PMCID: PMC5919413 DOI: 10.1371/journal.pone.0196400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with both KDACi resulted in no significant effects on erythrocyte differentiation, suggesting that the effects of KDACi primarily affect megakaryocyte lineage development. H3K27Ac ChIP-sequencing analysis revealed that genes involved in myeloid development, as well as megakaryocyte/erythroid (ME)-lineage differentiation are uniquely modulated by specific KDACi treatment. Taken together, our data reveal distinct effects of specific KDACi on megakaryocyte development, and ME-lineage decisions, which can be partially explained by direct effects on promoter acetylation of genes involved in myeloid differentiation.
Collapse
|
10
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
11
|
Arulmozhivarman G, Kräter M, Wobus M, Friedrichs J, Bejestani EP, Müller K, Lambert K, Alexopoulou D, Dahl A, Stöter M, Bickle M, Shayegi N, Hampe J, Stölzel F, Brand M, von Bonin M, Bornhäuser M. Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells. Sci Rep 2017; 7:12084. [PMID: 28935977 PMCID: PMC5608703 DOI: 10.1038/s41598-017-12360-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023] Open
Abstract
The identification of small molecules that either increase the number and/or enhance the activity of human hematopoietic stem and progenitor cells (hHSPCs) during ex vivo expansion remains challenging. We used an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model and identified histone deacetylase inhibitors (HDACIs), particularly valproic acid (VPA), as significant enhancers of the number of phenotypic HSPCs, both in vivo and during ex vivo expansion. The long-term functionality of these expanded hHSPCs was verified in a xenotransplantation model with NSG mice. Interestingly, VPA increased CD34+ cell adhesion to primary mesenchymal stromal cells and reduced their in vitro chemokine-mediated migration capacity. In line with this, VPA-treated human CD34+ cells showed reduced homing and early engraftment in a xenograft transplant model, but retained their long-term engraftment potential in vivo, and maintained their differentiation ability both in vitro and in vivo. In summary, our data demonstrate that certain HDACIs lead to a net expansion of hHSPCs with retained long-term engraftment potential and could be further explored as candidate compounds to amplify ex-vivo engineered peripheral blood stem cells.
Collapse
Affiliation(s)
| | - Martin Kräter
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Manja Wobus
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Elham Pishali Bejestani
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Katrin Müller
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Katrin Lambert
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Dimitra Alexopoulou
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Martin Stöter
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nona Shayegi
- Department of Hematology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jochen Hampe
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Friedrich Stölzel
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| | - Malte von Bonin
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany. .,DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Bombardo M, Saponara E, Malagola E, Chen R, Seleznik GM, Haumaitre C, Quilichini E, Zabel A, Reding T, Graf R, Sonda S. Class I histone deacetylase inhibition improves pancreatitis outcome by limiting leukocyte recruitment and acinar-to-ductal metaplasia. Br J Pharmacol 2017; 174:3865-3880. [PMID: 28832971 DOI: 10.1111/bph.13984] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatitis is a common inflammation of the pancreas with rising incidence in many countries. Despite improvements in diagnostic techniques, the disease is associated with high risk of severe morbidity and mortality and there is an urgent need for new therapeutic interventions. In this study, we evaluated whether histone deacetylases (HDACs), key epigenetic regulators of gene transcription, are involved in the development of the disease. EXPERIMENTAL APPROACH We analysed HDAC regulation during cerulein-induced acute, chronic and autoimmune pancreatitis using different transgenic mouse models. The functional relevance of class I HDACs was tested with the selective inhibitor MS-275 in vivo upon pancreatitis induction and in vitro in activated macrophages and primary acinar cell explants. KEY RESULTS HDAC expression and activity were up-regulated in a time-dependent manner following induction of pancreatitis, with the highest abundance observed for class I HDACs. Class I HDAC inhibition did not prevent the initial acinar cell damage. However, it effectively reduced the infiltration of inflammatory cells, including macrophages and T cells, in both acute and chronic phases of the disease, and directly disrupted macrophage activation. In addition, MS-275 treatment reduced DNA damage in acinar cells and limited acinar de-differentiation into acinar-to-ductal metaplasia in a cell-autonomous manner by impeding the EGF receptor signalling axis. CONCLUSIONS AND IMPLICATIONS These results demonstrate that class I HDACs are critically involved in the development of acute and chronic forms of pancreatitis and suggest that blockade of class I HDAC isoforms is a promising target to improve the outcome of the disease.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Enrica Saponara
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Gitta M Seleznik
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Cecile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, France INSERM U969, Paris, France
| | - Evans Quilichini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, France INSERM U969, Paris, France
| | - Anja Zabel
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Theresia Reding
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, Sodré AL, Distler A, Xing L, Perez-Villarroel P, Wei S, Villagra A, Seto E, Sotomayor EM, Horna P, Pinilla-Ibarz J. Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol 2017; 102:475-486. [PMID: 28550123 DOI: 10.1189/jlb.1a0415-176rrr] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.
Collapse
Affiliation(s)
- Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jie Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Susan L Deng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alex N Achille
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Maritza Lienlaf
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hong Wei Wang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Fengdong Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andressa L Sodré
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison Distler
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ed Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eduardo M Sotomayor
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pedro Horna
- Department of Hematopathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; and
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
14
|
Arulmozhivarman G, Stöter M, Bickle M, Kräter M, Wobus M, Ehninger G, Stölzel F, Brand M, Bornhäuser M, Shayegi N. In Vivo Chemical Screen in Zebrafish Embryos Identifies Regulators of Hematopoiesis Using a Semiautomated Imaging Assay. ACTA ACUST UNITED AC 2016; 21:956-64. [DOI: 10.1177/1087057116644163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) generate all cell types of the blood and are crucial for homeostasis of all blood lineages in vertebrates. Hematopoietic stem cell transplantation (HSCT) is a rapidly evolving technique that offers potential cure for hematologic cancers, such as leukemia or lymphoma. HSCT may be autologous or allogenic. Successful HSCT depends critically on the abundance of engraftment-competent HSPCs, which are currently difficult to obtain in large numbers. Therefore, finding compounds that enhance either the number or the activity of HSPCs could improve prognosis for patients undergoing HSCT and is of great clinical interest. We developed a semiautomated screening method for whole zebrafish larvae using conventional liquid handling equipment and confocal microscopy. Applying this pipeline, we screened 550 compounds in triplicate for proliferation of HSPCs in vivo and identified several modulators of hematopoietic stem cell activity. One identified hit was valproic acid (VPA), which was further validated as a compound that expands and maintains the population of HSPCs isolated from human peripheral blood ex vivo. In summary, our in vivo zebrafish imaging screen identified several potential drug candidates with clinical relevance and could easily be further expanded to screen more compounds.
Collapse
Affiliation(s)
- Guruchandar Arulmozhivarman
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Stöter
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Kräter
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manja Wobus
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies, Cluster of Excellence, Bioinnovation Center, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nona Shayegi
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors. Sci Rep 2016; 6:29253. [PMID: 27375084 PMCID: PMC4931680 DOI: 10.1038/srep29253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/14/2016] [Indexed: 12/14/2022] Open
Abstract
The blood–brain barrier (BBB) controls the entry of compounds into the brain, thereby regulating brain homeostasis. Efflux transporters such as P-glycoprotein (Pgp) significantly contribute to BBB function. Multiple signaling pathways modulate the expression and activity of Pgp in response to xenobiotics and disease. A non-genetic way of intercellular transfer of Pgp occurs in cancer cells, but whether this also occurs in non-cancer cells such as endothelial cells that form the BBB is not known. A human brain endothelial cell line (hCMEC/D3) was used to study whether cell-to-cell Pgp transfer occurs during co-culturing with Pgp-EGFP expressing hCMEC/D3 cells. The Pgp-EGFP fusion protein was transferred from donor to recipient cells by cell-to-cell contact and Pgp-EGFP enriched vesicles, which were exocytosed by donor cells and endocytosed by adherent recipient cells. Flow cytometry experiments with the Pgp substrate eFLUXX-ID Gold demonstrated that the transferred Pgp is functional in the recipient cells. Exposure of the donor cells with inhibitors of histone deacetylases (HDACs) resulted in an enhanced intercellular Pgp transfer. Non-genetic transfer of a resistance phenotype and its regulation by HDACs is a novel mechanism of altering BBB functionality. This mechanism may have important implications for understanding drug-induced alterations in Pgp expression and activity.
Collapse
|
16
|
Gomez-Puerto MC, Folkerts H, Wierenga ATJ, Schepers K, Schuringa JJ, Coffer PJ, Vellenga E. Autophagy Proteins ATG5 and ATG7 Are Essential for the Maintenance of Human CD34(+) Hematopoietic Stem-Progenitor Cells. Stem Cells 2016; 34:1651-63. [PMID: 26930546 DOI: 10.1002/stem.2347] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 01/08/2016] [Indexed: 01/07/2023]
Abstract
Autophagy is a highly regulated catabolic process that involves sequestration and lysosomal degradation of cytosolic components such as damaged organelles and misfolded proteins. While autophagy can be considered to be a general cellular housekeeping process, it has become clear that it may also play cell type-dependent functional roles. In this study, we analyzed the functional importance of autophagy in human hematopoietic stem/progenitor cells (HSPCs), and how this is regulated during differentiation. Western blot-based analysis of LC3-II and p62 levels, as well as flow cytometry-based autophagic vesicle quantification, demonstrated that umbilical cord blood-derived CD34(+) /CD38(-) immature hematopoietic progenitors show a higher autophagic flux than CD34(+) /CD38(+) progenitors and more differentiated myeloid and erythroid cells. This high autophagic flux was critical for maintaining stem and progenitor function since knockdown of autophagy genes ATG5 or ATG7 resulted in reduced HSPC frequencies in vitro as well as in vivo. The reduction in HSPCs was not due to impaired differentiation, but at least in part due to reduced cell cycle progression and increased apoptosis. This is accompanied by increased expression of p53, proapoptotic genes BAX and PUMA, and the cell cycle inhibitor p21, as well as increased levels of cleaved caspase-3 and reactive oxygen species. Taken together, our data demonstrate that autophagy is an important regulatory mechanism for human HSCs and their progeny, reducing cellular stress and promoting survival. Stem Cells 2016;34:1651-1663.
Collapse
Affiliation(s)
- Maria Catalina Gomez-Puerto
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hendrik Folkerts
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University Groningen, Groningen, The Netherlands
| | - Albertus T J Wierenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University Groningen, Groningen, The Netherlands
| | - Koen Schepers
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University Groningen, Groningen, The Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Zhang H, Du M, Yang Q, Zhu MJ. Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. J Nutr Biochem 2015; 27:299-306. [PMID: 26601598 DOI: 10.1016/j.jnutbio.2015.09.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
Beyond their nutritional impact to colonic epithelial cells, the intestinal microbiota metabolite butyrate has pleotropic effects to host cells and is known for its beneficial effects on intestinal homeostasis and metabolism. However, it remains unclear how it modulates mast cell function. Here, we demonstrate that butyrate profoundly inhibited proliferation of mouse mastocytoma P815 cells through inducing cell cycle arrest and apoptosis, as well as decreasing c-Kit activation. In addition, butyrate increased early- and late-stage apoptotic P815 cells. In murine bone marrow-derived mast cells (BMMC), butyrate-suppressed FcεRI-dependent tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) release without affecting β-Hexosaminidase, but that was associated with decreased mitogen-activated protein kinase extracellular signal-regulated kinase 1/2, p38 and c-Jun N-terminal kinases activation. Butyrate treatment substantially enhanced histone 3 acetylation in both P815 and BMMC and decreased FcεRI-dependent mRNA expression of tnf-α and il-6 in BMMC, mimicking the effect of Trichostatin A, a known histone deacetylase inhibitor. Chromatin immunoprecipitation revealed that butyrate enhanced acetylation of the tnf-α and il-6 promoter regions but blocked RNA polymerase II binding to the promoters of tnf-α and il-6 genes, indicating suppressed transcription initiation. These phenotypes mimicked those of Trichostatin A treatment. In conclusion, butyrate inhibits cell proliferation and increases cell apoptosis in mastocytoma P815 cells and suppresses FcεRI-dependent cytokine production in murine primary BMMC, which are likely mediated by HDAC inhibition.
Collapse
Affiliation(s)
- Hanying Zhang
- School of Food Science, Washington State University, Pullman, WA, 99164, USA; Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA, 99164, USA
| | - Qiyuan Yang
- Department of Animal Science, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
18
|
Bartels M, Murphy K, Rieter E, Bruin M. Understanding chronic neutropenia: life is short. Br J Haematol 2015; 172:157-69. [PMID: 26456767 DOI: 10.1111/bjh.13798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pathophysiological mechanisms underlying chronic neutropenia are extensive, varying from haematopoietic stem cell disorders resulting in defective neutrophil production, to accelerated apoptosis of neutrophil progenitors or circulating mature neutrophils. While the knowledge concerning genetic defects associated with congenital neutropenia or bone marrow failure is increasing rapidly, the functional role and consequences of these genetic alterations is often not well understood. In addition, there is a large group of diseases, including primary immunodeficiencies and metabolic diseases, in which chronic neutropenia is one of the symptoms, while there is no clear bone marrow pathology or haematopoietic stem cell dysfunction. Altogether, these disease entities illustrate the complexity of normal neutrophil development, the functional role of the (bone marrow) microenvironment and the increased propensity to undergo apoptosis, which is typical for neutrophils. The large variety of disorders associated with chronic neutropenia makes classification almost impossible and possibly not desirable, based on the clinical phenotypes. However, a better understanding of the regulation of normal myeloid differentiation and neutrophil development is of great importance in the diagnostic evaluation of unexplained chronic neutropenia. In this review we propose insights in the pathophysiology of chronic neutropenia in the context of the functional role of key players during normal neutrophil development, neutrophil release and neutrophil survival.
Collapse
Affiliation(s)
- Marije Bartels
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Kate Murphy
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ester Rieter
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marrie Bruin
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
19
|
The end of the line for neutrophils. Blood 2015; 125:1688-90. [PMID: 25766564 DOI: 10.1182/blood-2015-01-622209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Abstract
C/EBPε, a member of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, is exclusively expressed in myeloid cells and regulates transition from the promyelocytic stage to the myelocytic stage of neutrophil development, being indispensable for secondary and tertiary granule formation. Knowledge concerning the functional role of C/EBPε posttranslational modifications is limited to studies concerning phosphorylation and sumoylation. In the current study, using ectopic expression and ex vivo differentiation of CD34(+) hematopoietic progenitor cells, we demonstrate that C/EBPε is acetylated, which was confirmed by mass spectrometry analysis, identifying 4 acetylated lysines in 3 distinct functional domains. Regulation of C/EBPε acetylation levels by the p300 acetyltransferase and the sirtuin 1 deacetylase controls transcriptional activity, which can at least in part be explained by modulation of DNA binding. During neutrophil development, acetylation of lysines 121 and 198 were found to be crucial for terminal neutrophil differentiation and the expression of neutrophil-specific granule proteins, including lactoferrin and collagenase. Taken together, our data illustrate a critical role for acetylation in the functional regulation of C/EBPε activity during terminal neutrophil development.
Collapse
|
21
|
Guenther S, Bauer S, Hagge M, Knake S, Olmes DG, Tackenberg B, Rosenow F, Hamer HM. Chronic valproate or levetiracetam treatment does not influence cytokine levels in humans. Seizure 2014; 23:666-9. [DOI: 10.1016/j.seizure.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/27/2022] Open
|
22
|
Jayanthi S, McCoy MT, Chen B, Britt JP, Kourrich S, Yau HJ, Ladenheim B, Krasnova IN, Bonci A, Cadet JL. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol Psychiatry 2014; 76:47-56. [PMID: 24239129 PMCID: PMC3989474 DOI: 10.1016/j.biopsych.2013.09.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic methamphetamine (METH) exposure causes neuroadaptations at glutamatergic synapses. METHODS To identify the METH-induced epigenetic underpinnings of these neuroadaptations, we injected increasing METH doses to rats for 2 weeks and measured striatal glutamate receptor expression. We then quantified the effects of METH exposure on histone acetylation. We also measured METH-induced changes in DNA methylation and DNA hydroxymethylation. RESULTS Chronic METH decreased transcript and protein expression of GluA1 and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) and GluN1 N-methyl-D-aspartate receptor subunits. These changes were associated with altered electrophysiological glutamatergic responses in striatal neurons. Chromatin immunoprecipitation-polymerase chain reaction revealed that METH decreased enrichment of acetylated histone H4 on GluA1, GluA2, and GluN1 promoters. Methamphetamine exposure also increased repressor element-1 silencing transcription factor (REST) corepressor 1, methylated CpG binding protein 2, and histone deacetylase 2 enrichment, but not of sirtuin 1 or sirtuin 2, onto GluA1 and GluA2 gene sequences. Moreover, METH caused interactions of REST corepressor 1 and methylated CpG binding protein 2 with histone deacetylase 2 and of REST with histone deacetylase 1. Surprisingly, methylated DNA immunoprecipitation and hydroxymethylated DNA immunoprecipitation-polymerase chain reaction revealed METH-induced decreased enrichment of 5-methylcytosine and 5-hydroxymethylcytosine at GluA1 and GluA2 promoter sequences. Importantly, the histone deacetylase inhibitor, valproic acid, blocked METH-induced decreased expression of AMPAR and N-methyl-D-aspartate receptor subunits. Finally, valproic acid also attenuated METH-induced decrease H4K16Ac recruitment on AMPAR gene sequences. CONCLUSIONS These observations suggest that histone H4 hypoacetylation may be the main determinant of METH-induced decreased striatal glutamate receptor expression.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Billy Chen
- Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Jonathan P Britt
- Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Saїd Kourrich
- Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Hau-Jie Yau
- Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Antonello Bonci
- Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD.
| |
Collapse
|
23
|
Jafary H, Ahmadian S, Soleimani M. Synergistic anticancer activity of valproate combined with nicotinamide enhances anti-proliferation response and apoptosis in MIAPaca2 cells. Mol Biol Rep 2014; 41:3801-3812. [PMID: 24595447 DOI: 10.1007/s11033-014-3246-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 02/07/2014] [Indexed: 01/01/2023]
Abstract
Histone deacetylase is strongly associated with epigenetic regulation and carcinogenesis, and its inhibitors can induce cell cycle arrest and apoptosis of the cancer cells. In this study we aimed to examine the antiproliferative effects a combination of the valproate with nicotinamide in MIAPaca2 cell line. We revealed that valproate acted in a synergistic/additive with nicotinamide to inhibit the proliferation and induction of apoptosis in MIAPaca2 cancer cell line. MIAPaca2 was treated with various concentrations of valproate. The MTT assay and colony formation in soft agar indicated that valproate at 0.5 mM, when used alone weakly, suppressed proliferation of cells (37 ± 3.02%) whereas the combination treatment of valproate + nicotinamide significantly suppressed cell proliferation (58 ± 3.5%). The effect of nicotinamide at 25 mM on cell proliferation and cell colonization induced 50% apoptosis of MIAPaca2 cells. To identify the anti-proliferation and apoptotic effects of valproate and nicotinamide we performed flow cytometric and microscopic analyses. The results indicated significant apoptosis induction and nuclear morphological alterations greater than when valproate was used alone. Furthermore, western blot analyses was performed to study the role of acetyl-histone H3 levels, and quantitative RNA expression analyses were performed on expression of thrombospondin (TSP) and maspin genes in MIAPaca2. We found that the combination treatment of valproate + nicotinamide enhanced the expression of maspin and TSP genes and the biological response of the cell line was correlated with the increase of histone H3 acetylation after nicotinamide and valproate application. Together our findings indicate that valproate which act as inhibitor of cell proliferation and inducer of apoptosis in human cancer MIAPaca2 cells when used in combination with nicotinamide makes it a potentially good candidate for new anticancer drug development.
Collapse
Affiliation(s)
- Hanieh Jafary
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | |
Collapse
|
24
|
Jafary H, Ahmadian S, Soleimani M. The enhanced apoptosis and antiproliferative response to combined treatment with valproate and nicotinamide in MCF-7 breast cancer cells. Tumour Biol 2013; 35:2701-10. [PMID: 24213853 DOI: 10.1007/s13277-013-1356-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/23/2013] [Indexed: 02/24/2023] Open
Abstract
Acetylation of histone is a major player in epigenetic modifications, resulting in open chromatin structures and, hence, permissive conditions for transcription-factor recruitment to the promoters, followed by initiation of transcription. Histone deacetylase inhibitors arrest cancer cell growth and cause apoptosis with low toxicity thereby constituting a promising treatment for cancer. In this study, we examined the antiproliferative effects of valproate with a combination of nicotinamide in the MCF-7 cell line. MCF-7 was treated with various concentrations of valproate. The MTT assay showed that the viability of MCF-7 cells was inhibited and the cell activity was decreased. Viability percent of valproate and nicotinamide combined treatment cells (28 ± 2) was 1.78 times increased compared with the valproate-alone (0.5 mM) treated cells (50 ± 2). Colony formation in soft agar indicated that valproate at 0.3 mM, when used alone, weakly suppressed proliferation of cells (82 ± 3) and the combination treatment of valproate + nicotinamide strongly suppressed cell proliferation (51 ± 3). The flow cytometric and microscopic analyses of HDACI combined with treated cells indicated strong apoptosis induction and nuclear morphological alterations greater than those of valproate alone. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed the efficiency of the HDAC inhibitor combination, revealing the effectively upregulated p16 and p21. Furthermore, to investigate the role of acetyl-histone H3 levels, western blot analyses have been performed and high levels of acetylated histone H3 were detected in valproate- and nicotinamide-treated cells. These results suggest that the combination treatment of valproate with nicotinamide exerts significant antitumor activity and could be a promising therapeutic candidate to treat human breast cancer.
Collapse
Affiliation(s)
- Hanieh Jafary
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | |
Collapse
|
25
|
Liu C, Liu L, Shan J, Shen J, Xu Y, Zhang Q, Yang Z, Wu L, Xia F, Bie P, Cui Y, Zhang X, Bian X, Qian C. Histone deacetylase 3 participates in self-renewal of liver cancer stem cells through histone modification. Cancer Lett 2013; 339:60-9. [PMID: 23879963 DOI: 10.1016/j.canlet.2013.07.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 01/06/2023]
Abstract
Understanding molecular mechanisms in self-renewal of cancer stem cells (CSCs) is important for finding novel target in therapy of cancer. In this study, we explored potential effects of histone deacetylase (HDAC) on liver CSCs. Our data showed that HDAC inhibitors suppressed self-renewal and induced differentiation of liver CSCs. Furthermore, we demonstrated that HDAC3 was selectively expressed in liver CSCs and participated in self-renewal of liver CSCs via regulating expression of pluripotency factors. Overexpression of HDAC3 was associated with poor outcome of liver cancer. HDAC inhibitors could render liver CSCs sensitive to sorafenib. Taken together, our data suggest that HDAC3 plays a critical role in regulating self-renewal of liver CSCs.
Collapse
Affiliation(s)
- Chungang Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Omer D, Harari-Steinberg O, Buzhor E, Metsuyanim S, Pleniceanu O, Zundelevich A, Gal-Yam EN, Dekel B. Chromatin-modifying agents reactivate embryonic renal stem/progenitor genes in human adult kidney epithelial cells but abrogate dedifferentiation and stemness. Cell Reprogram 2013; 15:281-92. [PMID: 23841748 DOI: 10.1089/cell.2012.0087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies have suggested that epigenetic modulation with chromatin-modifying agents can induce stemness and dedifferentiation and increase developmental plasticity. For instance, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has been shown to promote self-renewal/expansion of hematopoietic stem cells and facilitate the generation of induced pluripotent stem cells (iPSCs). Previously, we observed that downregulation of embryonic renal stem/progenitor genes in the adult kidney was associated, at least in part, with epigenetic silencing. Therefore, we hypothesized that VPA may alter the expression of these genes and reprogram mature human adult kidney epithelial cells (hKEpCs) to a stem/progenitor-like state. Here, using quantitative RT-PCR and flow cytometry [fluorescence-activated cell sorting (FACS)] analysis, we show in VPA-treated primary cultures of human adult and fetal kidney significant reinduction of the renal stem/progenitor markers SIX2, OSR1, SALL1, NCAM, and PSA-NCAM. Robust SIX2 mRNA re-expression was confirmed at the protein level by western blot and was associated with epigenetic changes of the histones at multiple sites of the SIX2 promoter leading to gene activation, significantly increased acetylation of histones H4, and methylation of lysine 4 on H3. Furthermore, we could demonstrate synergistic effects of VPA and Wnt antagonists on SIX2 and also OSR1 reinduction. Nevertheless, VPA resulted in upregulation of E-CADHERIN and reduction in VIMENTIN, preventing the skewing of hKEpCs towards a more replicative mesenchymal state required for clonogenic expansion and acquisition of stem cell characters, altogether inducing cell senescence at early passages. These results demonstrating that chromatin-modifying agents prevent dedifferentiation of hKEpCs have important clinical implications as they may limit ex-vivo self-renewal/expansion and possibly the in vivo renal regenerative capacity initiated by dedifferentiation.
Collapse
Affiliation(s)
- Dorit Omer
- The Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children's Hospital, Sheba Center for Regenerative Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 2013; 21:1259-69. [PMID: 23587921 PMCID: PMC3677314 DOI: 10.1038/mt.2013.65] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The HIV-1 coreceptor CCR5 is a validated target for HIV/AIDS therapy. The apparent elimination of HIV-1 in a patient treated with an allogeneic stem cell transplant homozygous for a naturally occurring CCR5 deletion mutation (CCR5(Δ32/Δ32)) supports the concept that a single dose of HIV-resistant hematopoietic stem cells can provide disease protection. Given the low frequency of naturally occurring CCR5(Δ32/Δ32) donors, we reasoned that engineered autologous CD34(+) hematopoietic stem/progenitor cells (HSPCs) could be used for AIDS therapy. We evaluated disruption of CCR5 gene expression in HSPCs isolated from granulocyte colony-stimulating factor (CSF)-mobilized adult blood using a recombinant adenoviral vector encoding a CCR5-specific pair of zinc finger nucleases (CCR5-ZFN). Our results demonstrate that CCR5-ZFN RNA and protein expression from the adenoviral vector is enhanced by pretreatment of HSPC with protein kinase C (PKC) activators resulting in >25% CCR5 gene disruption and that activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway is responsible for this activity. Importantly, using an optimized dose of PKC activator and adenoviral vector we could generate CCR5-modified HSPCs which engraft in a humanized mouse model (albeit at a reduced level) and support multilineage differentiation in vitro and in vivo. Together, these data establish the basis for improved approaches exploiting adenoviral vector delivery in the modification of HSPCs.
Collapse
|
28
|
Zhang S, Bai J, Ren S, Wang R, Zhang L, Zuo Y. Sodium butyrate restores ASC expression and induces apoptosis in LS174T cells. Int J Mol Med 2012; 30:1431-7. [PMID: 23064206 DOI: 10.3892/ijmm.2012.1156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/14/2012] [Indexed: 11/06/2022] Open
Abstract
Sodium butyrate (NaBu) is a short-chain fatty acid (SCFA), which has been proposed as a potential anticancer agent. Apoptosis-associated speck-like protein (ASC) is a pro-apoptotic signaling factor that is subjected to epigenetic silencing in human cancers. Modulation by the aberrant methylation of CpG islands of ASC is a well-characterized epigenetic mechanism, and the methylation-induced silencing of ASC has been observed in several types of tumors. NaBu induces cell cycle arrest, markers of cell differentiation and apoptosis in colon cancer. NaBu promotes transcriptional activation by relaxing the DNA conformation and displays anti-proliferative and differentiating activity in a wide variety of cancers. Thus, we used NaBu to investigate the relationship between the status of cell proliferation and the re-expression of ASC in colon carcinoma LS174T cells. Our experiments determined ASC re-expression at the protein level using western blotting. In addition, we used reverse transcription-polymerase chain reaction to detect the expression levels of ASC mRNA and an MTT assay to detect the inhibitory rate of cell growth. The apoptosis rate was also detected for further validation of the re-expression of ASC. The results showed that ASC re-expression was significantly increased in the LS174 cells following NaBu treatment in a time- and dose-dependent manner. The expression of ASC also induced the apoptosis of LS174T cells. These results suggest that NaBu plays a role in the reactivation of ASC expression and that the latter promotes the apoptosis of LS174T cells.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, P.R. China
| | | | | | | | | | | |
Collapse
|
29
|
Zini R, Norfo R, Ferrari F, Bianchi E, Salati S, Pennucci V, Sacchi G, Carboni C, Ceccherelli GB, Tagliafico E, Ferrari S, Manfredini R. Valproic acid triggers erythro/megakaryocyte lineage decision through induction of GFI1B and MLLT3 expression. Exp Hematol 2012; 40:1043-1054.e6. [PMID: 22885124 DOI: 10.1016/j.exphem.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 08/01/2012] [Accepted: 08/05/2012] [Indexed: 11/28/2022]
Abstract
Histone deacetylase inhibitors represent a family of targeted anticancer compounds that are widely used against hematological malignancies. So far little is known about their effects on normal myelopoiesis. Therefore, in order to investigate the effect of histone deacetylase inhibitors on the myeloid commitment of hematopoietic stem/progenitor cells, we treated CD34(+) cells with valproic acid (VPA). Our results demonstrate that VPA treatment induces H4 histone acetylation and hampers cell cycle progression in CD34(+) cells sustaining high levels of CD34 protein expression. In addition, our data show that VPA treatment promotes erythrocyte and megakaryocyte differentiation. In fact, we demonstrate that VPA treatment is able to induce the expression of growth factor-independent protein 1B (GFI1B) and of mixed-lineage leukemia translocated to chromosome 3 protein (MLLT3), which are crucial regulators of erythrocyte and megakaryocyte differentiation, and that the up-regulation of these genes is mediated by the histone hyperacetylation at their promoter sites. Finally, we show that GFI1B inhibition impairs erythroid and megakaryocyte differentiation induced by VPA, while MLLT3 silencing inhibits megakaryocyte commitment only. As a whole, our data suggest that VPA sustains the expression of stemness-related markers in hematopoietic stem/progenitor cells and is able to interfere with hematopoietic lineage commitment by enhancing erythrocyte and megakaryocyte differentiation and by inhibiting the granulocyte and mono-macrophage maturation.
Collapse
Affiliation(s)
- Roberta Zini
- Centre for Regenerative Medicine, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Elizalde C, Fernández-Rueda J, Salcedo JM, Dorronsoro A, Ferrin I, Jakobsson E, Trigueros C. Histone deacetylase 3 modulates the expansion of human hematopoietic stem cells. Stem Cells Dev 2012; 21:2581-91. [PMID: 22455388 DOI: 10.1089/scd.2011.0698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigenetic changes are regarded as emerging major players for hematopoietic stem cell (HSC) biology. Although some histone deacetylase (HDAC) inhibitors, such as valproic acid (VA), induce differentiation and apoptosis in a variety of leukemic cells in vitro, they produce a favorable effect on the expansion of normal HSCs. In this study, we have identified the VA target HDAC3 as a negative regulator of umbilical cord blood HSC expansion. We demonstrate that knockdown of the transcript dramatically improves CD34+ cell expansion, which correlates with a higher potential to generate colony-forming units in functional assays. We show that this effect is mediated at the level of primitive hematopoietic cells and that it is not due to negative effects on specific cell commitment or alterations in the cell cycle. HDAC3 inhibition does not block commitment to the monocytic lineage and the maturation of monocyte precursors, which are the main inhibited pathways in the presence of VA. Therefore, our results identify HDAC3 as a promising target for therapies aiming to expand HSCs.
Collapse
Affiliation(s)
- Carina Elizalde
- Mesenchymal and Hematopoietic Stem Cell Laboratory, Fundación Inbiomed, Paseo Mikeletegi, San Sebastián, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation. Blood 2012; 119:3050-9. [PMID: 22327222 DOI: 10.1182/blood-2011-08-375386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecules can serve as tools to manipulate cell fate decisions. Here, we tested 2 small molecules, valproic acid (VPA) and lithium (Li), to inhibit differentiation. HSPCs exposed to VPA and Li during differentiation-inducing culture preserved an immature cell phenotype, provided radioprotection to lethally irradiated recipients, and enhanced in vivo repopulating potential. Anti-differentiation effects of VPA and Li were observed also at the level of committed progenitors, where VPA re-activated replating activity of common myeloid progenitor and granulocyte macrophage progenitor cells. Furthermore, VPA and Li synergistically preserved expression of stem cell-related genes and repressed genes involved in differentiation. Target genes were collectively co-regulated during normal hematopoietic differentiation. In addition, transcription factor networks were identified as possible primary regulators. Our results show that the combination of VPA and Li potently delays differentiation at the biologic and molecular levels and provide evidence to suggest that combinatorial screening of chemical compounds may uncover possible additive/synergistic effects to modulate stem cell fate decisions.
Collapse
|
32
|
Vulcano F, Milazzo L, Ciccarelli C, Barca A, Agostini F, Altieri I, Macioce G, Di Virgilio A, Screnci M, De Felice L, Giampaolo A, Hassan HJ. Valproic acid affects the engraftment of TPO-expanded cord blood cells in NOD/SCID mice. Exp Cell Res 2012; 318:400-7. [DOI: 10.1016/j.yexcr.2011.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/07/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
33
|
Comparative proteomics in acute myeloid leukemia. Contemp Oncol (Pozn) 2012; 16:95-103. [PMID: 23788862 PMCID: PMC3687393 DOI: 10.5114/wo.2012.28787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/25/2011] [Accepted: 02/13/2012] [Indexed: 01/22/2023] Open
Abstract
The term proteomics was used for the first time in 1995 to describe large-scale protein analyses. At the same time proteomics was distinguished as a new domain of the life sciences. The major object of proteomic studies is the proteome, i.e. the set of all proteins accumulating in a given cell, tissue or organ. During the last years several new methods and techniques have been developed to increase the fidelity and efficacy of proteomic analyses. The most widely used are two-dimensional electrophoresis (2DE) and mass spectrometry (MS). In the past decade proteomic analyses have also been successfully applied in biomedical research. They allow one to determine how various diseases affect the pattern of protein accumulation. In this paper, we attempt to summarize the results of the proteomic analyses of acute myeloid leukemia (AML) cells. They have increased our knowledge on the mechanisms underlying AML development and contributed to progress in AML diagnostics and treatment.
Collapse
|
34
|
Chateauvieux S, Eifes S, Morceau F, Grigorakaki C, Schnekenburger M, Henry E, Dicato M, Diederich M. Valproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway. Biochem Pharmacol 2011; 81:498-509. [DOI: 10.1016/j.bcp.2010.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 01/26/2023]
|