1
|
Elbadry MI, Abdelkreem E, Tawfeek A, Seo GH, Aziz SP. Genetic variants in NHEJ1 and related DNA repair disorders: insights into phenotypic heterogeneity and links to hypoplastic myelodysplastic syndromes and familial hematological malignancies susceptibility. Ann Hematol 2025; 104:1633-1653. [PMID: 40047910 DOI: 10.1007/s00277-025-06257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025]
Abstract
This study investigates the burden, phenotypes, progression, and outcomes of familial hematological malignancies (FHM) through clinical evaluation, gene panel testing, and whole exome sequencing, highlighting the significance of identifying genetic causes for personalized treatment. Over six years, 357 patients initially diagnosed with bone marrow failure (BMF) were evaluated, with 152 patients lacking identifiable causes undergoing further analysis. Among these, 53 (34.9%) exhibited features of inherited BMF syndromes, and 13 (24.5%) developed FHM. In a separate cohort of 27 patients with inherited immunodeficiency disorders, 8 (29.6%) developed FHM associated with NHEJ1 or LYST variants, underscoring the familial clustering of hematologic disorders. Notably, 6 of 7 patients from the same family (family-1) with homozygous NHEJ1 variants progressed to secondary myelodysplastic syndrome (sMDS), acute myeloid leukemia (AML), or lymphoma. Among 780 patients diagnosed with hematological malignancies during the study period, 45 (5.8%) were confirmed to have FHM, with 33 patients enrolled for detailed analysis. Of these, 16 (48.5%) had DNA-repair deficiencies (DNA-RD), including eight with Fanconi anemia, six with NHEJ1 variants, and two with BRCA2 mutations. The remaining 17 patients presented conditions such as familial myeloproliferative neoplasms, dyskeratosis congenita (DC) [TERT, DKC1 variants], and Chediak-Higashi syndrome. Two siblings (family-3) with a rare TERT variant and a unique DC phenotype developed sMDS after prolonged BMF. Patients with DNA-RD were younger and exhibited higher rates of growth failure, recurrent infections, and endocrinopathies. These cases frequently progressed to sMDS or AML. A comparative analysis of 319 individuals with DNA double-strand break repair deficiencies revealed a 45% frequency of hematological malignancies. Lymphoma was most common in Nijmegen breakage syndrome (79.4%) while MDS/AML was prevalent in Cernunnos deficiency (66.6%). The findings emphasize the importance of early diagnosis, genetic testing, and personalized management, including timely transplantation, to improve outcomes in FHM. This research underscores the need for clinical awareness and surveillance to facilitate timely interventions and mitigate disease progression.
Collapse
Affiliation(s)
- Mahmoud I Elbadry
- Department of Internal Medicine, Division of Haematology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Elsayed Abdelkreem
- Department of Paediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Tawfeek
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Go Hun Seo
- Medical Genetics Division, 3billion Inc, Seoul, South Korea
| | - Shereen Philip Aziz
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
2
|
Paes JF, Torres DG, Aquino DC, Alves EVB, Mesquita EA, Sousa MA, Fraiji NA, Passos LNM, Abreu RS, Silva GAV, Tarragô AM, de Souza Mourão LP. Exploring hematological alterations and genetics linked to SNV rs10974944 in myeloproliferative neoplasms among Amazon patients. Sci Rep 2024; 14:9389. [PMID: 38654055 PMCID: PMC11039700 DOI: 10.1038/s41598-024-60090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms are hematopoietic disorders characterized by panmyelosis. JAK2 V617F is a frequent variant in these diseases and often occurs in the 46/1 haplotype. The G allele of rs10974944 has been shown to be associated with this variant, specifically its acquisition, correlations with familial cases, and laboratory alterations. This study evaluated the association between the 46/1 haplotype and JAK2 V617F in patients with myeloproliferative neoplasms in a population from the Brazilian Amazon. Clinical, laboratory and molecular sequencing analyses were considered. Carriers of the G allele of rs10974944 with polycythemia vera showed an increase in mean corpuscular volume and mean corpuscular hemoglobin, while in those with essential thrombocythemia, there was an elevation in red blood cells, hematocrit, and hemoglobin. Associations were observed between rs10974944 and the JAK2 V617F, in which the G allele (OR 3.4; p < 0.0001) and GG genotype (OR 4.9; p = 0.0016) were associated with JAK2 V617F + and an increase in variant allele frequency (GG: OR 15.8; p = < 0.0001; G: OR 6.0; p = 0.0002). These results suggest an association between rs10974944 (G) and a status for JAK2 V617F, JAK2 V617F + _VAF ≥ 50%, and laboratory alterations in the erythroid lineage.
Collapse
Affiliation(s)
- Jhemerson F Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Dania G Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Deborah C Aquino
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Emanuela V B Alves
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Erycka A Mesquita
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Miliane A Sousa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Nelson Abrahim Fraiji
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - Leny N M Passos
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - Rosângela S Abreu
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - George A V Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Andréa M Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - Lucivana P de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil.
- Escola Superior em Ciências da Saúde (ESA/UEA), Av. Carvalho Leal, 1777 - Cachoeirinha, Manaus, AM, 69065-001, Brazil.
| |
Collapse
|
3
|
Paes J, Silva GAV, Tarragô AM, Mourão LPDS. The Contribution of JAK2 46/1 Haplotype in the Predisposition to Myeloproliferative Neoplasms. Int J Mol Sci 2022; 23:12582. [PMID: 36293440 PMCID: PMC9604447 DOI: 10.3390/ijms232012582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Haplotype 46/1 (GGCC) consists of a set of genetic variations distributed along chromosome 9p.24.1, which extend from the Janus Kinase 2 gene to Insulin like 4. Marked by four jointly inherited variants (rs3780367, rs10974944, rs12343867, and rs1159782), this haplotype has a strong association with the development of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) because it precedes the acquisition of the JAK2V617F variant, a common genetic alteration in individuals with these hematological malignancies. It is also described as one of the factors that increases the risk of familial MPNs by more than five times, 46/1 is associated with events related to inflammatory dysregulation, splenomegaly, splanchnic vein thrombosis, Budd-Chiari syndrome, increases in RBC count, platelets, leukocytes, hematocrit, and hemoglobin, which are characteristic of MPNs, as well as other findings that are still being elucidated and which are of great interest for the etiopathological understanding of these hematological neoplasms. Considering these factors, the present review aims to describe the main findings and discussions involving the 46/1 haplotype, and highlights the molecular and immunological aspects and their relevance as a tool for clinical practice and investigation of familial cases.
Collapse
Affiliation(s)
- Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
| | - George A. V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
4
|
Chen Y, Zhang Y, Wang Z, Wang Y, Luo Y, Sun N, Zheng S, Yan W, Xiao X, Liu S, Li J, Peng H, Xu Y, Hu G, Cheng Z, Zhang G. CHST15 gene germline mutation is associated with the development of familial myeloproliferative neoplasms and higher transformation risk. Cell Death Dis 2022; 13:586. [PMID: 35798703 PMCID: PMC9263130 DOI: 10.1038/s41419-022-05035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
Herein, we describe the clinical and hematological features of three genetically related families predisposed to myeloproliferative neoplasms (MPNs). Using whole-exome sequencing, we identified a c.1367delG mutation(p.Arg456fs) in CHST15 (NM_001270764), a gene encoding a type II transmembraneglycoproteinthat acts as a sulfotransferase and participates in the biosynthesis of chondroitin sulfate E, in germline and somatic cells in familial MPN. CHST15defects caused an increased JAK2V617F allele burden and upregulated p-Stat3 activity,leading to an increase in the proliferative and prodifferentiation potential of transgenic HEL cells. We demonstrated that mutant CHST15 is able to coimmmunoprecipitate the JAK2 protein,suggesting the presence of a CHST15-JAK2-Stat3 signaling axis in familial MPN. Gene expression profiling showed that the FREM1, IFI27 and C4B_2 genes are overexpressed in familial MPN, suggesting the activation of an "inflammatory response-extracellular matrix-immune regulation" signaling network in the CHST15 mutation background.We thus concluded that CHST15 is a novel gene that predisposes to familial MPN and increases the probability of disease development or transformation.
Collapse
Affiliation(s)
- Yi Chen
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Department of Oncology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yujiao Luo
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Nannan Sun
- Department of Hematology, The First affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Zheng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Wenzhe Yan
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Ji Li
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yunxiao Xu
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated ZhuZhou Hospital of XiangYa Medical College, Central South University, Zhuzhou, Hunan, China
| | - Zhao Cheng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China.
| | - Guangsen Zhang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Torres DG, Paes J, da Costa AG, Malheiro A, Silva GV, Mourão LPDS, Tarragô AM. JAK2 Variant Signaling: Genetic, Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. Biomolecules 2022; 12:291. [PMID: 35204792 PMCID: PMC8961666 DOI: 10.3390/biom12020291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1 negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G ˃ T at position 1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune response. JAK2V617F clones induce an inflammatory immune response and lead to a process of immunothrombosis. Recent research has shown great interest in trying to understand the mechanisms associated with JAK2V617F signaling and activation of cellular and molecular responses that progressively contribute to the development of inflammatory and vascular conditions in association with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main genetic, hematological and immunological findings that are linked to JAK2 variant signaling in chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dania G. Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Allyson G. da Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - George V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
- Fundação Centro de Controle de Oncologia do Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
6
|
Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms. Leukemia 2022; 36:126-137. [PMID: 34172895 DOI: 10.1038/s41375-021-01319-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
The germline predisposition associated with the autosomal dominant inheritance of the 14q32 duplication implicating ATG2B/GSKIP genes is characterized by a wide clinical spectrum of myeloid neoplasms. We analyzed 12 asymptomatic carriers and 52 patients aged 18-74 years from six families, by targeted sequencing of 41 genes commonly mutated in myeloid malignancies. We found that 75% of healthy carriers displayed early clonal hematopoiesis mainly driven by TET2 mutations. Molecular landscapes of patients revealed two distinct routes of clonal expansion and leukemogenesis. The first route is characterized by the clonal dominance of myeloproliferative neoplasms (MPN)-driver events associated with TET2 mutations in half of cases and mutations affecting splicing and/or the RAS pathway in one-third of cases, leading to the early development of MPN, mostly essential thrombocythemia, with a high risk of transformation (50% after 10 years). The second route is distinguished by the absence of MPN-driver mutations and leads to AML without prior MPN. These patients mostly harbored a genomic landscape specific to acute myeloid leukemia secondary to myelodysplastic syndrome. An unexpected result was the total absence of DNMT3A mutations in this cohort. Our results suggest that the germline duplication constitutively mimics hematopoiesis aging by favoring TET2 clonal hematopoiesis.
Collapse
|
7
|
Al-Ansari RY, Al Otaibi D, Al Hudaithi N, Abdalla L. Isolated ten-eleven translocation 2 positive in triple negative essential thrombocythemia: Case report and literature review. SAGE Open Med Case Rep 2021; 9:2050313X211032066. [PMID: 34350001 PMCID: PMC8287412 DOI: 10.1177/2050313x211032066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Essential thrombocythemia is one of the famous diseases under the category of
myeloproliferative disorder. It is an end result of a genetic mutation of one or more of
the most frequent oncogenes such as Janos kinase 2 (JAK2), MPL proto-oncogene,
thrombopoietin receptor (MPL), and calreticulin (CALR). However, negative genetic markers,
so-called (triple negative disease), can happen in the presence of other uncommon types of
mutation. TET2 (ten-eleven translocation 2) positive as isolated genetic marker in triple
negative essential thrombocythemia is uncommon genetic presentation. For that, we are
reporting a 22-year-old lady who presented with a feature of dyspepsia and accidentally
found to have persistently high platelet count, even after treating her mild iron
deficiency anemia with no other secondary causes. Further investigations and bone marrow
biopsy supported the diagnosis of isolated TET2 positive in triple negative essential
thrombocythemia. We treated her conservatively with good hydration and low dose of
aspirin. In conclusion, isolated TET2 positive in triple negative essential
thrombocythemia at presentation is uncommon with no clear management or risk
stratification guideline. However, it is hypothesized that TET2 mutation
precedes JAK2; therefore, the detection of isolated TET2 in a triple
negative essential thrombocythemia case should be closely followed for clonal evolution in
long term. Further study and guidelines required in this area.
Collapse
Affiliation(s)
- Rehab Y Al-Ansari
- Adult Hematology Unit, Internal Medicine Department, KFMMC, Dhahran, Kingdom of Saudi Arabia
| | - Dena Al Otaibi
- Internal Medicine Department, KFMMC, Dhahran, Kingdom of Saudi Arabia
| | - Nourah Al Hudaithi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Leena Abdalla
- Adult Hematology Unit, Internal Medicine Department, KFMMC, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Braunstein EM, Chen H, Juarez F, Yang F, Tao L, Makhlin I, Williams DM, Chaturvedi S, Pallavajjala A, Karantanos T, Martin R, Wohler E, Sobreira N, Gocke CD, Moliterno AR. Germline ERBB2/ HER2 Coding Variants Are Associated with Increased Risk of Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13133246. [PMID: 34209587 PMCID: PMC8268839 DOI: 10.3390/cancers13133246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 10/29/2022] Open
Abstract
Familial cases of myeloproliferative neoplasms (MPN) are relatively common, yet few inherited risk factors have been identified. Exome sequencing of a kindred with a familial cancer syndrome characterized by both MPN and melanoma produced a germline variant in the ERBB2/HER2 gene that co-segregates with disease. To further investigate whether germline ERBB2 variants contribute to MPN predisposition, the frequency of ERBB2 variants was analyzed in 1604 cases that underwent evaluation for hematologic malignancy, including 236 cases of MPN. MPN cases had a higher frequency of rare germline ERBB2 coding variants compared to non-MPN hematologic malignancies (8.9% vs. 4.1%, OR 2.4, 95% CI: 1.4 to 4.0, p = 0.0028) as well as cases without a blood cancer diagnosis that served as an internal control (8.9% vs. 2.7%, OR 3.5, 95% CI: 1.4 to 8.3, p = 0.0053). This finding was validated via comparison to an independent control cohort of 1587 cases without selection for hematologic malignancy (8.9% in MPN cases vs. 5.2% in controls, p = 0.040). The most frequent variant identified, ERBB2 c.1960A > G; p.I654V, was present in MPN cases at more than twice its expected frequency. These data indicate that rare germline coding variants in ERBB2 are associated with an increased risk for development of MPN. The ERBB2 gene is a novel susceptibility locus which likely contributes to cancer risk in combination with additional risk alleles.
Collapse
Affiliation(s)
- Evan M. Braunstein
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
- Correspondence:
| | - Hang Chen
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Felicia Juarez
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Fanghan Yang
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Lindsay Tao
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Igor Makhlin
- Department of Medicine, Division of Hematology & Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Donna M. Williams
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Shruti Chaturvedi
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.P.); (C.D.G.)
| | - Theodoros Karantanos
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (E.W.); (N.S.)
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (E.W.); (N.S.)
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.M.); (E.W.); (N.S.)
| | - Christopher D. Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.P.); (C.D.G.)
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Alison R. Moliterno
- Department of Medicine, Division of Haematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (H.C.); (F.J.); (F.Y.); (L.T.); (D.M.W.); (S.C.); (A.R.M.)
| |
Collapse
|
9
|
Stockklausner C, Duffert CM, Cario H, Knöfler R, Streif W, Kulozik AE. Thrombocytosis in children and adolescents-classification, diagnostic approach, and clinical management. Ann Hematol 2021; 100:1647-1665. [PMID: 33712866 PMCID: PMC8195939 DOI: 10.1007/s00277-021-04485-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Secondary thrombocytosis is a frequent secondary finding in childhood infection and inflammation. Primary hereditary thrombocytosis may be caused by germline mutations within the genes encoding key regulators of thrombopoiesis, i.e., thrombopoietin (THPO) and its receptor c-MPL (MPL) or the receptor's effector kinase Januskinase2 (JAK2). Furthermore, somatic mutations in JAK2, MPL, and in the gene-encoding calreticulin (CALR) have been described to act as driver mutations within the so-called Philadelphia-negative myeloproliferative neoplasms (MPNs), namely essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Increasing knowledge on the molecular mechanisms and on the clinical complications of these diseases is reflected by the WHO diagnostic criteria and European LeukemiaNet (ELN) recommendations on the management of adult MPN. However, data on childhood thrombocytosis are rare, and no consensus guidelines for pediatric thrombocytosis exist. Current literature has highlighted differences in the epidemiology and molecular pathogenesis of childhood thrombocytosis as compared to adults. Furthermore, age-dependent complications and pharmacological specificities suggest that recommendations tailored to the pediatric population are necessary in clinical practice. Here we summarize literature on classification, diagnostics, and clinical management of childhood thrombocytosis.
Collapse
Affiliation(s)
- Clemens Stockklausner
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children's Cancer Research Center (KiTZ), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Pediatrics, Garmisch-Partenkirchen Hospital, Auenstraße 6, 82467, Garmisch-Partenkirchen, Germany.
| | - C M Duffert
- Department of Pediatrics, Heidelberg University, Heidelberg, Germany
| | - H Cario
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - R Knöfler
- Department of Pediatric Hematology and Oncology, Medical Faculty of Technical University, Dresden, Germany
| | - W Streif
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - A E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children's Cancer Research Center (KiTZ), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
10
|
Park HS, Son BR, Shin KS, Kim HK, Yang Y, Jeong Y, Han HS, Lee KH, Kwon J. Germline JAK2 V617F mutation as a susceptibility gene causing myeloproliferative neoplasm in first-degree relatives. Leuk Lymphoma 2020; 61:3251-3254. [PMID: 32762473 DOI: 10.1080/10428194.2020.1802448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hee Sue Park
- Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Bo Ra Son
- Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Kyeong Seob Shin
- Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hee Kyung Kim
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yaewon Yang
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yusook Jeong
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Hye Sook Han
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Ki Hyeong Lee
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Jihyun Kwon
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| |
Collapse
|
11
|
Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Rev 2020; 42:100710. [PMID: 32532454 DOI: 10.1016/j.blre.2020.100710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 04/08/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Myeloproliferative neoplasms (MPN) are clonal hematological malignancies that lead to overproduction of mature myeloid cells. They are due to acquired mutations in genes encoding for AK2, MPL and CALR that result in the activation of the cytokine receptor/JAK2 signaling pathway. In addition, it exists germline variants that can favor the initiation of the disease or may affect its phenotype. First, they can be common risk alleles, which correspond to frequent single nucleotide variants present in control population and that contribute to the development of either sporadic or familial MPN. Second, some variants predispose to the onset of MPN with a higher penetrance and lead to familial clustering of MPN. Finally, some extremely rare genetic variants can induce MPN-like hereditary disease. We will review these different subtypes of germline genetic variants and discuss how they impact the initiation and/or development of the MPN disease.
Collapse
Affiliation(s)
- Christine Bellanné-Chantelot
- Department of Genetics, Assistance Publique-Hôpitaux de Paris (APHP), Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Sorbonne Université, Paris, France; INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France
| | - Graciela Rabadan Moraes
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris Diderot (Paris 7), UMR1287, Gustave Roussy, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Barbara Schmaltz-Panneau
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - Caroline Marty
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - William Vainchenker
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France.
| |
Collapse
|
12
|
Mora B, Passamonti F. Developments in diagnosis and treatment of essential thrombocythemia. Expert Rev Hematol 2019; 12:159-171. [PMID: 30793984 DOI: 10.1080/17474086.2019.1585239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Essential thrombocythemia (ET) is a chronic myeloproliferative neoplasm characterized by thrombocytosis, increased risk of thrombotic/hemorrhagic events and clonal evolution into blast phase or myelofibrosis. Areas covered: The authors will discuss biology, diagnosis, prognosis, therapy, and outcome of ET. An accurate molecular-morphologic assessment is necessary in order to properly establish diagnosis and prognosis of ET. Stratification for thrombosis prediction is essential, and IPSET-t model is widely applied. The current treatment strategy is directed to lower the rate of vascular events using cytoreduction in patients at high risk. Prophylactic low dose aspirin indication is more uncertain. To date, therapies for patients who are resistant or intolerant to first-line treatments are scarce. Overall, life expectancy indicates an indolent disease, but IPSET model helps in predicting survival at the time of diagnosis. Expert opinion: Challenging for the future will be to share criteria for ET diagnosis with the community. New insights into the molecular pathogenesis of the disease will improve the prediction of clonal evolution and outcome, and lead to the use of disease-modifying treatments.
Collapse
Affiliation(s)
- Barbara Mora
- a Ospedale di Circolo , ASST Sette Laghi, Hematology , Varese , Italy
| | - Francesco Passamonti
- a Ospedale di Circolo , ASST Sette Laghi, Hematology , Varese , Italy.,b Department of Medicine and Surgery , Universita degli Studi dell'Insubria , Varese , Italy
| |
Collapse
|
13
|
Maffioli M, Orlandi E, Passamonti F. Chronic myeloproliferative neoplasms in the elderly. Eur J Intern Med 2018; 58:33-42. [PMID: 29793825 DOI: 10.1016/j.ejim.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/04/2018] [Indexed: 11/30/2022]
Abstract
This review focuses on the management of elderly patients with chronic myeloid leukemia and chronic myeloproliferative neoplasms, including polycythemia vera, essential thrombocythemia and primary myelofibrosis. Median age in these neoplasms is within the 6th decades of age. All new therapies can be done at any age without absolute contraindication. However, the selection of the precise therapy for the single patient is mandatory. For these reasons, an accurate definition of diagnosis and prognostication is necessary. Precision in disease definition and prognostication is definitively helpful for personalizing therapeutic approach.
Collapse
Affiliation(s)
- Margherita Maffioli
- Hematology, Department of Medicina Specialistica, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
| | - Ester Orlandi
- Hematology, I.R.C.C.S Fondazione Policlinico San Matteo, Pavia, Italy
| | - Francesco Passamonti
- Hematology, Department of Medicina Specialistica, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy; Hematology, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| |
Collapse
|
14
|
The role of JAK2 inhibitors in MPNs 7 years after approval. Blood 2018; 131:2426-2435. [PMID: 29650801 DOI: 10.1182/blood-2018-01-791491] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) include essential thrombocythemia, polycythemia vera (PV), and primary myelofibrosis (MF). Phenotype-driver mutations of JAK2, CALR, and MPL genes are present in MPNs and can be variably combined with additional mutations. Driver mutations entail a constitutive activation of the JAK2/STAT pathway, the key signaling cascade in MPNs. Among JAK2 inhibitors (JAKis), ruxolitinib (RUX) has been approved for the treatment of intermediate and high-risk MF and for PV inadequately controlled by or intolerant of hydroxyurea. Other JAKis, such as fedratinib and pacritinib, proved to be useful in MF. The primary end points in MF trials were spleen volume response (SVR) and symptom response, whereas in PV trials they were hematocrit control with or without spleen response. In advanced MF, RUX achieved a long lasting SVR of >35% in ∼60% of patients, establishing a new benchmark for MF treatment. RUX efficacy in early MF is also remarkable and toxicity is mild. In PV, RUX achieved hematocrit control in ∼60% of cases and SVR in 40%. Symptom relief was evident in both conditions. In the long-term, however, many MF patients lose their SVR. Indeed, the definition of RUX failure and the design of new trials in this setting are unmet needs. Decrease of hemoglobin/platelet levels and increased infection rates are the most common side effects of RUX, and nonmelanoma skin tumors need to be monitored while on treatment. In conclusion, the introduction of JAKis raises the bar of treatment goals in MF and PV.
Collapse
|
15
|
Anelli L, Zagaria A, Specchia G, Albano F. The JAK2 GGCC (46/1) Haplotype in Myeloproliferative Neoplasms: Causal or Random? Int J Mol Sci 2018; 19:ijms19041152. [PMID: 29641446 PMCID: PMC5979434 DOI: 10.3390/ijms19041152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
The germline JAK2 haplotype known as “GGCC or 46/1 haplotype” (haplotypeGGCC_46/1) consists of a combination of single nucleotide polymorphisms (SNPs) mapping in a region of about 250 kb, extending from the JAK2 intron 10 to the Insulin-like 4 (INLS4) gene. Four main SNPs (rs3780367, rs10974944, rs12343867, and rs1159782) generating a “GGCC” combination are more frequently indicated to represent the JAK2 haplotype. These SNPs are inherited together and are frequently associated with the onset of myeloproliferative neoplasms (MPN) positive for both JAK2 V617 and exon 12 mutations. The association between the JAK2 haplotypeGGCC_46/1 and mutations in other genes, such as thrombopoietin receptor (MPL) and calreticulin (CALR), or the association with triple negative MPN, is still controversial. This review provides an overview of the frequency and the role of the JAK2 haplotypeGGCC_46/1 in the pathogenesis of different myeloid neoplasms and describes the hypothetical mechanisms at the basis of the association with JAK2 gene mutations. Moreover, possible clinical implications are discussed, as different papers reported contrasting data about the correlation between the JAK2 haplotypeGGCC_46/1 and blood cell count, survival, or disease progression.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
16
|
Mora B, Giorgino T, Guglielmelli P, Rumi E, Maffioli M, Rambaldi A, Caramella M, Komrokji R, Gotlib J, Kiladjian JJ, Cervantes F, Devos T, Palandri F, De Stefano V, Ruggeri M, Silver RT, Benevolo G, Albano F, Cavalloni C, Barraco D, Merli M, Pietra D, Casalone R, Barbui T, Rotunno G, Cazzola M, Vannucchi AM, Passamonti F. Value of cytogenetic abnormalities in post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a study of the MYSEC project. Haematologica 2018; 103:e392-e394. [PMID: 29622658 DOI: 10.3324/haematol.2017.185751] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Barbara Mora
- Hematology, Department of Medicine and Surgery, University of Insubria, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| | - Toni Giorgino
- Biophysics Institute, National Research Council of Italy, Milano, Italy
| | - Paola Guglielmelli
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Department of Experimental and Clinical Medicine, Azienda ospedaliera-Universitaria Careggi, University of Florence, Italy
| | - Elisa Rumi
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Italy
| | - Margherita Maffioli
- Hematology, Department of Medicine and Surgery, University of Insubria, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| | - Alessandro Rambaldi
- University of Milan, Hematology and BMT Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | | | | | | | | | - Timothy Devos
- Department of Hematology, University Hospitals Leuven and Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, KU Leuven, Belgium
| | | | | | | | | | - Giulia Benevolo
- Centro Oncologico Ematologico Subalpino (COES), Torino, Italy
| | | | - Chiara Cavalloni
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Italy
| | - Daniela Barraco
- Hematology, Department of Medicine and Surgery, University of Insubria, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| | - Michele Merli
- Hematology, Department of Medicine and Surgery, University of Insubria, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| | - Daniela Pietra
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Italy
| | - Rosario Casalone
- Cytogenetics and Medical Genetics Laboratory, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| | - Tiziano Barbui
- FROM Research Foundation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giada Rotunno
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Department of Experimental and Clinical Medicine, Azienda ospedaliera-Universitaria Careggi, University of Florence, Italy
| | - Mario Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Italy
| | - Alessandro Maria Vannucchi
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Department of Experimental and Clinical Medicine, Azienda ospedaliera-Universitaria Careggi, University of Florence, Italy
| | - Francesco Passamonti
- Hematology, Department of Medicine and Surgery, University of Insubria, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy
| |
Collapse
|
17
|
Abstract
Chronic myeloproliferative neoplasms (MPN) characteristically arise from a somatic mutation in the pluripotent hematopoietic stem cell, and most common recurring mutations are in the JAK2, CALR, and cMPL genes. However, these mutations are not founder mutations, but mainly drive the disease phenotype and a pre-existing germline predisposition has been long speculated, but has not been clearly defined to date. Genome-wide association studies in family clusters of MPN have identified a number of genetic variants that are associated with increased germline risk for developing clonal MPN. The strongest association discovered so far is the presence of JAK2 46/1 haplotype, and subsequently, many studies have found additional variants in other genes, most notably in TERT gene. However, these still account for a small fraction of familial MPN, and more in-depth studies including whole genome sequencing are needed to gain better insight into familial genetic predisposition of clonal MPNs.
Collapse
|
18
|
Schischlik F, Kralovics R. Mutations in myeloproliferative neoplasms - their significance and clinical use. Expert Rev Hematol 2017; 10:961-973. [PMID: 28914569 DOI: 10.1080/17474086.2017.1380515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Clonal hematologic diseases of the blood such as polycythemia vera, essential thrombocythemia and primary myelofibrosis belong to the BCR-ABL negative Myeloproliferative Neoplasms (MPN). These diseases are characterized by clonal expansion of hematopoietic precursor cells followed by increased production of differentiated cells of the myeloid lineage. Initiation of clonal hematopoiesis, formation of a clinical phenotype as well as disease progression form part of MPN disease evolution. The disease is driven by acquired somatic mutations in critical pathways such as cytokine signaling, epigenetic regulation, RNA splicing, and transcription factor signaling. Areas covered: The following review aims to provide an overview of the mutational landscape of MPN, the impact of these mutations in MPN pathogenesis as well as their prognostic value. Finally, a summary of how these mutations are being used or could potentially be used for the treatment of MPN patients is presented. Expert commentary: The genetic landscape of MPN patients has been successfully dissected within the past years with the advent of new sequencing technologies. Integrating the genetic information within a clinical setting is already benefitting patients in terms of disease monitoring and prognostic information of disease progression but will be further intensified within the next years.
Collapse
Affiliation(s)
- Fiorella Schischlik
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| | - Robert Kralovics
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| |
Collapse
|
19
|
Rumi E, Cazzola M. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms. Br J Haematol 2017; 178:689-698. [PMID: 28444727 DOI: 10.1111/bjh.14713] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are generally acquired as a result of a somatic stem cell mutation leading to clonal expansion of myeloid precursors. In addition to sporadic cases, familial MPN occurs when one or several MPN affect different relatives of the same family. MPN driver mutations (JAK2, CALR, MPL) are somatically acquired also in familial cases, so a genetic predisposition to acquire one of the MPN driver mutations would be inherited, even though the causative germline mutations underlying familial MPN remain largely unknown. Recently some germline variants [ATG2B and GSKIP duplication, RBBP6 mutations, SH2B3 (LNK) mutations], which can cause familial MPN, have been reported but these mutations are rare and do not explain most familial cases. Patients with familial MPN show the same clinical features and suffer the same complications as those with sporadic disease. This review aims to offer up-to-date information regarding the genetics of familial MPN.
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Haematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Department of Haematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Shen XH, Sun NN, Yin YF, Liu SF, Liu XL, Peng HL, Dai CW, Xu YX, Deng MY, Luo YY, Zheng WL, Zhang GS. A TET2 rs3733609 C/T genotype is associated with predisposition to the myeloproliferative neoplasms harboring JAK2(V617F) and confers a proliferative potential on erythroid lineages. Oncotarget 2017; 7:9550-60. [PMID: 26843622 PMCID: PMC4891059 DOI: 10.18632/oncotarget.7072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Common germline single-nucleotide polymorphisms (SNPs) at JAK2 locus have been associated with Myeloproliferative neoplasms (MPN). And, the germline sequence variant rs2736100 C in TERT is related to risk of MPN, suggesting a complex association between SNPs and the pathogenesis of MPN. Our previous study (unpublished data) showed that there was a high frequency distribution in rs3733609 C/T genotype at Ten-Eleven Translocation 2 (TET2) locus in one Chinese familial primary myelofibrosis. In the present study, we evaluate the role and clinical significance of rs3733609 C/T genotype in JAK2V617F-positive sporadic MPN (n = 181). TET2 rs3733609 C/T genotype had a higher incidence (13.81%; 25/181) in JAK2V617F-positive sporadic MPN patients than that in normal controls (n = 236) (6.35%; 15/236), which was predisposing to MPN (odds ratio(OR) = 2.361; P = 0.01). MPN patients with rs3733609 C/T genotype had increased leukocyte and platelets counts, elevated hemoglobin concentration in comparison with T/T genotype. Thrombotic events were more common in MPN patients with rs3733609 C/T than those with T/T genotype (P < 0.01). We confirmed that rs3733609 C/T genotype downregulated TET2 mRNA transcription, and the mechanism may be involved in a disruption of the interaction between CCAAT/enhancer binding protein alpha (C/EBPA) and TET2 rs3733609 C/T locus.TET2 rs3733609 C/T genotype stimulated the erythroid hematopoiesis in MPN patients. Altogether, we found a novel hereditary susceptible factor-TET2 rs3733609 C/T variant for the development of MPN, suggesting the variant may be partially responsible for the pathogenesis and accumulation of MPN.
Collapse
Affiliation(s)
- Xiao-hui Shen
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Nan-nan Sun
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ya-fei Yin
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Su-fang Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiao-liu Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Hong-ling Peng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Chong-wen Dai
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun-xiao Xu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming-yang Deng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun-ya Luo
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen-li Zheng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Guang-sen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
21
|
Chen Y, Fang F, Hu Y, Liu Q, Bu D, Tan M, Wu L, Zhu P. The Polymorphisms in LNK Gene Correlated to the Clinical Type of Myeloproliferative Neoplasms. PLoS One 2016; 11:e0154183. [PMID: 27111338 PMCID: PMC4844169 DOI: 10.1371/journal.pone.0154183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023] Open
Abstract
Objective LNK is an adapter protein negatively regulating the JAK/STAT cell signaling pathway. In this study, we observed the correlation between variation in LNK gene and the clinical type of myeloproliferative neoplasms (MPN). Methods A total of 285 MPN cases were recruited, including essential thrombocythemia (ET) 154 cases, polycythemia vera (PV) 76 cases, primary myelofibrosis (PMF) 19 cases, and chronic myeloid leukemia (CML) 36 cases. Ninety-three healthy individuals were used as normal controls. V617F mutation in JAK2 was identified by allele-specific PCR method, RT-PCR was used for the detection of BCR/ABL1 fusion gene, and mutations and variations in coding exons and their flanking sequences of LNK gene were examined by PCR-sequencing. Results Missense mutations of A300V, V402M, and R415H in LNK were found in 8 patients including ET (4 cases, all combined with JAK2-V617F mutation), PV (2 cases, one combined with JAK2-V617F mutation), PMF (one case, combined with JAK2-V617F mutation) and CML (one case, combined with BCR/ABL1 fusion gene). The genotype and allele frequencies of the three SNPs (rs3184504, rs111340708 and rs78894077) in LNK were significantly different between MPN patients and controls. For rs3184504 (T/C, in exon2), the T allele (p.262W) and TT genotype were frequently seen in ET, PV and PMF (P<0.01), and C allele (p.262R) and CC genotype were frequently seen in CML (P<0.01). For rs78894077 (T/C, in exon1), the T allele (p.242S) was frequently found in ET (P<0.05). For rs111340708 (TGGGGx5/TGGGGx4, in intron 5), the TGGGG x4 allele was infrequently found in ET, PMF and CML(P<0.01). Conclusion Mutations in LNK could be found in some of MPN patients in the presence or absence of JAK2-V617F mutation. Several polymorphisms in LNK gene may affect the clinical type or the genetic predisposition of MPN.
Collapse
MESH Headings
- 3' Flanking Region
- 5' Flanking Region
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Alleles
- Base Sequence
- Case-Control Studies
- Exons
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation
- Gene Frequency
- Genetic Predisposition to Disease
- Genotype
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Mutation
- Open Reading Frames
- Phenotype
- Polycythemia Vera/diagnosis
- Polycythemia Vera/genetics
- Polycythemia Vera/metabolism
- Polycythemia Vera/pathology
- Polymorphism, Single Nucleotide
- Primary Myelofibrosis/diagnosis
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Proteins/genetics
- Proteins/metabolism
- Signal Transduction
- Thrombocythemia, Essential/diagnosis
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/metabolism
- Thrombocythemia, Essential/pathology
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, Peking University First Hospital, Beijing, China
- Zunyi Medical College Affiliated Hospital, Zunyi, Guizhou, China
| | - Fang Fang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yang Hu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qian Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Dingfang Bu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Mei Tan
- Zunyi Medical College Affiliated Hospital, Zunyi, Guizhou, China
| | - Liusong Wu
- Zunyi Medical College Affiliated Hospital, Zunyi, Guizhou, China
| | - Ping Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
B-Cell Chronic Lymphocytic Leukemia with 11q22.3 Rearrangement in Patient with Chronic Myeloid Leukemia Treated with Imatinib. Case Rep Med 2016; 2016:9806515. [PMID: 27034682 PMCID: PMC4807041 DOI: 10.1155/2016/9806515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
The coexistence of two diseases chronic myeloid leukemia (CML) and B-cell chronic lymphocytic leukemia (B-CLL) is a rare phenomenon. Both neoplastic disorders have several common epidemiological denominators (they occur more often in men over 50 years of age) but different origin and long term prognosis. In this paper we described the clinical and pathological findings in patient with CML in major molecular response who developed B-CLL with 11q22.3 rearrangement and Coombs positive hemolytic anemia during the imatinib treatment. Due to the presence of the symptoms of autoimmune hemolytic anemia and optimal CML response to the imatinib treatment, the decision about combined therapy with prednisone and imatinib was made. During the follow-up, the normalization of complete blood count and resolution of peripheral lymphadenopathy were noted. The hematologic response of B-CLL was diagnosed. The repeated FISH analysis of cultured peripheral blood lymphocytes showed 2% of cells carrying 11q22.3 rearrangement. At the same time, molecular monitoring confirmed the deep molecular response of CML. The effectiveness of such combination in the described case raises the question about the best therapeutic option in such situation, especially in patients with good imatinib tolerance and optimal response.
Collapse
|
23
|
|
24
|
Langabeer SE, Haslam K, Linders J, Percy MJ, Conneally E, Hayat A, Hennessy B, Leahy M, Murphy K, Murray M, Ni Ainle F, Thornton P, Sargent J. Molecular heterogeneity of familial myeloproliferative neoplasms revealed by analysis of the commonly acquired JAK2, CALR and MPL mutations. Fam Cancer 2015; 13:659-63. [PMID: 25103330 DOI: 10.1007/s10689-014-9743-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The myeloproliferative neoplasms (MPN) are clonal, hematological malignancies that include polycythemia vera, essential thrombocythemia and primary myelofibrosis. While most cases of MPN are sporadic in nature, a familial pattern of inheritance is well recognised. The phenotype and status of the commonly acquired JAK2 V617F, CALR exon 9 and MPL W515L/K mutations in affected individuals from a consecutive series of ten familial MPN (FMPN) kindred are described. Affected individuals display the classical MPN phenotypes together with one kindred identified suggestive of hereditary thrombocytosis. In affected patients the JAK2 V617F mutation is the most commonly acquired followed by CALR exon nine mutations with no MPL W515L/K mutations detected. The JAK2 V617F and CALR exon 9 mutations appear to occur at approximately the same frequency in FMPN as in the sporadic forms of these diseases. The familial nature of MPN may often be overlooked and accordingly more common than previously considered. Characterisation of these FMPN kindred may allow for the investigation of molecular events that contribute to this inheritance.
Collapse
Affiliation(s)
- Stephen E Langabeer
- Cancer Molecular Diagnostics, Central Pathology Laboratory, St. James's Hospital, Dublin 8, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Braunstein EM, Moliterno AR. Back to biology: new insights on inheritance in myeloproliferative disorders. Curr Hematol Malig Rep 2015; 9:311-8. [PMID: 25195195 DOI: 10.1007/s11899-014-0232-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The myeloproliferative disorders (MPDs) are a group of hematologic diseases with significant overlap in both clinical phenotype and genetic etiology. While most often caused by acquired somatic mutations in hematopoietic stem cells, the presence of familial clustering in MPD cases suggests that inheritance is an important factor in the etiology of this disease. Though far less common than sporadic disease, inherited MPDs can be clinically indistinguishable from sporadic disease. Recently, germline mutations in Janus kinase 2 (JAK2) and MPL, two genes frequently mutated in sporadic MPD, have been shown to cause inherited thrombocytosis. Study of the function of these mutant proteins has led to a new understanding of the biological mechanisms that produce myeloproliferative disease. In this review, we summarize the data regarding inherited mutations that cause or predispose to MPDs, with a focus on the biological effects of mutant proteins. We propose that defining inherited MPDs in this manner has the potential to simplify diagnosis in a group of disorders that can be difficult to differentiate clinically.
Collapse
Affiliation(s)
- Evan M Braunstein
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, 720 Rutland Ave., Ross Research Building Room 1025, Baltimore, MD, 21205, USA,
| | | |
Collapse
|
26
|
Hultcrantz M, Lund SH, Landgren O, Samuelsson J, Goldin LR, Oddsson A, Björkholm M, Kristinsson SY. Survival in patients with familial and sporadic myeloproliferative neoplasms. Blood 2015; 125:3665-6. [PMID: 26045595 PMCID: PMC4458805 DOI: 10.1182/blood-2015-04-639039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Malin Hultcrantz
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sigrún H Lund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland Department of Hematology, Landspitali National University Hospital, Reykjavik, Iceland
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jan Samuelsson
- Division of Hematology, Department of Medicine, South Hospital, Stockholm, Sweden
| | - Lynn R Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Magnus Björkholm
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sigurdur Y Kristinsson
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden Faculty of Medicine, University of Iceland, Reykjavik, Iceland Department of Hematology, Landspitali National University Hospital, Reykjavik, Iceland
| |
Collapse
|
27
|
Macedo LC, Santos BC, Pagliarini-e-Silva S, Pagnano KBB, Rodrigues C, Quintero FC, Ferreira ME, Baraldi EC, Ambrosio-Albuquerque EP, Sell AM, Visentainer JEL. JAK2 46/1 haplotype is associated with JAK2 V617F - positive myeloproliferative neoplasms in Brazilian patients. Int J Lab Hematol 2015; 37:654-60. [DOI: 10.1111/ijlh.12380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/31/2015] [Indexed: 01/08/2023]
Affiliation(s)
- L. C. Macedo
- Departamento de Ciências Básicas da Saúde; Universidade Estadual de Maringá; Maringá Brazil
| | - B. C. Santos
- Departamento de Ciências Básicas da Saúde; Universidade Estadual de Maringá; Maringá Brazil
| | - S. Pagliarini-e-Silva
- Departamento de Ciências Básicas da Saúde; Universidade Estadual de Maringá; Maringá Brazil
| | - K. B. B. Pagnano
- Centro de Hematologia e Hemoterapia de Campinas; Universidade Estadual de Campinas; São Paulo Brazil
| | - C. Rodrigues
- Departamento de Ciências Básicas da Saúde; Universidade Estadual de Maringá; Maringá Brazil
| | - F. C. Quintero
- Departamento de Ciências Básicas da Saúde; Universidade Estadual de Maringá; Maringá Brazil
| | | | | | | | - A. M. Sell
- Departamento de Ciências Básicas da Saúde; Universidade Estadual de Maringá; Maringá Brazil
| | - J. E. L. Visentainer
- Departamento de Ciências Básicas da Saúde; Universidade Estadual de Maringá; Maringá Brazil
| |
Collapse
|
28
|
Soler G, Bernal-Vicente A, Antón AI, Torregrosa JM, Caparrós-Pérez E, Sánchez-Serrano I, Martínez-Pérez A, Sánchez-Vega B, Vicente V, Ferrer-Marin F. The JAK2 46/1 haplotype does not predispose to CALR-mutated myeloproliferative neoplasms. Ann Hematol 2014; 94:789-94. [DOI: 10.1007/s00277-014-2266-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
|
29
|
Jäger R, Harutyunyan AS, Rumi E, Pietra D, Berg T, Olcaydu D, Houlston RS, Cazzola M, Kralovics R. Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. Am J Hematol 2014; 89:1107-10. [PMID: 25196853 PMCID: PMC4657470 DOI: 10.1002/ajh.23842] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/30/2023]
Abstract
The C allele of the rs2736100 single nucleotide polymorphism located in the second intron of the TERT gene has recently been identified as a susceptibility factor for myeloproliferative neoplasms (MPN) in the Icelandic population. Here, we evaluate the role of TERT rs2736100_C in sporadic and familial MPN in the context of the previously identified JAK2 GGCC predisposition haplotype. We have confirmed the TERT rs2736100_C association in a large cohort of Italian sporadic MPN patients. The risk conferred by TERT rs2736100_C is present in all molecular and diagnostic MPN subtypes. TERT rs2736100_C and JAK2 GGCC are independently predisposing to MPN and have an additive effect on disease risk, together explaining a large fraction of the population attributable fraction (PAF = 73.06%). We found TERT rs2736100_C significantly enriched (P = 0.0090) in familial MPN compared to sporadic MPN, suggesting that low-penetrance variants may be responsible for a substantial part of familial clustering in MPN.
Collapse
Affiliation(s)
- Roland Jäger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna, Austria
| | - Ashot S Harutyunyan
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna, Austria
| | - Elisa Rumi
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPavia, Italy
- Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Daniela Pietra
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPavia, Italy
| | - Tiina Berg
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna, Austria
| | - Damla Olcaydu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna, Austria
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer ResearchSutton, Surrey, United Kingdom
| | - Mario Cazzola
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPavia, Italy
- Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna, Austria
- Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of ViennaVienna, Austria
| |
Collapse
|
30
|
Familial Essential Thrombocythemia Associated with MPL W515L Mutation in Father and JAK2 V617F Mutation in Daughter. Case Rep Hematol 2014; 2014:841787. [PMID: 25525531 PMCID: PMC4267161 DOI: 10.1155/2014/841787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 12/29/2022] Open
Abstract
Familial essential thrombocythemia features the acquisition of somatic mutations and an evolution similar to the sporadic form of the disease. Here we report two patients—father and daughter—with essential thrombocythemia who displayed a heterogeneous pattern of somatic mutations. The JAK2 V617F mutation was found in the daughter, while the father harbored the MPL W515L mutation. This case report may constitute further proof that in familial essential thrombocythemia there are other, still undefined, constitutional, inherited genetic factors predisposing to the acquisition of various somatic mutations (e.g., JAK2 V617F and MPL).
Collapse
|
31
|
The JAK2 46/1 haplotype (GGCC) in myeloproliferative neoplasms and splanchnic vein thrombosis: a pooled analysis of 26 observational studies. Ann Hematol 2014; 93:1845-52. [DOI: 10.1007/s00277-014-2134-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/03/2014] [Indexed: 12/20/2022]
|
32
|
Salmoiraghi S, Montalvo MLG, D'Agostini E, Amicarelli G, Minnucci G, Spinelli O, Rambaldi A. Mutations and chromosomal rearrangements of JAK2: not only a myeloid issue. Expert Rev Hematol 2014; 6:429-39. [PMID: 23991929 DOI: 10.1586/17474086.2013.826910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Until today, JAK2 alterations have been mainly associated with myeloid malignancies among which they play a key pathogenic role in chronic myeloproliferative neoplasms. More recently, aberrations involving the JAK2 gene have also been reported in lymphoid diseases, including acute leukemia and lymphomas. In addition, the constitutively activating JAK2V617F mutation has been identified in some patients affected by B-chronic lymphocytic leukemia with a concomitant myeloproliferative neoplasm. Interestingly, these cases could help us to better understand the pathogenesis of these myeloid and lymphoid diseases and reveal if they share a common ancestral progenitor or just coincide. The involvement of JAK2 in lymphoid neoplasms may suggest the possibility of new therapeutic approaches broadening the use of JAK1-2 inhibitors also to these malignancies.
Collapse
Affiliation(s)
- Silvia Salmoiraghi
- Hematology and Bone Marrow Transplant Unit of Azienda Ospedaliera Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood 2014; 123:2416-9. [DOI: 10.1182/blood-2014-01-550434] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Key Points
Somatic indels of CALR exon 9 are present in about 20% to 25% of sporadic patients with essential thrombocythemia or primary myelofibrosis. These mutations are found also in familial cases of essential thrombocythemia or primary myelofibrosis as somatically acquired events.
Collapse
|
34
|
Maffioli M, Genoni A, Caramazza D, Mora B, Bussini A, Merli M, Giorgino T, Casalone R, Passamonti F. Looking for CALR mutations in familial myeloproliferative neoplasms. Leukemia 2014; 28:1357-60. [PMID: 24441291 DOI: 10.1038/leu.2014.33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M Maffioli
- Division of Hematology, Department of Medicine, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - A Genoni
- Genetic Unit, Medical Genetic and Cytogenetics Laboratory, SSD, SMEL, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - D Caramazza
- Division of Hematology, Department of Medicine, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - B Mora
- Division of Hematology, Department of Medicine, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - A Bussini
- Genetic Unit, Medical Genetic and Cytogenetics Laboratory, SSD, SMEL, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - M Merli
- Division of Hematology, Department of Medicine, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - T Giorgino
- Institute of Biomedical Engineering, National Research Council of Italy (ISIB-CNR), Padua, Italy
| | - R Casalone
- Genetic Unit, Medical Genetic and Cytogenetics Laboratory, SSD, SMEL, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - F Passamonti
- Division of Hematology, Department of Medicine, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| |
Collapse
|
35
|
Rumi E, Harutyunyan AS, Casetti I, Pietra D, Nivarthi H, Moriggl R, Cleary C, Bagienski K, Astori C, Bellini M, Berg T, Passamonti F, Kralovics R, Cazzola M. A novel germline JAK2 mutation in familial myeloproliferative neoplasms. Am J Hematol 2014; 89:117-8. [PMID: 24142793 DOI: 10.1002/ajh.23614] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Elisa Rumi
- Department of Hematology Oncology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Ashot S. Harutyunyan
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Ilaria Casetti
- Department of Hematology Oncology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Daniela Pietra
- Department of Hematology Oncology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Harini Nivarthi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute of Cancer Research; Vienna Austria
| | - Ciara Cleary
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Klaudia Bagienski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Cesare Astori
- Department of Hematology Oncology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Marta Bellini
- Department of Hematology Oncology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Tiina Berg
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | - Francesco Passamonti
- Division of Hematology, Department Internal Medicine; A.O. Ospedale di Circolo e Fondazione Macchi; Varese Italy
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
- Department of Internal Medicine I, Division of Hematology and Blood Coagulation; Medical University of Vienna; Vienna Austria
| | - Mario Cazzola
- Department of Hematology Oncology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| |
Collapse
|
36
|
Sonneveld P, Verelst SG, Lewis P, Gray-Schopfer V, Hutchings A, Nixon A, Petrucci MT. Review of health-related quality of life data in multiple myeloma patients treated with novel agents. Leukemia 2013; 27:1959-69. [PMID: 23783393 PMCID: PMC3806249 DOI: 10.1038/leu.2013.185] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/09/2023]
Abstract
In multiple myeloma (MM), health-related quality of life (HRQoL) data is becoming increasingly important, owing to improved survival outcomes and the impact of treatment-related toxicity on HRQoL. Researchers are more frequently including HRQoL assessments in clinical trials, but analysis and reporting of this data has not been consistent. A systematic literature review assessed the effect of novel agents (thalidomide, bortezomib and lenalidomide) on HRQoL in MM patients, and evaluated the subsequent reporting of these HRQoL results. A relatively small body of literature addresses HRQoL data in MM patients treated with novel MM therapeutic agents: 9 manuscripts and 15 conference proceedings. The literature demonstrates the complementary value of HRQoL when assessing clinical response, progression, overall survival and toxicity. However, weaknesses and inconsistencies in analysis and presentation of HRQoL data were observed, often complicating interpretation of the impact of treatment on HRQoL in MM. Further evaluation of HRQoL in MM patients treated with novel agents is required in larger cohorts, and ideally in head-to-head comparative studies. Additionally, the development of standardised MM-specific best practice guidelines in HRQoL data collection and analysis is recommended. These would ensure that future data are more useful in guiding predictive models and clinical decisions.
Collapse
Affiliation(s)
- P Sonneveld
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - S G Verelst
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - P Lewis
- Celgene GmbH, Munich, Germany
| | | | | | - A Nixon
- Oxford Outcomes, an ICON plc. company, Oxford, UK
| | | |
Collapse
|
37
|
Abstract
Myeloproliferative neoplasms (MPNs) are haematological disorders characterized by an overproduction of mature myeloid cells with a tendency to transform to acute myeloid leukaemia. Clonal proliferation of myeloid progenitor cells is driven by somatically acquired mutations, most notably JAK2 V617F, but there are important features relating to pathogenesis and phenotypic diversity that cannot be explained by acquired mutations alone. In this review we consider what is currently known about the role that inherited factors play in the development and biology of both sporadic and familial forms of MPN. Although most MPN cases appear to be sporadic, familial predisposition has been recognized for many years in a subset of cases and epidemiological studies have indicated the presence of common susceptibility alleles. Currently the JAK2 46/1 haplotype (also referred to as 'GGCC') is the strongest known predisposition factor for sporadic MPNs carrying a JAK2 V617F mutation, explaining a large proportion of the heritability of this disorder. Less is known about what genetic variants predispose to MPNs that lack JAK2 V617F, but there have been recent reports of interesting associations in biologically plausible candidates, and more loci are set to emerge with the application of systematic genome-wide association methodologies. Several highly penetrant predisposition variants that affect erythropoietin signalling, thrombopoietin signalling or oxygen sensing have been characterized in families with nonclonal hereditary erythrocytosis or thrombocytosis, but much less is known about familial predisposition to true clonal MPN. The heterogeneous pattern of inheritance and presumed genetic heterogeneity in these families makes analysis difficult, but whole exome or genome sequencing should provide novel insights into these elusive disorders.
Collapse
Affiliation(s)
- Amy V Jones
- Wessex Regional Genetics Laboratory, Salisbury, UK, Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
38
|
Milosevic JD, Kralovics R. Genetic and epigenetic alterations of myeloproliferative disorders. Int J Hematol 2012; 97:183-97. [PMID: 23233154 DOI: 10.1007/s12185-012-1235-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 01/07/2023]
Abstract
The classical BCR-ABL negative myeloproliferative neoplasms (MPN) polycythemia vera, essential thrombocythemia, and primary myelofibrosis are clonal hematopoietic disorders characterized by excessive production of terminally differentiated myeloid cells. In MPN patients, the disease can progress to secondary myelofibrosis or acute myeloid leukemia. Clonal hematopoiesis, disease phenotype, and progression are caused by somatically acquired genetic lesions of genes involved in cytokine signaling, RNA splicing, as well as epigenetic regulation. This review provides an overview of point mutations and cytogenetic lesions associated with MPN and addresses the role of these somatic lesions in MPN disease progression.
Collapse
Affiliation(s)
- Jelena D Milosevic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
| | | |
Collapse
|
39
|
|
40
|
|
41
|
Abstract
It is thought that myeloproliferative neoplasms (MPNs) are driven by somatic mutations, although hereditary factors also play a prominent role in the pathogenesis of the disease. Hereditary thrombocytosis and erythrocytosis are not malignant disorders but are clinically similar to MPNs. Several mutations have been found that explain a proportion of hereditary thrombocytosis and hereditary erythrocytosis. Germline variants can influence the risk of leukemic transformation in MPNs and the course of the disease through interaction with acquired chromosomal aberrations. Overall, it has been shown that germline factors play an important part in MPN pathogenesis.
Collapse
|
42
|
Malak S, Labopin M, Saint-Martin C, Bellanne-Chantelot C, Najman A. Long term follow up of 93 families with myeloproliferative neoplasms: life expectancy and implications of JAK2V617F in the occurrence of complications. Blood Cells Mol Dis 2012; 49:170-6. [PMID: 22818858 DOI: 10.1016/j.bcmd.2012.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/06/2012] [Indexed: 02/02/2023]
Abstract
The long-term evolution of familial myeloproliferative neoplasms was studied in 93 families with 227 subjects including 97 with polycythemia vera (PV), 105 essential thrombocythemia (ET), 14 primary myelofibrosis (PMF) and 11 chronic myeloid leukemia (CML). In PV patients, with 12years of median follow-up, overall survival was 83% at 10years and 37% at 20years. A high JAK2(V617F) allele burden was correlated with the transformation to myelofibrosis (p<0.0001), but not with the transformation to acute leukemia. Among the 105 ET, with 8years of median follow-up, overall survival was 83% at 10years and 57% at 20years. Progression to acute leukemia and progression to myelofibrosis were 10% and 13%. There was a trend toward a more frequent evolution to myelofibrosis when the JAK2(V617F) mutated allele burden was >50% (p=0.09), but not to AML. Hematologic transformation of the MPN was responsible for 69% of the deaths, cerebral stroke for 7% and 4% died of myocardial infarction. Eleven JAK2(V617F) mutated patients developed 13 deep splanchnic thromboses in PV and ET. Finally whereas patients with familial PV and ET have a comparable prognosis to non-familial MPN, the JAK2(V617F) mutation was associated with a more frequent occurrence of thrombosis in the entire population.
Collapse
Affiliation(s)
- Sandra Malak
- Department of Hematology, Assistance Publique-Hopitaux de Paris (AP-HP) Saint-Antoine, Universite Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Recently, 5-hydroxymethylcytosine (5-hmC), the 6th base of DNA, was discovered as the product of the hydroxylation of 5-methylcytosine (5-mC) by the ten-eleven translocation (TET) oncogene family members. One of them, TET oncogene family member 2 (TET2), is mutated in a variety of myeloid malignancies, including in 15% of myeloproliferative neoplasms (MPNs). Recent studies tried to go further into the biological and epigenetic function of TET2 protein and 5-hmC marks in the pathogenesis of myeloid malignancies. Although its precise function remains partially unknown, TET2 appears to be an important regulator of hematopoietic stem cell biology. In both mouse and human cells, its inactivation leads to a dramatic deregulation of hematopoiesis that ultimately triggers blood malignancies. Understanding this leukemogenic process will provide tools to develop new epigenetic therapies against blood cancers.
Collapse
Affiliation(s)
- Elodie Pronier
- Institut National de la Santé et de la Recherche Médicale, UMR 1009, Institut Gustave Roussy, Université Paris Sud (Paris 11), Villejuif, France
| | | |
Collapse
|
44
|
Ohyashiki JH, Yoneta M, Hisatomi H, Iwabuchi T, Umezu T, Ohyashiki K. The C allele of JAK2 rs4495487 is an additional candidate locus that contributes to myeloproliferative neoplasm predisposition in the Japanese population. BMC MEDICAL GENETICS 2012; 13:6. [PMID: 22251709 PMCID: PMC3277458 DOI: 10.1186/1471-2350-13-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/17/2012] [Indexed: 02/02/2023]
Abstract
Background Polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) are myeloproliferative neoplasms (MPNs) characterized in most cases by a unique somatic mutation, JAK2 V617F. Recent studies revealed that JAK2 V617F occurs more frequently in a specific JAK2 haplotype, named JAK2 46/1 or GGCC haplotype, which is tagged by rs10974944 (C/G) and/or rs12343867 (T/C). This study examined the impact of single nucleotide polymorphisms (SNPs) of the JAK2 locus on MPNs in a Japanese population. Methods We sequenced 24 JAK2 SNPs in Japanese patients with PV. We then genotyped 138 MPN patients (33 PV, 96 ET, and 9 PMF) with known JAK2 mutational status and 107 controls for a novel SNP, in addition to two SNPs known to be part of the 46/1 haplotype (rs10974944 and rs12343867). Associations with risk of MPN were estimated by odds ratios and their 95% confidence intervals using logistic regression. Results A novel locus, rs4495487 (T/C), with a mutated T allele was significantly associated with PV. Similar to rs10974944 and rs12343867, rs4495487 in the JAK2 locus is significantly associated with JAK2-positive MPN. Based on the results of SNP analysis of the three JAK2 locus, we defined the "GCC genotype" as having at least one minor allele in each SNP (G allele in rs10974944, C allele in rs4495487, and C allele in rs12343867). The GCC genotype was associated with increased risk of both JAK2 V617F-positive and JAK2 V617F-negative MPN. In ET patients, leukocyte count and hemoglobin were significantly associated with JAK2 V617F, rather than the GCC genotype. In contrast, none of the JAK2 V617F-negative ET patients without the GCC genotype had thrombosis, and splenomegaly was frequently seen in this subset of ET patients. PV patients without the GCC genotype were significantly associated with high platelet count. Conclusions Our results indicate that the C allele of JAK2 rs4495487, in addition to the 46/1 haplotype, contributes significantly to the occurrence of JAK2 V617F-positive and JAK2 V617F-negative MPNs in the Japanese population. Because lack of the GCC genotype represents a distinct clinical-hematological subset of MPN, analyzing JAK2 SNPs and quantifying JAK2 V617F mutations will provide further insights into the molecular pathogenesis of MPN.
Collapse
Affiliation(s)
- Junko H Ohyashiki
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by excessive production of mature blood cells. In the majority of classic MPN—polycythemia vera, essential thrombocythemia, and primitive myelofibrosis—driver oncogenic mutations affecting Janus kinase 2 (JAK2) or MPL lead to constitutive activation of cytokine-regulated intracellular signaling pathways. LNK, c-CBL, or SOCSs (all negative regulators of signaling pathways), although infrequently targeted, may either drive the disease or synergize with JAK2 and MPL mutations. IZF1 deletions or TP53 mutations are mainly found at transformation phases and are present at greater frequency than in de novo acute myeloid leukemias. Loss-of-function mutations in 3 genes involved in epigenetic regulation, TET2, ASXL1, and EZH2, may be early events preceding JAK2V617F but may also occur late during disease progression. They are more frequently observed in PMF than PV and ET and are also present in other types of malignant myeloid diseases. A likely hypothesis is that they facilitate clonal selection, allowing the dominance of the JAK2V617F subclone during the chronic phase and, together with cooperating mutations, promote blast crisis. Their precise roles in hematopoiesis and in the pathogenesis of MPN, as well as their prognostic impact and potential as a therapeutic target, are currently under investigation.
Collapse
|
46
|
Tefferi A, Abdel-Wahab O, Cervantes F, Crispino JD, Finazzi G, Girodon F, Gisslinger H, Gotlib J, Kiladjian JJ, Levine RL, Licht JD, Mullally A, Odenike O, Pardanani A, Silver RT, Solary E, Mughal T. Mutations with epigenetic effects in myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 5th International Post-ASH Symposium. Blood Cancer J 2011; 1:e7. [PMID: 23471017 PMCID: PMC3255279 DOI: 10.1038/bcj.2011.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immediately following the 2010 annual American Society of Hematology (ASH) meeting, the 5th International Post-ASH Symposium on Chronic Myelogenous Leukemia and BCR-ABL1-Negative Myeloproliferative Neoplasms (MPNs) took place on 7–8 December 2010 in Orlando, Florida, USA. During this meeting, the most recent advances in laboratory research and clinical practice, including those that were presented at the 2010 ASH meeting, were discussed among recognized authorities in the field. The current paper summarizes the proceedings of this meeting in BCR-ABL1-negative MPN. We provide a detailed overview of new mutations with putative epigenetic effects (TET oncogene family member 2 (TET2), additional sex comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and enhancer of zeste homolog 2 (EZH2)) and an update on treatment with Janus kinase (JAK) inhibitors, pomalidomide, everolimus, interferon-α, midostaurin and cladribine. In addition, the new ‘Dynamic International Prognostic Scoring System (DIPSS)-plus' prognostic model for primary myelofibrosis (PMF) and the clinical relevance of distinguishing essential thrombocythemia from prefibrotic PMF are discussed.
Collapse
Affiliation(s)
- A Tefferi
- Division of Hematology, Department of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cross NCP. Genetic and epigenetic complexity in myeloproliferative neoplasms. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:208-214. [PMID: 22160036 DOI: 10.1182/asheducation-2011.1.208] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The past 7 years have witnessed remarkable progress in our understanding of the genetics of BCR-ABL-negative myeloproliferative neoplasms (MPNs) and has revealed layers of unexpected complexity. Deregulation of JAK2 signaling has emerged as a central feature, but despite having biological activities that recapitulate the cardinal features MPNs in model systems, JAK2 mutations are often secondary events. Several other mutated genes have been identified with a common theme of involvement in the epigenetic control of gene expression. Remarkably, the somatic mutations identified to date do not seem to be acquired in any preferred order, and it is possible that the disease-initiating events remain to be identified. The finding of complex clonal hierarchies in many cases suggests genetic instability that, in principle, may be inherited or acquired. A common haplotype has been identified that is strongly associated with the acquisition of JAK2 mutations, but the cause of relatively high-penetrance familial predisposition to MPNs remains elusive. This review summarizes the established facts relating to the genetics of MPNs, but highlights recent findings and areas of controversy.
Collapse
Affiliation(s)
- Nicholas C P Cross
- Faculty of Medicine, University of Southampton, and Wessex Regional Genetics Laboratory, Salisbury, United Kingdom.
| |
Collapse
|