1
|
Zhang H, Hansen M, Di Summa F, Von Lindern M, Gillemans N, Van IJcken WFJ, Svendsen AF, Philipsen S, Van der Reijden B, Varga E, Van den Akker E. LSD1/KDM1A and GFI1B repress endothelial fate and induce hematopoietic fate in induced pluripotent stem cell-derived hemogenic endothelium. Haematologica 2024; 109:3975-3988. [PMID: 38961746 PMCID: PMC11609818 DOI: 10.3324/haematol.2024.285214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Differentiation of induced pluripotent stem cells (iPSC) into hematopoietic lineages offers great therapeutic potential. During embryogenesis, hemogenic endothelium (HE) gives rise to hematopoietic stem and progenitor cells through the endothelial- to-hematopoietic transition (EHT). Understanding this process using iPSC is key to generating functional hematopoietic stem cells (HSC), a currently unmet challenge. In this study, we examined the role of the transcriptional factor GFI1B and its co-factor LSD1/KDM1A in EHT. To this end, we employed patient-derived iPSC lines with a dominant-negative dysfunctional GFI1B Q287* and irreversible pharmacological LSD1/KDM1A inhibition in healthy iPSC lines. The formation of HE remained unaffected; however, hematopoietic output was severely reduced in both conditions. Single-cell RNA sequencing (scRNAseq) performed on the CD144+/CD31+ population derived from healthy iPSC revealed similar expression dynamics of genes associated with in vivo EHT. Interestingly, LSD1/KDM1A inhibition in healthy lines before EHT resulted in a complete absence of hematopoietic output. However, uncommitted HE cells did not display GFI1B expression, suggesting a timed transcriptional program. To test this hypothesis, we ectopically expressed GFI1B in uncommitted HE cells, leading to downregulation of endothelial genes and upregulation of hematopoietic genes, including GATA2, KIT, RUNX1, and SPI1. Thus, we demonstrate that LSD1/KDM1A and GFI1B can function at distinct temporal points in different cellular subsets during EHT. Although GFI1B is not detected in uncommitted HE cells, its ectopic expression allows for partial hematopoietic specification. These data indicate that precisely timed expression of specific transcriptional regulators during EHT is crucial to the eventual outcome of EHT.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Marten Hansen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Franca Di Summa
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Marieke Von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | | | | | | | | | - Bert Van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Eszter Varga
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Emile Van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam.
| |
Collapse
|
2
|
Collinson RJ, Wilson L, Boey D, Ng ZY, Mirzai B, Chuah HS, Howman R, Grove CS, Malherbe JAJ, Leahy MF, Linden MD, Fuller KA, Erber WN, Guo BB. Transcription factor 3 is dysregulated in megakaryocytes in myelofibrosis. Platelets 2024; 35:2304173. [PMID: 38303515 DOI: 10.1080/09537104.2024.2304173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Transcription factor 3 (TCF3) is a DNA transcription factor that modulates megakaryocyte development. Although abnormal TCF3 expression has been identified in a range of hematological malignancies, to date, it has not been investigated in myelofibrosis (MF). MF is a Philadelphia-negative myeloproliferative neoplasm (MPN) that can arise de novo or progress from essential thrombocythemia [ET] and polycythemia vera [PV] and where dysfunctional megakaryocytes have a role in driving the fibrotic progression. We aimed to examine whether TCF3 is dysregulated in megakaryocytes in MPN, and specifically in MF. We first assessed TCF3 protein expression in megakaryocytes using an immunohistochemical approach analyses and showed that TCF3 was reduced in MF compared with ET and PV. Further, the TCF3-negative megakaryocytes were primarily located near trabecular bone and had the typical "MF-like" morphology as described by the WHO. Genomic analysis of isolated megakaryocytes showed three mutations, all predicted to result in a loss of function, in patients with MF; none were seen in megakaryocytes isolated from ET or PV marrow samples. We then progressed to transcriptomic sequencing of platelets which showed loss of TCF3 in MF. These proteomic, genomic and transcriptomic analyses appear to indicate that TCF3 is downregulated in megakaryocytes in MF. This infers aberrations in megakaryopoiesis occur in this progressive phase of MPN. Further exploration of this pathway could provide insights into TCF3 and the evolution of fibrosis and potentially lead to new preventative therapeutic targets.
Collapse
Affiliation(s)
- Ryan J Collinson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynne Wilson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Darren Boey
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Zi Yun Ng
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
| | - Bob Mirzai
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Hun S Chuah
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
- Department of Haematology, Rockingham General Hospital, Rockingham, WA, Australia
| | - Rebecca Howman
- Department of Haematology, Sir Charles Gairdner Hospital Nedlands Australia
| | - Carolyn S Grove
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- Department of Haematology, Sir Charles Gairdner Hospital Nedlands Australia
| | | | - Michael F Leahy
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Matthew D Linden
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn A Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Belinda B Guo
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
3
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector CD8 T cells during chronic infection and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.579535. [PMID: 38659890 PMCID: PMC11042319 DOI: 10.1101/2024.04.18.579535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During chronic infections and tumor progression, CD8 T cells gradually lose their effector functions and become exhausted. These exhausted CD8 T cells are heterogeneous and comprised of different subsets, including self-renewing progenitors that give rise to Ly108 - CX3CR1 + effector-like cells. Generation of these effector-like cells is essential for the control of chronic infections and tumors, albeit limited. However, the precise cues and mechanisms directing the formation and maintenance of exhausted effector-like are incompletely understood. Using genetic mouse models challenged with LCMV Clone 13 or syngeneic tumors, we show that the expression of a transcriptional repressor, growth factor independent 1 (Gfi1) is dynamically regulated in exhausted CD8 T cells, which in turn regulates the formation of exhausted effector-like cells. Gfi1 deletion in T cells dysregulates the chromatin accessibility and transcriptomic programs associated with the differentiation of LCMV Clone 13-specific CD8 T cell exhaustion, preventing the formation of effector-like and terminally exhausted cells while maintaining progenitors and a newly identified Ly108 + CX3CR1 + state. These Ly108 + CX3CR1 + cells have a distinct chromatin profile and may represent an alternative target for therapeutic interventions to combat chronic infections and cancer. In sum, we show that Gfi1 is a critical regulator of the formation of exhausted effector-like cells.
Collapse
|
4
|
Casey MJ, Call AM, Thorpe AV, Jette CA, Engel ME, Stewart RA. The scaffolding function of LSD1/KDM1A reinforces a negative feedback loop to repress stem cell gene expression during primitive hematopoiesis. iScience 2022; 26:105737. [PMID: 36594016 PMCID: PMC9803847 DOI: 10.1016/j.isci.2022.105737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lsd1/Kdm1a functions both as a histone demethylase enzyme and as a scaffold for assembling chromatin modifier and transcription factor complexes to regulate gene expression. The relative contributions of Lsd1's demethylase and scaffolding functions during embryogenesis are not known. Here, we analyze two independent zebrafish lsd1/kdm1a mutant lines and show Lsd1 is required to repress primitive hematopoietic stem cell gene expression. Lsd1 rescue constructs containing point mutations that selectively abrogate its demethylase or scaffolding capacity demonstrate the scaffolding function of Lsd1, not its demethylase activity, is required for repression of gene expression in vivo. Lsd1's SNAG-binding domain mediates its scaffolding function and reinforces a negative feedback loop to repress the expression of SNAG-domain-containing genes during embryogenesis, including gfi1 and snai1/2. Our findings reveal a model in which the SNAG-binding and scaffolding function of Lsd1, and its associated negative feedback loop, provide transient and reversible regulation of gene expression during hematopoietic development.
Collapse
Affiliation(s)
- Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Alexandra M. Call
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Annika V. Thorpe
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Michael E. Engel
- Department of Pediatric Hematology/Oncology, Emily Couric Cancer Center, University of Virginia, Charlottesville, VA 22903, USA,Corresponding author
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA,Corresponding author
| |
Collapse
|
5
|
Characterization of a genomic region 8 kb downstream of GFI1B associated with myeloproliferative neoplasms. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166259. [PMID: 34450246 DOI: 10.1016/j.bbadis.2021.166259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022]
Abstract
A genomic locus 8 kb downstream of the transcription factor GFI1B (Growth Factor Independence 1B) predisposes to clonal hematopoiesis and myeloproliferative neoplasms. One of the most significantly associated polymorphisms in this region is rs621940-G. GFI1B auto-represses GFI1B, and altered GFI1B expression contributes to myeloid neoplasms. We studied whether rs621940-G affects GFI1B expression and growth of immature cells. GFI1B ChIP-seq showed clear binding to the rs621940 locus. Preferential binding of various hematopoietic transcription factors to either the rs621940-C or -G allele was observed, but GFI1B showed no preference. In gene reporter assays the rs621940 region inhibited GFI1B promoter activity with the G-allele having less suppressive effects compared to the C-allele. However, CRISPR-Cas9 mediated deletion of the locus in K562 cells did not alter GFI1B expression nor auto-repression. In healthy peripheral blood mononuclear cells GFI1B expression did not differ consistently between the rs621940 alleles. Long range and targeted deep sequencing did not detect consistent effects of rs621940-G on allelic GFI1B expression either. Finally, we observed that myeloid colony formation was not significantly affected by either rs621940 allele in 193 healthy donors. Together, these findings show no evidence that rs621940 or its locus affect GFI1B expression, auto-repression or growth of immature myeloid cells.
Collapse
|
6
|
Beauchemin H, Möröy T. Multifaceted Actions of GFI1 and GFI1B in Hematopoietic Stem Cell Self-Renewal and Lineage Commitment. Front Genet 2020; 11:591099. [PMID: 33193732 PMCID: PMC7649360 DOI: 10.3389/fgene.2020.591099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Growth factor independence 1 (GFI1) and the closely related protein GFI1B are small nuclear proteins that act as DNA binding transcriptional repressors. Both recognize the same consensus DNA binding motif via their C-terminal zinc finger domains and regulate the expression of their target genes by recruiting chromatin modifiers such as histone deacetylases (HDACs) and demethylases (LSD1) by using an N-terminal SNAG domain that comprises only 20 amino acids. The only region that is different between both proteins is the region that separates the zinc finger domains and the SNAG domain. Both proteins are co-expressed in hematopoietic stem cells (HSCs) and, to some extent, in multipotent progenitors (MPPs), but expression is specified as soon as early progenitors and show signs of lineage bias. While expression of GFI1 is maintained in lymphoid primed multipotent progenitors (LMPPs) that have the potential to differentiate into both myeloid and lymphoid cells, GFI1B expression is no longer detectable in these cells. By contrast, GFI1 expression is lost in megakaryocyte precursors (MKPs) and in megakaryocyte-erythrocyte progenitors (MEPs), which maintain a high level of GFI1B expression. Consequently, GFI1 drives myeloid and lymphoid differentiation and GFI1B drives the development of megakaryocytes, platelets, and erythrocytes. How such complementary cell type- and lineage-specific functions of GFI1 and GFI1B are maintained is still an unresolved question in particular since they share an almost identical structure and very similar biochemical modes of actions. The cell type-specific accessibility of GFI1/1B binding sites may explain the fact that very similar transcription factors can be responsible for very different transcriptional programming. An additional explanation comes from recent data showing that both proteins may have additional non-transcriptional functions. GFI1 interacts with a number of proteins involved in DNA repair and lack of GFI1 renders HSCs highly susceptible to DNA damage-induced death and restricts their proliferation. In contrast, GFI1B binds to proteins of the beta-catenin/Wnt signaling pathway and lack of GFI1B leads to an expansion of HSCs and MKPs, illustrating the different impact that GFI1 or GFI1B has on HSCs. In addition, GFI1 and GFI1B are required for endothelial cells to become the first blood cells during early murine development and are among those transcription factors needed to convert adult endothelial cells or fibroblasts into HSCs. This role of GFI1 and GFI1B bears high significance for the ongoing effort to generate hematopoietic stem and progenitor cells de novo for the autologous treatment of blood disorders such as leukemia and lymphoma.
Collapse
Affiliation(s)
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
7
|
Gomes AM, Kurochkin I, Chang B, Daniel M, Law K, Satija N, Lachmann A, Wang Z, Ferreira L, Ma'ayan A, Chen BK, Papatsenko D, Lemischka IR, Moore KA, Pereira CF. Cooperative Transcription Factor Induction Mediates Hemogenic Reprogramming. Cell Rep 2019; 25:2821-2835.e7. [PMID: 30517869 PMCID: PMC6571141 DOI: 10.1016/j.celrep.2018.11.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/19/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
During development, hematopoietic stem and progenitor cells (HSPCs) arise from specialized endothelial cells by a process termed endothelial-to-hematopoietic transition (EHT). The genetic program driving human HSPC emergence remains largely unknown. We previously reported that the generation of hemogenic precursor cells from mouse fibroblasts recapitulates developmental hematopoiesis. Here, we demonstrate that human fibroblasts can be reprogrammed into hemogenic cells by the same transcription factors. Induced cells display dynamic EHT transcriptional programs, generate hematopoietic progeny, possess HSPC cell surface phenotype, and repopulate immunodeficient mice for 3 months. Mechanistically, GATA2 and GFI1B interact and co-occupy a cohort of targets. This cooperative binding is reflected by engagement of open enhancers and promoters, initiating silencing of fibroblast genes and activating the hemogenic program. However, GATA2 displays dominant and independent targeting activity during the early phases of reprogramming. These findings shed light on the processes controlling human HSC specification and support generation of reprogrammed HSCs for clinical applications. Gomes et al. show that specification of hemogenesis in human fibroblasts is mediated by cooperative transcription factor binding. GATA2 displays dominance, interacts with GFI1B, and recruits FOS to open chromatin, simultaneously silencing the fibroblast program and initiating an endothelial-to-hematopoietic transition to definitive hematopoiesis.
Collapse
Affiliation(s)
- Andreia M Gomes
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
| | - Ilia Kurochkin
- Skolkovo Institute of Science and Technology, Nobel Street, Building 3, Moscow 143026, Russia
| | - Betty Chang
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Michael Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Kenneth Law
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Namita Satija
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Lino Ferreira
- Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Benjamin K Chen
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Dmitri Papatsenko
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Skolkovo Institute of Science and Technology, Nobel Street, Building 3, Moscow 143026, Russia
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA.
| | - Carlos-Filipe Pereira
- Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal; Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
van Bergen MGJM, van der Reijden BA. Targeting the GFI1/1B-CoREST Complex in Acute Myeloid Leukemia. Front Oncol 2019; 9:1027. [PMID: 31649884 PMCID: PMC6794713 DOI: 10.3389/fonc.2019.01027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation. Recent studies have shown that small molecules targeting Lysine Specific Demethylase 1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a core component of the chromatin binding CoREST complex. Together with histone deacetylases CoREST regulates gene expression by histone 3 demethylation and deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence) are major interaction partners of KDM1A and recruit the CoREST complex to chromatin in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt the GFI1/1B-CoREST interaction and that this is key to inducing terminal differentiation of leukemia cells.
Collapse
Affiliation(s)
| | - Bert A. van der Reijden
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
McClellan D, Casey MJ, Bareyan D, Lucente H, Ours C, Velinder M, Singer J, Lone MD, Sun W, Coria Y, Mason CC, Engel ME. Growth Factor Independence 1B-Mediated Transcriptional Repression and Lineage Allocation Require Lysine-Specific Demethylase 1-Dependent Recruitment of the BHC Complex. Mol Cell Biol 2019; 39:e00020-19. [PMID: 30988160 PMCID: PMC6580704 DOI: 10.1128/mcb.00020-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Growth factor independence 1B (GFI1B) coordinates assembly of transcriptional repressor complexes comprised of corepressors and histone-modifying enzymes to control gene expression programs governing lineage allocation in hematopoiesis. Enforced expression of GFI1B in K562 erythroleukemia cells favors erythroid over megakaryocytic differentiation, providing a platform to define molecular determinants of binary fate decisions triggered by GFI1B. We deployed proteome-wide proximity labeling to identify factors whose inclusion in GFI1B complexes depends upon GFI1B's obligate effector, lysine-specific demethylase 1 (LSD1). We show that GFI1B preferentially recruits core and putative elements of the BRAF-histone deacetylase (HDAC) (BHC) chromatin-remodeling complex (LSD1, RCOR1, HMG20A, HMG20B, HDAC1, HDAC2, PHF21A, GSE1, ZMYM2, and ZNF217) in an LSD1-dependent manner to control acquisition of erythroid traits by K562 cells. Among these elements, depletion of both HMG20A and HMG20B or of GSE1 blocks GFI1B-mediated erythroid differentiation, phenocopying impaired differentiation brought on by LSD1 depletion or disruption of GFI1B-LSD1 binding. These findings demonstrate the central role of the GFI1B-LSD1 interaction as a determinant of BHC complex recruitment to enable cell fate decisions driven by GFI1B.
Collapse
Affiliation(s)
- David McClellan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mattie J Casey
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diana Bareyan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Helena Lucente
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Ours
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Matthew Velinder
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Singer
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mehraju Din Lone
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Wenxiang Sun
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yunuen Coria
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Michael E Engel
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
- Center for Investigational Therapeutics, Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Nuclear Control of Cell Growth and Differentiation Program, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
van Oorschot R, Marneth AE, Bergevoet SM, van Bergen MGJM, Peerlinck K, Lentaigne CE, Millar CM, Westbury SK, Favier R, Erber WN, Turro E, Jansen JH, Ouwehand WH, McKinney HL, Downes K, Freson K, van der Reijden BA. Inherited missense variants that affect GFI1B function do not necessarily cause bleeding diatheses. Haematologica 2018; 104:e260-e264. [PMID: 30573501 DOI: 10.3324/haematol.2018.207712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rinske van Oorschot
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Anna E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Maaike G J M van Bergen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | - Claire E Lentaigne
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, UK
| | - Carolyn M Millar
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Sarah K Westbury
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | - Remi Favier
- Service d'Hematologie Biologique, Assistance-Publique Hôpitaux de Paris, Centre de Référence des Pathologies Plaquettaires, Hôpital Armand Trousseau, Paris, France
| | - Wendy N Erber
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia.,PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK.,Medical Research Council Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge Biomedical Campus, UK
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK.,Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Strangeways Research Laboratory, The National Institute for Health Research (NIHR) Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, UK
| | - Harriet L McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | | | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Belgium.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| |
Collapse
|
11
|
Moore C, Richens JL, Hough Y, Ucanok D, Malla S, Sang F, Chen Y, Elworthy S, Wilkinson RN, Gering M. Gfi1aa and Gfi1b set the pace for primitive erythroblast differentiation from hemangioblasts in the zebrafish embryo. Blood Adv 2018; 2:2589-2606. [PMID: 30309860 PMCID: PMC6199651 DOI: 10.1182/bloodadvances.2018020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The transcriptional repressors Gfi1(a) and Gfi1b are epigenetic regulators with unique and overlapping roles in hematopoiesis. In different contexts, Gfi1 and Gfi1b restrict or promote cell proliferation, prevent apoptosis, influence cell fate decisions, and are essential for terminal differentiation. Here, we show in primitive red blood cells (prRBCs) that they can also set the pace for cellular differentiation. In zebrafish, prRBCs express 2 of 3 zebrafish Gfi1/1b paralogs, Gfi1aa and Gfi1b. The recently identified zebrafish gfi1aa gene trap allele qmc551 drives erythroid green fluorescent protein (GFP) instead of Gfi1aa expression, yet homozygous carriers have normal prRBCs. prRBCs display a maturation defect only after splice morpholino-mediated knockdown of Gfi1b in gfi1aa qmc551 homozygous embryos. To study the transcriptome of the Gfi1aa/1b double-depleted cells, we performed an RNA-Seq experiment on GFP-positive prRBCs sorted from 20-hour-old embryos that were heterozygous or homozygous for gfi1aa qmc551 , as well as wt or morphant for gfi1b We subsequently confirmed and extended these data in whole-mount in situ hybridization experiments on newly generated single- and double-mutant embryos. Combined, the data showed that in the absence of Gfi1aa, the synchronously developing prRBCs were delayed in activating late erythroid differentiation, as they struggled to suppress early erythroid and endothelial transcription programs. The latter highlighted the bipotent nature of the progenitors from which prRBCs arise. In the absence of Gfi1aa, Gfi1b promoted erythroid differentiation as stepwise loss of wt gfi1b copies progressively delayed Gfi1aa-depleted prRBCs even further, showing that Gfi1aa and Gfi1b together set the pace for prRBC differentiation from hemangioblasts.
Collapse
Affiliation(s)
| | | | | | | | - Sunir Malla
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Fei Sang
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Yan Chen
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Robert N Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
12
|
Olariu V, Manesso E, Peterson C. A deterministic method for estimating free energy genetic network landscapes with applications to cell commitment and reprogramming paths. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160765. [PMID: 28680655 PMCID: PMC5493897 DOI: 10.1098/rsos.160765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming.
Collapse
Affiliation(s)
- Victor Olariu
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund 22362, Sweden
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Erica Manesso
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund 22362, Sweden
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund 22362, Sweden
| |
Collapse
|
13
|
Anguita E, Candel FJ, Chaparro A, Roldán-Etcheverry JJ. Transcription Factor GFI1B in Health and Disease. Front Oncol 2017; 7:54. [PMID: 28401061 PMCID: PMC5368270 DOI: 10.3389/fonc.2017.00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Many human diseases arise through dysregulation of genes that control key cell fate pathways. Transcription factors (TFs) are major cell fate regulators frequently involved in cancer, particularly in leukemia. The GFI1B gene, coding a TF, was identified by sequence homology with the oncogene growth factor independence 1 (GFI1). Both GFI1 and GFI1B have six C-terminal C2H2 zinc fingers and an N-terminal SNAG (SNAIL/GFI1) transcriptional repression domain. Gfi1 is essential for neutrophil differentiation in mice. In humans, GFI1 mutations are associated with severe congenital neutropenia. Gfi1 is also required for B and T lymphopoiesis. However, knockout mice have demonstrated that Gfi1b is required for development of both erythroid and megakaryocytic lineages. Consistent with this, human mutations of GFI1B produce bleeding disorders with low platelet count and abnormal function. Loss of Gfi1b in adult mice increases the absolute numbers of hematopoietic stem cells (HSCs) that are less quiescent than wild-type HSCs. In keeping with this key role in cell fate, GFI1B is emerging as a gene involved in cancer, which also includes solid tumors. In fact, abnormal activation of GFI1B and GFI1 has been related to human medulloblastoma and is also likely to be relevant in blood malignancies. Several pieces of evidence supporting this statement will be detailed in this mini review.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco J Candel
- Microbiology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Alberto Chaparro
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan J Roldán-Etcheverry
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
14
|
Ferreira CR, Chen D, Abraham SM, Adams DR, Simon KL, Malicdan MC, Markello TC, Gunay-Aygun M, Gahl WA. Combined alpha-delta platelet storage pool deficiency is associated with mutations in GFI1B. Mol Genet Metab 2017; 120:288-294. [PMID: 28041820 PMCID: PMC5346474 DOI: 10.1016/j.ymgme.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023]
Abstract
Combined alpha-delta platelet storage pool deficiency is characterized by the absence or reduction in the number of both alpha granules and dense bodies. This disorder can have variable severity as well as a variable inheritance pattern. We describe two patients from unrelated families with combined alpha-delta storage pool deficiency due to mutations in GFI1B, a zinc finger protein known to act as a transcriptional repressor of various genes. We demonstrate that this disease is associated with either a heterozygous mutation (de novo or familial) abrogating the binding of the zinc fingers with the promoter of its target genes, or by hypomorphic biallelic mutations in GFI1B leading to autosomal recessive inheritance.
Collapse
Affiliation(s)
- Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Division of Genetics and Metabolism, Children's National Health System, Washington, DC, United States.
| | - Dong Chen
- Special Coagulation Laboratory, Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Shirley M Abraham
- Division of Hematology and Oncology, Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karen L Simon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - May C Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Johns Hopkins University School of Medicine, Department of Pediatrics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
16
|
Lelieveld SH, Schütte J, Dijkstra MJJ, Bawono P, Kinston SJ, Göttgens B, Heringa J, Bonzanni N. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites. Nucleic Acids Res 2016; 44:e72. [PMID: 26721389 PMCID: PMC4856970 DOI: 10.1093/nar/gkv1518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing.
Collapse
Affiliation(s)
- Stefan H Lelieveld
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Judith Schütte
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK Klinik für Hämatologie, Universitätsklinik Essen 45147, Germany
| | - Maurits J J Dijkstra
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Punto Bawono
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Jaap Heringa
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Nicola Bonzanni
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands ENPICOM, Eindhoven 5632 CW, The Netherlands
| |
Collapse
|
17
|
Anguita E, Gupta R, Olariu V, Valk PJ, Peterson C, Delwel R, Enver T. A somatic mutation of GFI1B identified in leukemia alters cell fate via a SPI1 (PU.1) centered genetic regulatory network. Dev Biol 2016; 411:277-286. [PMID: 26851695 DOI: 10.1016/j.ydbio.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023]
Abstract
We identify a mutation (D262N) in the erythroid-affiliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). The GFI1B-D262N mutant functionally antagonizes the transcriptional activity of wild-type GFI1B. GFI1B-D262N promoted myelomonocytic versus erythroid output from primary human hematopoietic precursors and enhanced cell survival of both normal and MDS derived precursors. Re-analysis of AML transcriptome data identifies a distinct group of patients in whom expression of wild-type GFI1B and SPI1 (PU.1) have an inverse pattern. In delineating this GFI1B-SPI1 relationship we show that (i) SPI1 is a direct target of GFI1B, (ii) expression of GFI1B-D262N produces elevated expression of SPI1, and (iii) SPI1-knockdown restores balanced lineage output from GFI1B-D262N-expressing precursors. These results table the SPI1-GFI1B transcriptional network as an important regulatory axis in AML as well as in the development of erythroid versus myelomonocytic cell fate.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, 28040 Madrid, Spain.
| | - Rajeev Gupta
- UCL Cancer Institute, Paul O'Gorman Building 72 Huntley St., London WC1E6BT, United Kingdom.
| | - Victor Olariu
- Computational Biology and Biological Physics Division, Lund University, Lund, Sweden.
| | - Peter J Valk
- Department of Hematology Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Carsten Peterson
- Computational Biology and Biological Physics Division, Lund University, Lund, Sweden.
| | - Ruud Delwel
- Department of Hematology Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Tariq Enver
- UCL Cancer Institute, Paul O'Gorman Building 72 Huntley St., London WC1E6BT, United Kingdom.
| |
Collapse
|
18
|
Taura A, Furuta K, Yamaguchi T, Kawabata K, Tanaka S. Regulation of histamine synthesis and tryptase expression through transcription factors, growth factor independent 1 (Gfi1) and Gfi1b, in murine cultured mast cells. Biol Pharm Bull 2014; 37:81-6. [PMID: 24389484 DOI: 10.1248/bpb.b13-00616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mast cells are involved in various immunological responses, although it remains unknown how their terminal differentiation is regulated. We previously established a culture model that mimics the process of mast cell maturation in the cutaneous tissue and found that growth factor independent 1 (Gfi1) was up-regulated whereas its paralogue Gfi1b down-regulated. Here we investigated the roles of Gfi1 and Gfi1b in the process of mast cell maturation using a murine mast cell line, MC9. Gfi1 and Gfi1b cDNAs were stably expressed in MC9 cells using the recombinant lentivirus. Histamine synthesis was significantly induced by stem cell factor (SCF) alone, whereas tryptase expression was significantly augmented in the presence of both SCF and Swiss 3T3 cells. Since exogenously expressed Gfi1 and Gfi1b might affect their expression levels in MC9 cells, we investigated the relationship between the expression profiles of Gfi1/Gfi1b proteins and maturation indices, such as histamine synthesis and tryptase expression. The comparison suggested that histamine synthesis during the co-culture period was positively regulated by Gfi1b while augmented expression of tryptase was abolished by one-sided expression of Gfi1/Gfi1b. Our findings indicated the involvement of Gfi1 and Gfi1b in the process of murine mast cell maturation.
Collapse
Affiliation(s)
- Azusa Taura
- Department of Immunobiology, Okayama University Graduated School of Medicine, Dentistry, and Pharmaceutical Sciences
| | | | | | | | | |
Collapse
|
19
|
Simon JM, Giresi PG, Davis IJ, Lieb JD. Addendum: Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 2014. [DOI: 10.1038/nprot.2014.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Yang CC, Buck MJ, Chen MH, Chen YF, Lan HC, Chen JJW, Cheng C, Liu CC. Discovering chromatin motifs using FAIRE sequencing and the human diploid genome. BMC Genomics 2013; 14:310. [PMID: 23656909 PMCID: PMC3655836 DOI: 10.1186/1471-2164-14-310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 04/30/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Specific chromatin structures are associated with active or inactive gene transcription. The gene regulatory elements are intrinsically dynamic and alternate between inactive and active states through the recruitment of DNA binding proteins, such as chromatin-remodeling proteins. RESULTS We developed a unique genome-wide method to discover DNA motifs associated with chromatin accessibility using formaldehyde-assisted isolation of regulatory elements with high-throughput sequencing (FAIRE-seq). We aligned the FAIRE-seq reads to the GM12878 diploid genome and subsequently identified differential chromatin-state regions (DCSRs) using heterozygous SNPs. The DCSR pairs represent the locations of imbalances of chromatin accessibility between alleles and are ideal to reveal chromatin motifs that may directly modulate chromatin accessibility. In this study, we used DNA 6-10mer sequences to interrogate all DCSRs, and subsequently discovered conserved chromatin motifs with significant changes in the occurrence frequency. To investigate their likely roles in biology, we studied the annotated protein associated with each of the top ten chromatin motifs genome-wide, in the intergenic regions and in genes, respectively. As a result, we found that most of these annotated motifs are associated with chromatin remodeling, reflecting their significance in biology. CONCLUSIONS Our method is the first one using fully phased diploid genome and FAIRE-seq to discover motifs associated with chromatin accessibility. Our results were collected to construct the first chromatin motif database (CMD), providing the potential DNA motifs recognized by chromatin-remodeling proteins and is freely available at http://syslab.nchu.edu.tw/chromatin.
Collapse
Affiliation(s)
- Chia-Chun Yang
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lancrin C, Mazan M, Stefanska M, Patel R, Lichtinger M, Costa G, Vargel O, Wilson NK, Möröy T, Bonifer C, Göttgens B, Kouskoff V, Lacaud G. GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 2012; 120:314-22. [PMID: 22668850 DOI: 10.1182/blood-2011-10-386094] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have established that during embryonic development, hematopoietic progenitors and stem cells are generated from hemogenic endothelium precursors through a process termed endothelial to hematopoietic transition (EHT). The transcription factor RUNX1 is essential for this process, but its main downstream effectors remain largely unknown. Here, we report the identification of Gfi1 and Gfi1b as direct targets of RUNX1 and critical regulators of EHT. GFI1 and GFI1B are able to trigger, in the absence of RUNX1, the down-regulation of endothelial markers and the formation of round cells, a morphologic change characteristic of EHT. Conversely, blood progenitors in Gfi1- and Gfi1b-deficient embryos maintain the expression of endothelial genes. Moreover, those cells are not released from the yolk sac and disseminated into embryonic tissues. Taken together, our findings demonstrate a critical and specific role of the GFI1 transcription factors in the first steps of the process leading to the generation of hematopoietic progenitors from hemogenic endothelium.
Collapse
Affiliation(s)
- Christophe Lancrin
- Cancer Research UK Stem Cell Biology Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Esteghamat F, van Dijk TB, Braun H, Dekker S, van der Linden R, Hou J, Fanis P, Demmers J, van IJcken W, Ozgür Z, Horos R, Pourfarzad F, von Lindern M, Philipsen S. The DNA binding factor Hmg20b is a repressor of erythroid differentiation. Haematologica 2011; 96:1252-60. [PMID: 21606163 DOI: 10.3324/haematol.2011.045211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In erythroblasts, the CoREST repressor complex is recruited to target promoters by the transcription factor Gfi1b, leading to repression of genes mainly involved in erythroid differentiation. Hmg20b is a subunit of CoREST, but its role in erythropoiesis has not yet been established. DESIGN AND METHODS To study the role of Hmg20b in erythropoiesis, we performed knockdown experiments in a differentiation-competent mouse fetal liver cell line, and in primary mouse fetal liver cells. The effects on globin gene expression were determined. We used microarrays to investigate global gene expression changes induced by Hmg20b knockdown. Functional analysis was carried out on Hrasls3, an Hmg20b target gene. RESULTS We show that Hmg20b depletion induces spontaneous differentiation. To identify the target genes of Hmg20b, microarray analysis was performed on Hmg20b knockdown cells and controls. In line with its association to the CoREST complex, we found that 85% (527 out of 620) of the deregulated genes are up-regulated when Hmg20b levels are reduced. Among the few down-regulated genes was Gfi1b, a known repressor of erythroid differentiation. Among the consistently up-regulated targets were embryonic β-like globins and the phospholipase HRAS-like suppressor 3 (Hrasls3). We show that Hrasls3 expression is induced during erythroid differentiation and that knockdown of Hrasls3 inhibits terminal differentiation of proerythroblasts. CONCLUSIONS We conclude that Hmg20b acts as an inhibitor of erythroid differentiation, through the down-regulation of genes involved in differentiation such as Hrasls3, and activation of repressors of differentiation such as Gfi1b. In addition, Hmg20b suppresses embryonic β-like globins.
Collapse
|
23
|
van der Meer LT, Jansen JH, van der Reijden BA. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 2010; 24:1834-43. [DOI: 10.1038/leu.2010.195] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 2010; 116:5149-61. [PMID: 20826720 DOI: 10.1182/blood-2010-04-280305] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Donor-matched transplantation of hematopoietic stem cells (HSCs) is widely used to treat hematologic malignancies but is associated with high mortality. The expansion of HSC numbers and their mobilization into the bloodstream could significantly improve therapy. We report here that adult mice conditionally deficient for the transcription Growth factor independence 1b (Gfi1b) show a significant expansion of functional HSCs in the bone marrow and blood. Despite this expansion, Gfi1b(ko/ko) HSCs retain their ability to self-renew and to initiate multilineage differentiation but are no longer quiescent and contain elevated levels of reactive oxygen species. Treatment of Gfi1b(ko/ko) mice with N-acetyl-cystein significantly reduced HSC numbers indicating that increased reactive oxygen species levels are at least partially responsible for the expansion of Gfi1b-deficient HSCs. Moreover, Gfi1b(-/-) HSCs show decreased expression of CXCR4 and Vascular cell adhesion protein-1, which are required to retain dormant HSCs in the endosteal niche, suggesting that Gfi1b regulates HSC dormancy and pool size without affecting their function. Finally, the additional deletion of the related Gfi1 gene in Gfi1b(ko/ko) HSCs is incompatible with the maintenance of HSCs, suggesting that Gfi1b and Gfi1 have partially overlapping functions but that at least one Gfi gene is essential for the generation of HSCs.
Collapse
|
25
|
Hernández A, Villegas A, Anguita E. Human promoter mutations unveil Oct-1 and GATA-1 opposite action on Gfi1b regulation. Ann Hematol 2010; 89:759-65. [PMID: 20143233 DOI: 10.1007/s00277-009-0900-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/30/2009] [Indexed: 01/17/2023]
Abstract
Growth factor-independence 1b (Gfi1b) is a zinc finger transcription factor essential for erythroid and megakaryocytic development. To better understand Gfi1b regulation and to know the implication of the level of expression of this gene in human pathology, we have searched for promoter punctual sequence variations in 214 patients with different hematological diseases. We found two previously unknown congenital mutations at evolutionary conserved GATA and octamer-binding (Oct) transcription factor sites. The Oct site mutation was also found in five relatives of the patient. The GATA motif mutation reduced promoter activity by 50% in vitro, while homozygous patients with the octamer site mutation showed a four-to-five times increase of Gfi1b RNA in platelets. Electrophoretic mobility shift analyses demonstrated that different protein complexes bind to both sites and that binding is reduced by the mutations. Finally, we found that GATA-1 and Oct-1 are the main components of each complex. This study provides evidences of a new mechanism for Gfi1b repression. This is also the first report of Gfi1b mutations with a functional implication; further investigation and follow-up will clarify the involvement of these mutations in hematological disease.
Collapse
Affiliation(s)
- Aurora Hernández
- Hematology Department, Hospital Clinico San Carlos, University Complutense, Madrid, Spain
| | | | | |
Collapse
|