1
|
Bobée V, Viennot M, Rainville V, Veresezan L, Drieux F, Viailly P, Michel V, Sater V, Lanic M, Bohers E, Camus V, Tilly H, Jardin F, Ruminy P. Analysis of immunoglobulin/T-cell receptor repertoires by high-throughput RNA sequencing reveals a continuous dynamic of positive clonal selection in follicular lymphoma. Hemasphere 2024; 8:e50. [PMID: 38435425 PMCID: PMC10896008 DOI: 10.1002/hem3.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Follicular lymphoma (FL) course is highly variable, making its clinical management challenging. In this incurable and recurring pathology, the interval between relapses tends to decrease while aggressiveness increases, sometimes resulting in the transformation to higher-grade lymphoma. These evolutions are particularly difficult to anticipate, resulting from complex clonal evolutions where multiple subclones compete and thrive due to their capacity to proliferate and resist therapies. Here, to apprehend further these processes, we used a high-throughput RNA sequencing approach to address simultaneously the B-cell immunoglobulin repertoires and T-cell immunoglobulin repertoires repertoires of lymphoma cells and their lymphoid microenvironment in a large cohort of 131 FL1/2-3A patients. Our data confirm the existence of a high degree of intra-clonal heterogeneity in this pathology, resulting from ongoing somatic hyper-mutation and class switch recombination. Through the evaluation of the Simpson ecological-diversity index, we show that the contribution of the cancerous cells increases during the course of the disease to the detriment of the reactive compartment, a phenomenon accompanied by a concomitant decrease in the diversity of the tumoral population. Clonal evolution in FL thus contrasts with many tumors, where clonal heterogeneity steadily increases over time and participates in treatment evasion. In this pathology, the selection of lymphoma subclones with proliferative advantages progressively outweighs clonal diversification, ultimately leading in extreme cases to transformation to high-grade lymphoma resulting from the rapid emergence of homogeneous subpopulations.
Collapse
Affiliation(s)
- Victor Bobée
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Biological HematologyRouen University HospitalRouenFrance
| | - Mathieu Viennot
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vinciane Rainville
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Liana Veresezan
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | - Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | | | - Victor Michel
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Sater
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Marie‐Delphine Lanic
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Elodie Bohers
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Camus
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Hervé Tilly
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Fabrice Jardin
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Philippe Ruminy
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| |
Collapse
|
2
|
Carreras J. The pathobiology of follicular lymphoma. J Clin Exp Hematop 2023; 63:152-163. [PMID: 37518274 PMCID: PMC10628832 DOI: 10.3960/jslrt.23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Follicular lymphoma is one of the most frequent lymphomas. Histologically, it is characterized by a follicular (nodular) growth pattern of centrocytes and centroblasts; mixed with variable immune microenvironment cells. Clinically, it is characterized by diffuse lymphadenopathy, bone marrow involvement, and splenomegaly. It is biologically and clinically heterogeneous. In most patients it is indolent, but others have a more aggressive evolution with relapses; and transformation to diffuse large B-cell lymphoma. Tumorigenesis includes an asymptomatic preclinical phase in which premalignant B-lymphocytes with the t(14;18) chromosomal translocation acquire additional genetic alterations in the germinal centers, and clonal evolution occurs, although not all the cells progress to the tumor stage. This manuscript reviews the pathobiology and clinicopathological characteristics of follicular lymphoma. It includes a description of the physiology of the germinal center, the genetic alterations of BCL2 and BCL6, the mutational profile, the immune checkpoint, precision medicine, and highlights in the lymphoma classification. In addition, a comment and review on artificial intelligence and machine (deep) learning are made.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, Tokai University, School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
3
|
Neoantigens – the next frontier in precision immunotherapy for B-cell lymphoproliferative disorders. Blood Rev 2022; 56:100969. [DOI: 10.1016/j.blre.2022.100969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
4
|
Dumontet E, Mancini SJC, Tarte K. Bone Marrow Lymphoid Niche Adaptation to Mature B Cell Neoplasms. Front Immunol 2021; 12:784691. [PMID: 34956214 PMCID: PMC8694563 DOI: 10.3389/fimmu.2021.784691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
B-cell non-Hodgkin lymphoma (B-NHL) evolution and treatment are complicated by a high prevalence of relapses primarily due to the ability of malignant B cells to interact with tumor-supportive lymph node (LN) and bone marrow (BM) microenvironments. In particular, progressive alterations of BM stromal cells sustain the survival, proliferation, and drug resistance of tumor B cells during diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL). The current review describes how the crosstalk between BM stromal cells and lymphoma tumor cells triggers the establishment of the tumor supportive niche. DLBCL, FL, and CLL display distinct patterns of BM involvement, but in each case tumor-infiltrating stromal cells, corresponding to cancer-associated fibroblasts, exhibit specific phenotypic and functional features promoting the recruitment, adhesion, and survival of tumor cells. Tumor cell-derived extracellular vesicles have been recently proposed as playing a central role in triggering initial induction of tumor-supportive niches, notably within the BM. Finally, the disruption of the BM stroma reprogramming emerges as a promising therapeutic option in B-cell lymphomas. Targeting the crosstalk between BM stromal cells and malignant B cells, either through the inhibition of stroma-derived B-cell growth factors or through the mobilization of clonal B cells outside their supportive BM niche, should in particular be further evaluated as a way to avoid relapses by abrogating resistance niches.
Collapse
Affiliation(s)
- Erwan Dumontet
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France.,CHU Rennes, Pôle de Biologie, Rennes, France
| | - Stéphane J C Mancini
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France
| | - Karin Tarte
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France.,CHU Rennes, Pôle de Biologie, Rennes, France
| |
Collapse
|
5
|
Jalali S, Ansell SM. Role of the Bone Marrow Niche in Supporting the Pathogenesis of Lymphoid Malignancies. Front Cell Dev Biol 2021; 9:692320. [PMID: 34395425 PMCID: PMC8355623 DOI: 10.3389/fcell.2021.692320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
While the bone marrow (BM) microenvironment is the primary location for nurturing the multipotent hematopoietic stem cells and developing the blood cells of either myeloid or lymphoid origin under normal physiological conditions, it could provide a supportive milieu for the proliferation of blood cancer cells. In fact, the multiple and complex direct cell-to-cell or indirect soluble factors-mediated interactions taking place among the BM cells of different origins are shown to play a significant role in tumorigenesis of hematological cancers. In the current review, we focus on lymphoid malignancies and highlight the novel insights surrounding the role of both cellular as well as non-cellular BM compartments in modulating hematopoiesis and promoting growth and proliferation of cancer cells across a variety of aggressive and indolent lymphoid malignancies, including diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and Waldenstrom Macroglobulinemia. We also discuss the mechanisms of potential intervention and discuss their therapeutic impact in clinical settings.
Collapse
Affiliation(s)
- Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Extracellular vesicles prime the bone marrow niche. Blood 2021; 138:4-6. [PMID: 34236429 DOI: 10.1182/blood.2021011276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Dumontet E, Pangault C, Roulois D, Desoteux M, Léonard S, Marchand T, Latour M, Legoix P, Loew D, Dingli F, Dulong J, Flecher E, Coulouarn C, Cartron G, Fest T, Tarte K. Extracellular vesicles shed by follicular lymphoma B cells promote polarization of the bone marrow stromal cell niche. Blood 2021; 138:57-70. [PMID: 33881493 DOI: 10.1182/blood.2020008791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Follicular lymphoma (FL) originates in the lymph nodes (LNs) and infiltrates bone marrow (BM) early in the course of the disease. BM FL B cells are characterized by a lower cytological grade, decreased proliferation, and a specific phenotypic and subclonal profile. Mesenchymal stromal cells (MSCs) obtained from FL BM display a specific gene expression profile (GEP), including enrichment for a lymphoid stromal cell signature, and an increased capacity to sustain FL B-cell growth. However, the mechanisms triggering the formation of the medullar FL permissive stromal niche have not been identified. In the current work, we demonstrate that FL B cells produce extracellular vesicles (EVs) that can be internalized by BM-MSCs, making them more efficient to support FL B-cell survival and quiescence. Accordingly, EVs purified from FL BM plasma activate transforming growth factor β-dependent and independent pathways in BM-MSCs and modify their GEP, triggering an upregulation of factors classically associated with hematopoietic stem cell niche, including CXCL12 and angiopoietin-1. Moreover, we provide the first characterization of BM FL B-cell GEP, allowing the definition of the landscape of molecular interactions they could engage with EV-primed BM-MSCs. This work identifies FL-derived EVs as putative mediators of BM stroma polarization and supports further investigation of their clinical interest for targeting the crosstalk between BM-MSCs and malignant B cells.
Collapse
Affiliation(s)
- Erwan Dumontet
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
- Department of Biology, Rennes University Hospital, Rennes, France
| | - Céline Pangault
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
- Department of Biology, Rennes University Hospital, Rennes, France
| | - David Roulois
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
| | - Matthis Desoteux
- UMRS 1242 Chemistry Oncogenesis Stress Signaling, INSERM, University of Rennes, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Simon Léonard
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
| | - Tony Marchand
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
- Department of Hematology, Rennes University Hospital, Rennes, France
| | - Maelle Latour
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
- Department of Biology, Rennes University Hospital, Rennes, France
| | | | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie Research Center, Paris Sciences et Lettres (PSL) University, Paris, France
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie Research Center, Paris Sciences et Lettres (PSL) University, Paris, France
| | - Joelle Dulong
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
- Department of Biology, Rennes University Hospital, Rennes, France
| | - Erwan Flecher
- Department of Thoracic and Cardiac Surgery, Rennes University Hospital, Rennes, France; and
| | - Cédric Coulouarn
- UMRS 1242 Chemistry Oncogenesis Stress Signaling, INSERM, University of Rennes, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Guillaume Cartron
- Department of Hematology, Montpellier University Hospital, Montpellier, France
| | - Thierry Fest
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
- Department of Biology, Rennes University Hospital, Rennes, France
| | - Karin Tarte
- Unité Mixte de Recherche (UMR) 1236, INSERM, Université Rennes, EFS Bretagne, Laboratoires d'Excellence "Immunotherapy-Graft-Oncology" (LabEx IGO), Rennes, France
- Department of Biology, Rennes University Hospital, Rennes, France
| |
Collapse
|
8
|
Milpied P, Gandhi AK, Cartron G, Pasqualucci L, Tarte K, Nadel B, Roulland S. Follicular lymphoma dynamics. Adv Immunol 2021; 150:43-103. [PMID: 34176559 DOI: 10.1016/bs.ai.2021.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Follicular lymphoma (FL) is an indolent yet challenging disease. Despite a generally favorable response to immunochemotherapy regimens, a fraction of patients does not respond or relapses early with unfavorable prognosis. For the vast majority of those who initially respond, relapses will repeatedly occur with increasing refractoriness to available treatments. Addressing the clinical challenges in FL warrants deep understanding of the nature of treatment-resistant FL cells seeding relapses, and of the biological basis of early disease progression. Great progress has been made in the last decade in the description and interrogation of the (epi)genomic landscape of FL cells, of their major dependency to the tumor microenvironment (TME), and of the stepwise lymphomagenesis process, from healthy to subclinical disease and to overt FL. A new picture is emerging, in which an ever-evolving tumor-TME duo sparks a complex and multilayered clonal and functional heterogeneity, blurring the discovery of prognostic biomarkers, patient stratification and reliable designs of risk-adapted treatments. Novel technological approaches allowing to decipher both tumor and TME heterogeneity at the single-cell level are beginning to unravel unsuspected cell dynamics and plasticity of FL cells. The upcoming drawing of a comprehensive functional picture of FL within its ecosystem holds great promise to address the unmet medical needs of this complex lymphoma.
Collapse
Affiliation(s)
- Pierre Milpied
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Anita K Gandhi
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, United States
| | - Guillaume Cartron
- Department of Hematology, Centre Hospitalier Universitaire Montpellier, UMR-CNRS 5535, Montpellier, France
| | - Laura Pasqualucci
- Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York City, NY, United States
| | - Karin Tarte
- INSERM U1236, Univ Rennes, EFS Bretagne, CHU Rennes, Rennes, France
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.
| | | |
Collapse
|
9
|
Lamaison C, Tarte K. B cell/stromal cell crosstalk in health, disease, and treatment: Follicular lymphoma as a paradigm. Immunol Rev 2021; 302:273-285. [PMID: 34060097 DOI: 10.1111/imr.12983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Stromal cells organize specific anatomic compartments within bone marrow (BM) and secondary lymphoid organs where they finely regulate the behavior of mature normal B cells. In particular, lymphoid stromal cells (LSCs) form a phenotypically heterogeneous compartment including various cell subsets variably supporting B-cell survival, activation, proliferation, and differentiation. In turn, activated B cells trigger in-depth remodeling of LSC networks within lymph nodes (LN) and BM. Follicular lymphoma (FL) is one of the best paradigms of a B-cell neoplasia depending on a specific tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs) emerging from the reprogramming of LN LSCs or poorly characterized local BM precursors. FL-CAFs support directly malignant B-cell growth and orchestrate FL permissive cell niche by contributing, through a bidirectional crosstalk, to the recruitment and polarization of immune TME subsets. Recent studies have highlighted a previously unexpected level of heterogeneity of both FL B cells and FL TME, underlined by FL-CAF plasticity. A better understanding of the signaling pathways, molecular mechanisms, and kinetic of stromal cell remodeling in FL would be useful to delineate new predictive markers and new therapeutic approaches in this still fatal malignancy.
Collapse
Affiliation(s)
- Claire Lamaison
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France
| | - Karin Tarte
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France.,SITI, Pôle de Biologie, CHU Pontchaillou, Rennes, France
| |
Collapse
|
10
|
Haebe S, Shree T, Sathe A, Day G, Czerwinski DK, Grimes SM, Lee H, Binkley MS, Long SR, Martin B, Ji HP, Levy R. Single-cell analysis can define distinct evolution of tumor sites in follicular lymphoma. Blood 2021; 137:2869-2880. [PMID: 33728464 PMCID: PMC8160505 DOI: 10.1182/blood.2020009855] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity complicates biomarker development and fosters drug resistance in solid malignancies. In lymphoma, our knowledge of site-to-site heterogeneity and its clinical implications is still limited. Here, we profiled 2 nodal, synchronously acquired tumor samples from 10 patients with follicular lymphoma (FL) using single-cell RNA, B-cell receptor (BCR) and T-cell receptor sequencing, and flow cytometry. By following the rapidly mutating tumor immunoglobulin genes, we discovered that BCR subclones were shared between the 2 tumor sites in some patients, but in many patients, the disease had evolved separately with limited tumor cell migration between the sites. Patients exhibiting divergent BCR evolution also exhibited divergent tumor gene-expression and cell-surface protein profiles. While the overall composition of the tumor microenvironment did not differ significantly between sites, we did detect a specific correlation between site-to-site tumor heterogeneity and T follicular helper (Tfh) cell abundance. We further observed enrichment of particular ligand-receptor pairs between tumor and Tfh cells, including CD40 and CD40LG, and a significant correlation between tumor CD40 expression and Tfh proliferation. Our study may explain discordant responses to systemic therapies, underscores the difficulty of capturing a patient's disease with a single biopsy, and furthers our understanding of tumor-immune networks in FL.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Biopsy, Fine-Needle
- CD40 Antigens/biosynthesis
- CD40 Antigens/genetics
- CD40 Ligand/biosynthesis
- CD40 Ligand/genetics
- Clonal Evolution/genetics
- DNA, Neoplasm/genetics
- Disease Progression
- Female
- Flow Cytometry
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Gene Rearrangement, T-Lymphocyte
- Humans
- Lymph Nodes/chemistry
- Lymph Nodes/ultrastructure
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphoma, Follicular/chemistry
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phylogeny
- RNA, Neoplasm/genetics
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Single-Cell Analysis
- T Follicular Helper Cells/immunology
- T Follicular Helper Cells/metabolism
- Transcriptome
- Tumor Microenvironment
Collapse
Affiliation(s)
- Sarah Haebe
- Division of Oncology, Department of Medicine, School of Medicine
| | - Tanaya Shree
- Division of Oncology, Department of Medicine, School of Medicine
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, School of Medicine
| | - Grady Day
- Division of Oncology, Department of Medicine, School of Medicine
| | | | | | - HoJoon Lee
- Division of Oncology, Department of Medicine, School of Medicine
| | | | - Steven R Long
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Brock Martin
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, School of Medicine
- Stanford Genome Technology Center
| | - Ronald Levy
- Division of Oncology, Department of Medicine, School of Medicine
| |
Collapse
|
11
|
Csernus B, Timár B, Fülöp Z, Matolcsy A. Grade I, II and III Follicular Lymphomas Express Ig V H Genes with Different Patterns of Somatic Mutation. Pathol Oncol Res 2020; 26:2765-2772. [PMID: 32705429 PMCID: PMC7471144 DOI: 10.1007/s12253-020-00843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022]
Abstract
Follicular lymphoma (FL) is an indolent, B-cell, non-Hodgkin’s lymphoma with varying cytological appearance and clinical behavior. The genetic hallmark of FL is the t(14;18) translocation, and as a germinal center derived entity it is also characterized by somatic hypermutation of the immunoglobulin heavy chain (IgH) gene. In an attempt to correlate this molecular signature with the cytological grading of FL, we have analyzed the IgH variable (IgVH), regions in all cytological grades of FL. Four FL cases showing t(14;18) translocation were classified into grade I-III categories according to the current WHO guidelines. The IgVH gene segments were PCR-amplified, sequenced, and compared to their respective germline IgVH sequences. The neoplastic cells of grade I and II FLs revealed clonally related, but highly divergent IgVH gene sequences indicating the ongoing nature of somatic hypermutation. Grade III FL also showed extensive presence of somatic hypermutation, but these mutations were not associated with intraclonal divergence. Thus, these results suggest that grade I-II and grade III FL may represent different biological entities. The presence of ongoing somatic hypermutation of IgVH sequences in grade I and II FLs is compatible with direct follicular origin of these tumor cells, contrasting the homogenous, stable clones of grade III FL resembling a post-follicular stage of B-cell development. Our findings demonstrate that contrary to the three tiered cytological grading, molecular features of IgH genes classify FL into two distinct subcategories. These studies also suggest that with progression FL gains post-follicular–like molecular features and becomes independent of the germinal center microenvironment.
Collapse
Affiliation(s)
- Balázs Csernus
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Botond Timár
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Zsolt Fülöp
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary. .,Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
12
|
Abstract
Although outcomes for follicular lymphoma (FL) continue to improve, it remains incurable for the majority of patients. Through next generation sequencing (NGS) studies, we now recognize that the genomic landscape of FL is skewed toward highly recurrent mutations in genes that encode epigenetic regulators co-occurring with the pathognomonic t(14;18) translocation. Adopting these technologies to study longitudinal and spatially-derived lymphomas has provided unique insights into the tumoral heterogeneity, clonal evolution of the disease and supports the existence of a tumor-repopulating population, considered the Achilles' heel of this lymphoma. An in-depth understanding of the genomics and its contribution to the disease pathogenesis is identifying new biomarkers and therapeutic targets that can be translated into clinical practice and, in the not too distant future, enable us to start considering precision-based approaches to the management of FL.
Collapse
Affiliation(s)
- Lucy Pickard
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giuseppe Palladino
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Belman JP, Meng W, Wang HY, Li J, Strauser HT, Rosenfeld AM, Zhang Q, Prak ETL, Wasik M. Dramatic increase in gene mutational burden after transformation of follicular lymphoma into TdT + B-lymphoblastic leukemia/lymphoma. Cold Spring Harb Mol Case Stud 2019; 6:mcs.a004614. [PMID: 31776129 PMCID: PMC6996523 DOI: 10.1101/mcs.a004614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Transformation of follicular lymphoma (FL) into B-lymphoblastic leukemia/lymphoma (B-ALL/LBL) is rare and results in greatly increased aggressiveness of clinical course. Here we present extensive molecular analysis of this unusual transformation, including immunoglobulin (Ig) gene rearrangement studies, cytogenetic analysis, and whole-exome sequencing (WES) of the patient's FL, B-ALL/LBL, and normal cells. Although FL showed marked somatic hypermutation (SHM) of the Ig genes, SHM appeared to be even more extensive in B-ALL/LBL. Cytogenetically, at least three translocations were identified in the B-ALL/LBL involving the BCL2, BCL6, and MYC genes; two of these, the BCL6 and BCL2 gene rearrangements, were already seen at the FL stage. WES identified 751 single-nucleotide variants with high allelic burden in the patient's cells, with the vast majority (575) present exclusively at the B-ALL/LBL stage. Of note, a TAF3 gene mutation was shared by normal, FL, and B-ALL/LBL tissue. A KMT2D nonsense mutation was identified in both FL and B-ALL/LBL and therefore may have contributed directly to lymphomagenesis. Mutations in KDM6A, SMARCA4, CBX1, and JMY were specific to the B-ALL/LBL stage, possibly contributing to the B-ALL/LBL transformation. Functionally, these identified mutations may lead to dysregulation of DNA repair, transcription, and cell differentiation. Thus, these genetic changes, together with the identified chromosomal translocations, may have contributed to lymphoma development and progression. Our findings may improve the mechanistic understanding of the FL-B-ALL/LBL transformation and may have therapeutic implications for this aggressive disease.
Collapse
Affiliation(s)
- Jonathan P Belman
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wenzhao Meng
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hong Yi Wang
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jie Li
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Honore T Strauser
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aaron M Rosenfeld
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Qian Zhang
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eline T Luning Prak
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mariusz Wasik
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Lamaison C, Tarte K. Impact of B cell/lymphoid stromal cell crosstalk in B-cell physiology and malignancy. Immunol Lett 2019; 215:12-18. [DOI: 10.1016/j.imlet.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022]
|
15
|
Huet S, Sujobert P, Salles G. From genetics to the clinic: a translational perspective on follicular lymphoma. Nat Rev Cancer 2018; 18:224-239. [PMID: 29422597 DOI: 10.1038/nrc.2017.127] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Follicular lymphoma (FL) is the most frequent indolent B cell lymphoma and is still considered to be incurable. In recent years, whole-exome sequencing studies of large cohorts of patients have greatly improved our knowledge of the FL mutational landscape. Moreover, the prolonged evolution of this disease has enabled some insights regarding the early pre-lymphoma lesions as well as the clonal evolution after treatment, allowing an evolutionary perspective on lymphomagenesis. Deciphering the earliest initiating lesions and identifying the molecular alterations leading to disease progression currently represent important goals; accomplishing these could help identify the most relevant targets for precision therapy.
Collapse
Affiliation(s)
- Sarah Huet
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, ISPB-Faculté de Pharmacie de Lyon, Lyon, France
| | - Pierre Sujobert
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oullins, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oullins, France
| |
Collapse
|
16
|
Pathogenesis of follicular lymphoma. Best Pract Res Clin Haematol 2017; 31:2-14. [PMID: 29452662 DOI: 10.1016/j.beha.2017.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Abstract
Follicular lymphoma (FL) is presented as a germinal centre B cell lymphoma that is characterized by an indolent clinical course, but remains - paradoxically - largely incurable to date. The last years have seen significant progress in our understanding of FL lymphomagenesis, which is a multi-step process beginning in the bone marrow with the hallmark t(14;18)(q32;q21) translocation. The pathobiology of FL is complex and combines broad somatic changes at the level of both the genome and the epigenome, the latter evidenced by highly recurrent mutations in chromatin-modifying genes such as KMT2D and CREBBP. While the importance of the FL microenvironment has since long been well understood, it has become evident that somatic lesions within tumour cells re-educate normal immune and stromal cells to their advantage. Enhanced understanding of FL pathogenesis is currently leading to refined therapeutic targeting of perturbed biology, paving the way for precision medicine in this lymphoma subtype.
Collapse
|
17
|
Kosmidis P, Bonzheim I, Dufke C, Colak S, Hentrich T, Schroeder C, Bauer P, Adam P, Fend F. Next generation sequencing of the clonal IGH rearrangement detects ongoing mutations and interfollicular trafficking in in situ follicular neoplasia. PLoS One 2017. [PMID: 28640838 PMCID: PMC5480878 DOI: 10.1371/journal.pone.0178503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Follicular lymphoma (FL) is characterized genetically by a significant intraclonal diversity of rearranged immunoglobulin heavy chain (IGH) genes and a substantial cell migration activity (follicular trafficking). Recently, in situ follicular neoplasia (ISFN), characterized by accumulations of immunohistochemically strongly BCL2-positive, t(14;18)+ clonal B cells confined to germinal centers in reactive lymph nodes, has been identified as a precursor lesion of FL with low risk of progression to manifest FL. The extent of ongoing somatic hypermutation of rearranged IGH genes and interfollicular trafficking in ISFN is not known. In this study we performed an in depth analysis of clonal evolution and cell migration patterns in a case of pure ISFN involving multiple lymph nodes. Using laser microdissection and next generation sequencing (NGS) we documented significant intraclonal diversity of the rearranged IGH gene and extensive interfollicular migration between germinal centers of the same lymph node as well as between different lymph nodes. Furthermore, we identified N-glycosylation motifs characteristic for FL in the CDR3 region.
Collapse
Affiliation(s)
- Perikles Kosmidis
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- * E-mail:
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Sema Colak
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Adam
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Bischin AM, Dorer R, Aboulafia DM. Transformation of Follicular Lymphoma to a High-Grade B-Cell Lymphoma With MYC and BCL2 Translocations and Overlapping Features of Burkitt Lymphoma and Acute Lymphoblastic Leukemia: A Case Report and Literature Review. Clin Med Insights Blood Disord 2017; 10:1179545X17692544. [PMID: 28579851 PMCID: PMC5428247 DOI: 10.1177/1179545x17692544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022]
Abstract
Most commonly, histologic transformation (HT) from follicular lymphoma (FL) manifests as a diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS). Less frequently, HT may result in a high-grade B-cell lymphoma (HGBL) with MYC and B-cell lymphoma protein 2 (BCL2) and/or BCL6 gene rearrangements, also known as “double-hit” or “triple-hit” lymphomas. In the 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms, the category B-cell lymphoma, unclassifiable was eliminated due to its vague criteria and limiting diagnostic benefit. Instead, the WHO introduced the HGBL category, characterized by MYC and BCL2 and/or BCL6 rearrangements. Cases that present as an intermediate phenotype of DLBCL and Burkitt lymphoma (BL) will fall within this HGBL category. Very rarely, HT results in both the intermediate DLBCL and BL phenotypes and exhibits lymphoblastic features, in which case the WHO recommends that this morphologic appearance should be noted. In comparison with de novo patients with DLBCL, NOS, those with MYC and BCL2 and/or BCL6 gene rearrangements have a worse prognosis. A 63-year-old woman presented with left neck adenopathy. Laboratory assessments, including complete blood count, complete metabolic panel, serum lactate dehydrogenase, and β2-microglobulin, were all normal. A whole-body computerized tomographic (CT) scan revealed diffuse adenopathy above and below the diaphragm. An excisional node biopsy showed grade 3A nodular FL. The Ki67 labeling index was 40% to 50%. A bone marrow biopsy showed a small focus of paratrabecular CD20+ lymphoid aggregates. She received 6 cycles of bendamustine (90 mg/m2 on days +1 and +2) and rituximab (375 mg/m2 on day +2), with each cycle delivered every 4 weeks. A follow-up CT scan at completion of therapy showed a partial response with resolution of axillary adenopathy and a dramatic shrinkage of the large retroperitoneal nodes. After 18 months, she had crampy abdominal pain in the absence of B symptoms. Positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-d-glucose integrated with CT (18F-FDG PET/CT) scan showed widespread adenopathy, diffuse splenic involvement, and substantial marrow involvement. Biopsy of a 2.4-cm right axillary node (SUVmax of 16.1) showed involvement by grade 3A FL with a predominant nodular pattern of growth. A bone marrow biopsy once again showed only a small focus of FL. She received idelalisib (150 mg twice daily) and rituximab (375 mg/m2, monthly) beginning May 2015. After 4 cycles, a repeat CT scan showed a complete radiographic response. Idelalisib was subsequently held while she received corticosteroids for immune-mediated colitis. A month later, she restarted idelalisib with a 50% dose reduction. After 2 weeks, she returned to clinic complaining of bilateral hip and low lumbar discomfort but no B symptoms. A restaging 18F-FDG PET/CT in January 2016 showed dramatic marrow uptake. A bone marrow aspirate showed sheets of tumor cells representing a spectrum from intermediate-sized cells with lymphoblastic features to very large atypical cells with multiple nucleoli. Two distinct histologies were present; one remained consistent with the patient’s known FL with a predominant nodular pattern and the other consistent with HT (the large atypical cells expressed PAX5, CD10, BCL2, and c-MYC and were negative for CD20, MPO, CD34, CD30, and BCL6). Focal areas showed faint, heterogeneous expression of terminal deoxynucleotidyl transferase best seen on the clot section. Ki67 proliferation index was high (4+/4). Fluorescence in situ hybridization analysis showed 2 populations with MYC amplification and/or rearrangement and no evidence of BCL6 rearrangement; a karyotype analysis showed a complex abnormal female karyotype with t(14;18) and multiple structural and numerical abnormalities. She started dose-adjusted rituximab, etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin with concomitant prophylactic intrathecal methotrexate and cytarabine. She had but a short-lived response before dying in hospice from progressive lymphoma. Whether idelalisib could provide a microenvironment for selection of more aggressive clones needs to be addressed. Our patient’s clinical course is confounded by the incorporation of idelalisib while being further complicated by the complexity of HT and the mechanisms in which first-line chemotherapy regimens affect double-hit lymphoma.
Collapse
Affiliation(s)
- Alina M Bischin
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Russell Dorer
- Department of Pathology, Virginia Mason Medical Center, Seattle, WA, USA
| | - David M Aboulafia
- Department of Hematology and Oncology, Virginia Mason Medical Center, Seattle, WA, USA.,Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Rizzo D, Viailly PJ, Mareschal S, Bohers E, Picquenot JM, Penther D, Dubois S, Marchand V, Bertrand P, Maingonnat C, Etancelin P, Feuillard J, Bastard C, Tilly H, Jardin F, Ruminy P. Oncogenic events rather than antigen selection pressure may be the main driving forces for relapse in diffuse large B-cell lymphomas. Am J Hematol 2017; 92:68-76. [PMID: 27737507 DOI: 10.1002/ajh.24584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023]
Abstract
Little is known on the phylogenetic relationship between diagnostic and relapse clones of diffuse large B-cell lymphoma (DLBCL). We applied high throughput sequencing (HTS) of the VDJ locus of Immunoglobulin heavy chain (IGHV) on 14 DLBCL patients with serial samples, including tumor biopsies and/or peripheral blood mononuclear cells (PBMC). Phylogenetic data were consolidated with targeted sequencing and cytogenetics. Phylogeny clearly showed that DLBCL relapse could occur according either an early or a late divergent mode. These two modes of divergence were independent from the elapsed time between diagnosis and relapse. We found no significant features for antigen selection pressure in complementary determining region both at diagnosis and relapse for 9/12 pairs and a conserved negative selection pressure for the three remaining cases. Targeted HTS and conventional cytogenetics revealed a branched vs. linear evolution for 5/5 IGHV early divergent cases, but unexpected such "oncogenetic" branched evolution could be found in at least 2/7 IGHV late divergent cases. Thus, if BCR signaling is mandatory for DLBCL emergence, oncogenetic events under chemotherapy selection pressure may be the main driving forces at relapse. Finally, circulating subclones with divergent IGHV somatic hypermutations patterns from initial biopsy could be detected in PBMC at diagnosis for 4/6 patients and, for two of them, at least one was similar to the ones found at relapse. This study highlights that oncogenetic intraclonal diversity of DLBCL should be evaluated beyond the scope a single biopsy and represents a rationale for future investigations using peripheral blood for lymphoid malignancies genotyping. Am. J. Hematol. 92:68-76, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Rizzo
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of biological hematology; Centre Hospitalier Universitaire Dupuytren; Limoges France
| | - Pierre-Julien Viailly
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Sylvain Mareschal
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Elodie Bohers
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Jean-Michel Picquenot
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of pathology; Centre Henri Becquerel; Rouen France
| | - Dominique Penther
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of oncology genetics; Centre Henri Becquerel; Rouen France
| | - Sydney Dubois
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Vinciane Marchand
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Philippe Bertrand
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Catherine Maingonnat
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Pascaline Etancelin
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of oncology genetics; Centre Henri Becquerel; Rouen France
| | - Jean Feuillard
- Department of biological hematology; Centre Hospitalier Universitaire Dupuytren; Limoges France
- UMR CNRS 7276, University of Limoges; Limoges France
| | - Christian Bastard
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of oncology genetics; Centre Henri Becquerel; Rouen France
| | - Hervé Tilly
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of clinical hematology; Centre Henri Becquerel; Rouen France
| | - Fabrice Jardin
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of clinical hematology; Centre Henri Becquerel; Rouen France
| | - Philippe Ruminy
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| |
Collapse
|
20
|
|
21
|
DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood 2015; 126:1911-20. [PMID: 26272216 DOI: 10.1182/blood-2015-04-640912] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM(+) FL B cells activated a stronger BCR signaling network than IgG(+) FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM(+) FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN-dependent adhesion of highly mannosylated IgM(+) FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN-expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets.
Collapse
|
22
|
Blombery PA, Wall M, Seymour JF. The molecular pathogenesis of B-cell non-Hodgkin lymphoma. Eur J Haematol 2015; 95:280-93. [DOI: 10.1111/ejh.12589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service; St Vincent's Hospital Melbourne; University of Melbourne; Fitzroy Vic. Australia
| | | |
Collapse
|
23
|
Middle S, Coupland SE, Taktak A, Kidgell V, Slupsky JR, Pettitt AR, Till KJ. Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins. Exp Hematol Oncol 2015; 4:10. [PMID: 25938000 PMCID: PMC4416323 DOI: 10.1186/s40164-015-0004-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022] Open
Abstract
Background The aim of this study was to elucidate the mechanisms responsible for the location of B-cell non-Hodgkin’s lymphoma (B-NHL) at different anatomical sites. We speculated that the malignant B cells in these disorders have the potential for trafficking between blood and secondary lymphoid organs (SLO) or extranodal sites and that their preferential accumulation at different locations is governed by the expression of key molecules that regulate the trafficking of normal lymphocytes. Methods Biopsy or blood samples from 91 cases of B-NHL affecting SLO (n = 27), ocular adnexae (n = 51) or blood (n = 13) were analysed by immunohistochemistry or flow cytometry for the expression of the following molecules: CCR7, CCL21 and αL (required for the entry of normal lymphocytes into SLO); CXCR4, CXCL12 and α4 (required for entry into extranodal sites); CXCR5, CXCL13 and S1PR2 (required for tissue retention); S1PR1 and S1PR3 (required for egress into the blood). The expression of each of these molecules was then related to anatomical location and histological subtype. Results The expression of motility/adhesion molecules varied widely between individual patient samples and correlated much more strongly with anatomical location than with histological subtype. SLO lymphomas [comprising 10 follicular lymphoma (FL), 8 diffuse large B-cell lymphoma (DLBCL), 4 mantle-cell lymphoma (MCL) and 5 marginal-zone lymphoma (MZL)] were characterised by pronounced over-expression of S1PR2, suggesting that the malignant cells in these lymphomas are actively retained at the site of clonal expansion. In contrast, the malignant B cells in ocular adnexal lymphomas (10 FL, 9 DLBCL, 4 MCL and 28 MZL) expressed a profile of molecules suggesting a dynamic process of trafficking involving not only tissue retention but also egress via S1PR3 and homing back to extranodal sites via CXCR4/CXCL12 and α4. Finally, leukaemic lymphomas (6 FL, 5 MCL and 2 MZL) were characterised by aberrant expression of the egress receptor S1PR1 and low expression of molecules required for tissue entry/retention. Conclusions In summary, our study strongly suggests that anatomical location in B-NHL is governed by the differential expression of specific adhesion/motility molecules. This novel observation has important implications for therapeutic strategies that aim to disrupt protective micro-environmental interactions. Electronic supplementary material The online version of this article (doi:10.1186/s40164-015-0004-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen Middle
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, England
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, England
| | - Azzam Taktak
- Medical Physics and Clinical Engineering, Royal Liverpool University Hospital, Liverpool, England
| | - Victoria Kidgell
- ORLAU, RJAH Orthopaedic hospital NHS Foundation Trust, Oswestry, England
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, England
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, England
| | - Kathleen J Till
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, England
| |
Collapse
|
24
|
Berget E, Molven A, Løkeland T, Helgeland L, Vintermyr OK. IGHV gene usage and mutational status in follicular lymphoma: Correlations with prognosis and patient age. Leuk Res 2015; 39:702-8. [PMID: 25900812 DOI: 10.1016/j.leukres.2015.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/10/2015] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
Abstract
Follicular lymphoma (FL) is a heterogeneous disease with some patients developing progressively or transformed disease early, whereas others follow an indolent clinical course. We evaluated the prognostic value of immunoglobulin heavy chain variable (IGHV) gene usage and mutational status in FL patients. One hundred and four IGH sequences were obtained in tumour samples from 99 patients. The IGHV3 subgroup had the highest usage frequency (57.7%) with IGHV3-23 being the most common sequence. Patients with the IGHV5 subgroup or IGHV sequences from more than one subgroup had significantly less favourable prognosis with an estimated 5-year survival of 62.5 and 50.0%, respectively, as compared with a 5-year survival of 95.1% for patients with other IGHV subgroups (P=0.013 and P<0.001, log-rank). The poor survival associated with IGHV5 or >1 IGHV subgroup usage was an independent prognostic factor in Cox multivariate analysis (P=0.005). IGHV genes were unmutated showing >98% homology in 15.2% of cases. Contrasting the situation in chronic lymphocytic leukaemia (CLL), the presence of unmutated sequences did not yield prognostic information, although unmutated sequences were associated with age at diagnosis >60 years (P=0.022, Fisher's exact). In conclusion, our results indicate that analysis of IGHV gene usage might aid in predicting prognosis for FL patients.
Collapse
Affiliation(s)
- Ellen Berget
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Anders Molven
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Turid Løkeland
- Department of Oncology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Lars Helgeland
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Olav Karsten Vintermyr
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
25
|
Abstract
Histologic transformation of follicular lymphoma to an aggressive non-Hodgkin lymphoma is a critical biologic event with profound implications on the natural history of this otherwise indolent disease. Recent insights into the genetic and epigenetic basis of transformation have been described, with the recognition of pivotal events governing the initiation and persistence of tumor evolution. Outcomes of patients with transformed lymphoma have historically been poor; however, several studies in the rituximab era suggest that survival may be more favorable than previously recognized. This review highlights our current understanding of transformed follicular lymphoma biology and pathogenesis, current treatment, and future directions.
Collapse
|
26
|
Genomic and epigenomic co-evolution in follicular lymphomas. Leukemia 2014; 29:456-63. [DOI: 10.1038/leu.2014.209] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/08/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023]
|
27
|
|
28
|
Till KJ, Coupland SE, Pettitt AR. Motility and trafficking in B-cell non-Hodgkin's lymphoma (Review). Int J Oncol 2014; 45:5-12. [PMID: 24788871 DOI: 10.3892/ijo.2014.2395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
Abstract
B cell non-Hodgkin's lymphomas (B-NHLs) consist of a wide spectrum of entities and consequently have varied clinical courses. Like many other malignancies, each of the B-NHL depend on their microenvironment for growth and survival; therefore, understanding the factors involved in their tissue localisation is likely to have implications for therapies designed to treat B-NHL. This review summarises the chemokines, integrins and sphingosine-1 phosphate receptors involved in normal B cell location and distribution within the lymphoid tissues (lymph nodes, spleen and bone marrow). It also provides a précis of what is known about these factors in the disease state: i.e., in some subtypes of B-NHL.
Collapse
Affiliation(s)
- Kathleen J Till
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
29
|
Burkhard R, Bhagat G, Cogliatti SB, Rossi D, Gaidano G, Pasqualucci L, Novak U. BCL2mutation spectrum in B-cell non-Hodgkin lymphomas and patterns associated with evolution of follicular lymphoma. Hematol Oncol 2014; 33:23-30. [DOI: 10.1002/hon.2132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/22/2013] [Accepted: 12/20/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Regula Burkhard
- Experimental Oncology/Hematology, Department of Clinical Research; University of Bern; Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Center; Columbia University Medical Center and New York Presbyterian Hospital; New York NY USA
- Department of Pathology and Cell Biology; Columbia University Medical Center and New York Presbyterian Hospital; New York NY USA
| | | | - Davide Rossi
- Division of Hematology, Department of Translational Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara Italy
| | - Laura Pasqualucci
- Herbert Irving Comprehensive Cancer Center; Columbia University Medical Center and New York Presbyterian Hospital; New York NY USA
- Department of Pathology and Cell Biology; Columbia University Medical Center and New York Presbyterian Hospital; New York NY USA
- Institute for Cancer Genetics; Columbia University; New York NY USA
| | - Urban Novak
- Experimental Oncology/Hematology, Department of Clinical Research; University of Bern; Bern Switzerland
- Department of Medical Oncology, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| |
Collapse
|
30
|
Amé-Thomas P, Tarte K. The yin and the yang of follicular lymphoma cell niches: role of microenvironment heterogeneity and plasticity. Semin Cancer Biol 2013; 24:23-32. [PMID: 23978491 DOI: 10.1016/j.semcancer.2013.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 12/20/2022]
Abstract
Follicular lymphoma (FL) results from the malignant transformation of germinal center B cells and is characterized by recurrent genetic alterations providing a direct growth advantage or facilitating interaction with tumor microenvironment. In agreement, accumulating evidences suggest a dynamic bidirectional crosstalk between FL B cells and surrounding non-malignant cells within specialized tumor niches in both invaded lymph nodes and bone marrow. Infiltrating stromal cells, macrophages, and T/NK cell subsets either contribute to anti-tumor immune response, or conversely form a tumor supportive network promoting FL B cell survival, growth, and drug resistance. This review depicts the phenotypic heterogeneity and functional plasticity of the most important FL cell partners and describes their complex interplay. We also unravel how malignant B cells recruit and subvert accessory immune and stromal cells to trigger their polarization toward a supportive phenotype. Based on these observations, innovative therapeutic approaches have been recently proposed, in order to benefit from local anti-tumor immunity and/or to selectively target the protective cell niche.
Collapse
Affiliation(s)
- Patricia Amé-Thomas
- INSERM, UMR U917, Equipe Labellisée Ligue Contre le Cancer, Faculté de Médecine, Rennes, France; Université Rennes 1, Rennes, France; CHU de Rennes, Hôpital Pontchaillou, Service ITeCH, Pôle de Biologie, Rennes, France
| | - Karin Tarte
- INSERM, UMR U917, Equipe Labellisée Ligue Contre le Cancer, Faculté de Médecine, Rennes, France; Université Rennes 1, Rennes, France; CHU de Rennes, Hôpital Pontchaillou, Service ITeCH, Pôle de Biologie, Rennes, France; Etablissement Français du Sang Bretagne, Rennes, France.
| |
Collapse
|