1
|
Hu X, Yu X, Zhang L, Zhang Q, Ji M, Qi K, Wang S, Li Z, Xu K, Fu C. The aberrantly activated AURKB supports and complements the function of AURKA in CALR mutated cells through regulating the cell growth and differentiation. Exp Cell Res 2025; 444:114377. [PMID: 39706286 DOI: 10.1016/j.yexcr.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Aurora kinase B (AURKB) was reported to assist Aurora kinase A (AURKA) to regulate cellular mitosis. AURKA has been found activated in myeloproliferative neoplasms (MPNs) patients with CALR gene mutation, however, it's unclear whether AURKB displays a compensatory function of AURKA in regulation of CALR mutant cell growth and differentiation. Here, we found that AURKB, similar with AURKA, was aberrantly activated in CALR mutant patients, and displayed a more tolerance to the aurora kinase inhibitor. Inhibition of AURKA decreased cell growth and colony formation, induced cell differentiation and apoptosis, while, this inhibitive degree was further enhanced when AURKB was blocked by incremental inhibitor. Transcriptomic analyses revealed a more significant gene enrichment in cells with knockdown of AURKB than that of AURKA, mainly reflecting in oxidative phosphorylation, mitosis, proliferation and apoptosis signaling pathway. Moreover, downregulation of AURKB enhanced cell growth arrest and apoptosis more obviously than that of AURKA, and additionally promoted cell differentiation and metabolism-oxygen consumption rate (OCR). Otherwise, overexpression of AURKA or AURKB facilitated the cell proliferation of CALR mutant cells, and made cells more sensitive to the aurora kinase inhibitor. These results suggest that activated AURKB not only supports the functions of AURKA in promoting the growth of CALR mutated cells, but also has impeded the differentiation of these cells.
Collapse
Affiliation(s)
- Xueting Hu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Liwei Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qigang Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Mengchu Ji
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Chunling Fu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Alwahsh M, Farhat J, Talhouni S, Hamadneh L, Hergenröder R. Bortezomib advanced mechanisms of action in multiple myeloma, solid and liquid tumors along with its novel therapeutic applications. EXCLI JOURNAL 2023; 22:146-168. [PMID: 36998701 PMCID: PMC10043448 DOI: 10.17179/excli2022-5653] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/12/2023] [Indexed: 04/01/2023]
Abstract
Bortezomib (BTZ) is a first-in-class reversible and selective proteasome inhibitor. It inhibits the ubiquitin proteasome pathway that leads to the degradation of many intracellular proteins. Initially, BTZ was FDA approved for the treatment of refractory or relapsed multiple myeloma (MM) in 2003. Later, its usage was approved for patients with previously untreated MM. In 2006, BTZ was approved for the treatment of relapsed or refractory Mantle Cell Lymphoma (MCL) and, in 2014, for previously untreated MCL. BTZ has been extensively studied either alone or in combination with other drugs for the treatment of different liquid tumors especially in MM. However, limited data evaluated the efficacy and safety of using BTZ in patients with solid tumors. In this review, we will discuss the advanced and novel mechanisms of action of BTZ documented in MM, solid tumors and liquid tumors. Moreover, we will shed the light on the newly discovered pharmacological effects of BTZ in other prevalent diseases.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Institute of Pathology and Medical Research Center (ZMF), University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
- *To whom correspondence should be addressed: Mohammad Alwahsh, Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan, E-mail:
| | - Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, PO Box 127788, United Arab Emirates
| | - Shahd Talhouni
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Lama Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| |
Collapse
|
3
|
Chronic myeloid neoplasms harboring concomitant mutations in myeloproliferative neoplasm driver genes (JAK2/MPL/CALR) and SF3B1. Mod Pathol 2021; 34:20-31. [PMID: 32694616 DOI: 10.1038/s41379-020-0624-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
JAK2, CALR, and MPL are myeloproliferative neoplasm (MPN)-driver mutations, whereas SF3B1 is strongly associated with ring sideroblasts (RS) in myelodysplastic syndrome (MDS). Concomitant mutations of SF3B1 and MPN-driver mutations out of the context of MDS/MPN with RS and thrombocytosis (MDS/MPN-RS-T) are not well-studied. From the cases (<5% blasts) tested by NGS panels interrogating at least 42 myeloid neoplasm-related genes, we identified 18 MDS/MPN-RS-T, 42 MPN, 10 MDS, and 6 MDS/MPN-U cases with an SF3B1 and an MPN-driver mutation. Using a 10% VAF difference to define "SF3B1-dominant," "MPN-mutation dominant," and "no dominance," the majority of MDS/MPN-RS-T clustered in "SF3B1-dominant" and "no dominance" regions. Aside from parameters as thrombocytosis and ≥15% RS required for RS-T, MDS also differed in frequent neutropenia, multilineage dysplasia, and notably more cases with <10% VAF of MPN-driver mutations (60%, p = 0.0346); MPN differed in more frequent splenomegaly, myelofibrosis, and higher VAF of "MPN-driver mutations." "Gray zone" cases with features overlapping MDS/MPN-RS-T were observed in over one-thirds of non-RS-T cases. This study shows that concomitant SF3B1 and MPN-driver mutations can be observed in MDS, MPN, and MDS/MPN-U, each showing overlapping but also distinctively different clinicopathological features. Clonal hierarchy, cytogenetic abnormalities, and additional somatic mutations may in part contribute to different disease phenotypes, which may help in the classification of "gray zone" cases.
Collapse
|
4
|
UYSAL A, ALTINER Ş, ÇELİK S, UYSAL S, ÇEBİ AH. BCR-ABL negatif kronik myeloproliferatif hastalıkların tanı anındaki genetik analizleri ve bunların klinik etkileri. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.699491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Essential thrombocythemia: a hemostatic view of thrombogenic risk factors and prognosis. Mol Biol Rep 2020; 47:4767-4778. [PMID: 32472297 DOI: 10.1007/s11033-020-05536-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
Abstract
Essential thrombocythemia (ET) is a classical myeloproliferative neoplasm that is susceptible to hypercoagulable state due to impaired hemostatic system, so that thrombotic complications are the leading cause of mortality in ET patients. The content used in this article has been obtained by the PubMed database and Google Scholar search engine from English-language articles (2000-2019) using the following keywords: "Essential thrombocythemia," "Thrombosis," "Risk factors" and "Hemostasis. In this neoplasm, the count and activity of cells such as platelets, leukocytes, endothelial cells, as well as erythrocytes are increased, which can increase the risk of thrombosis through rising intercellular interactions, expression of surface markers, and stimulation of platelet aggregation. In addition to these factors, genetic polymorphisms in hematopoietic stem cells (HSCs), including mutations in JAK2, CALR, MPL, or genetic abnormalities in other genes associated with the hemostatic system may be associated with increased risk of thrombotic events. Moreover, disruption of coagulant factors can pave the way for thrombogeneration. Therefore, the identification of markers related to cell activation, genetic abnormalities, or alternation in the coagulant system can be used together as diagnostic and prognostic markers for the occurrence of thrombosis among ET patients. Thus, because thrombotic complications are the main factors of mortality in ET patients, a hemostatic viewpoint and risk assessment of cellular, genetic, and coagulation factors can have prognostic value and contribute to the choice of effective treatment and prevention of thrombosis.
Collapse
|
6
|
Pich A, Riera L, Francia di Celle P, Beggiato E, Benevolo G, Godio L. JAK2V617F, CALR, and MPL Mutations and Bone Marrow Histology in Patients with Essential Thrombocythaemia. Acta Haematol 2018; 140:234-239. [PMID: 30404086 DOI: 10.1159/000493970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Mutations in the JAK2, CALR, and MPL genes have been shown to have prognostic value in essential thrombocythaemia (ET), but no clear association with morphological changes has been reported so far. We investigated the possible correlation between gene mutations and histopathological features in bone marrow (BM) biopsies of patients with ET. METHODS Marrow cellularity, fibrosis, and the number of total and dysmorphic megakaryocytes and clusters of megakaryocytes were compared to gene mutations in 90 cases of ET at diagnosis. RESULTS The JAK2V617F mutation was found in 58.9%, CALR in 28.9%, and MPL in 4.4% of the cases, and 7.8% were triple-negative. JAK2V617F-mutated ET showed a high BM cellularity, the lowest number of clusters of megakaryocytes and the highest number of dysmorphic megakaryocytes; CALR-mutated ET showed a reduced BM cellularity, many clusters of large megakaryocytes, and very few dysmorphic megakaryocytes; MPL-mutated ET showed the lowest BM cellularity, the highest number of clustered and large megakaryocytes, and the lowest number of dysmorphic megakaryocytes. Triple-negative ET cases had the highest BM cellularity. CONCLUSIONS Distinct morphological patterns were associated with gene mutations in ET, supporting the classification of ET into different subtypes.
Collapse
Affiliation(s)
- Achille Pich
- Section of Pathology, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy,
| | - Ludovica Riera
- Section of Pathology, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Centre for Experimental Research and Medical Studies (CERMS), Turin, Italy
| | | | - Eloise Beggiato
- Department of Haematology, AOU Città della Salute e della Scienza, Turin, Italy
| | - Giulia Benevolo
- Department of Haematology, AOU Città della Salute e della Scienza, Turin, Italy
| | - Laura Godio
- Section of Pathology, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Perricone M, Polverelli N, Martinelli G, Catani L, Ottaviani E, Zuffa E, Franchini E, Dizdari A, Forte D, Sabattini E, Cavo M, Vianelli N, Palandri F. The relevance of a low JAK2V617F allele burden in clinical practice: a monocentric study. Oncotarget 2018; 8:37239-37249. [PMID: 28422729 PMCID: PMC5514906 DOI: 10.18632/oncotarget.16744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/20/2017] [Indexed: 02/02/2023] Open
Abstract
Since low JAK2V617F allele burden (AB) has been detected also in healthy subjects, its clinical interpretation may be challenging in patients with chronic myeloproliferative neoplasms (MPNs). We tested 1087 subjects for JAK2V617F mutation on suspicion of hematological malignancy. Only 497 (45.7%) patients were positive. Here we present clinical and laboratory parameters of a cohort of 35/497 patients with an AB ≤ 3%. Overall, 22/35 (62.9%) received a WHO-defined diagnosis of MPN and in 14/35 cases (40%) diagnosis was supported by bone marrow (BM) histology (‘’Histology-based’’ diagnosis). In patients that were unable or refused to perform BM evaluation, diagnosis relied on prospective clinical observation (12 cases, 34.3%) and molecular monitoring (6 cases, 17.1%) (‘’Clinical-based’’ or ‘’Molecular-based’’ diagnosis, respectively). In 11/35 (31.4%) patients, a low JAK2V617F AB was not conclusive of MPN. The probability to have a final hematological diagnosis (ET/PV/MF) was higher in patients with thrombocytosis than in patients with polyglobulia (73.7% vs 57.1%, respectively). The detection of AB ≥ 0.8% always corresponded to an overt MPN phenotype. The repetition of JAK2V617F evaluation over time timely detected the spontaneous expansion (11 cases) or reduction (4 cases) of JAK2V617F-positive clones and significantly oriented the diagnostic process. Our study confirms that histology is relevant to discriminate small foci of clonal hematopoiesis with uncertain clinical significance from a full blown disease. Remarkably, our data suggest that a cut-off of AB ≥ 0.8% is very indicative for the presence of a MPN. Monitoring of the AB over time emerged as a convenient and non-invasive method to assess clonal hematopoiesis expansion.
Collapse
Affiliation(s)
- Margherita Perricone
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Nicola Polverelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Lucia Catani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Emanuela Ottaviani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Zuffa
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Eugenia Franchini
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Arbana Dizdari
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Dorian Forte
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Elena Sabattini
- Haematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Nicola Vianelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesca Palandri
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. and A. Seràgnoli', University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
8
|
Immunogenic Stress and Death of Cancer Cells in Natural and Therapy-Induced Immunosurveillance. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Varricchio L, Falchi M, Dall'Ora M, De Benedittis C, Ruggeri A, Uversky VN, Migliaccio AR. Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Front Cell Dev Biol 2017; 5:96. [PMID: 29218307 PMCID: PMC5703715 DOI: 10.3389/fcell.2017.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Calreticulin is a Ca2+-binding chaperone protein, which resides mainly in the endoplasmic reticulum but also found in other cellular compartments including the plasma membrane. In addition to Ca2+, calreticulin binds and regulates almost all proteins and most of the mRNAs deciding their intracellular fate. The potential functions of calreticulin are so numerous that identification of all of them is becoming a nightmare. Still the recent discovery that patients affected by the Philadelphia-negative myeloproliferative disorders essential thrombocytemia or primary myelofibrosis not harboring JAK2 mutations carry instead calreticulin mutations disrupting its C-terminal domain has highlighted the clinical need to gain a deeper understanding of the biological activity of this protein. However, by contrast with other proteins, such as enzymes or transcription factors, the biological functions of which are strictly defined by a stable spatial structure imprinted by their amino acid sequence, calreticulin contains intrinsically disordered regions, the structure of which represents a highly dynamic conformational ensemble characterized by constant changes between several metastable conformations in response to a variety of environmental cues. This article will illustrate the Theory of calreticulin as an intrinsically disordered protein and discuss the Hypothesis that the dynamic conformational changes to which calreticulin may be subjected by environmental cues, by promoting or restricting the exposure of its active sites, may affect its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore Sanità, Rome, Italy
| | - Massimiliano Dall'Ora
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Caterina De Benedittis
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| |
Collapse
|
10
|
Coexistence of p190 BCR/ABL Transcript and CALR 52-bp Deletion in Chronic Myeloid Leukemia Blast Crisis: A Case Report. Mediterr J Hematol Infect Dis 2016; 8:e2016002. [PMID: 26740863 PMCID: PMC4696471 DOI: 10.4084/mjhid.2016.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
We introduce a 78-year-old woman presented with thrombocytosis and high blast count who had a history of splenectomy. Her cytogenetic analysis revealed aberrant chromosomal rearrangements in different clonal populations harboring 46XX karyotype with t(9;22) (q34;q11). RT-PCR assay detected the e1a2 BCR-ABL translocation resulting from rearrangement of the minor breakpoint cluster region (m-bcr) in BCR gene. Subsequent evaluation of the disease showed calreticulin (CALR) 52-bp deletion as well as the absence of JAK2V617F heterozygous mutation in granulocyte population of peripheral blood using allele-specific PCR and bi-directional DNA sequencing. To our knowledge, this is the first case of a patient initially diagnosed as p190 BCR-ABL transcript positive CML in blast crisis characterized by a 52-bp deletion in CALR gene.
Collapse
|
11
|
Riera L, Osella-Abate S, Benevolo G, Beggiato E, Ferrero S, Pich A, Francia di Celle P. NovelCALRsomatic mutations in essential thrombocythaemia. Br J Haematol 2015; 173:797-801. [DOI: 10.1111/bjh.13638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ludovica Riera
- Section of Pathology; AO Città della Salute e della Scienza; Torino Italy
- Section of Pathology; Department of Molecular Biotechnology and Health Sciences; University of Torino; Torino Italy
| | - Simona Osella-Abate
- Section of Pathology; AO Città della Salute e della Scienza; Torino Italy
- Department of Medical Sciences; Section of Dermatology; University of Torino; Torino Italy
| | - Giulia Benevolo
- SC Haematology; AO Città della Salute e della Scienza; Torino Italy
| | - Eloise Beggiato
- University Division of Haematology and Cell Therapy; Mauriziano Hospital; Torino Italy
| | - Simone Ferrero
- Division of Haematology; Department of Molecular Biotechnology and Health Sciences; University of Torino; Torino Italy
| | - Achille Pich
- Section of Pathology; AO Città della Salute e della Scienza; Torino Italy
- Section of Pathology; Department of Molecular Biotechnology and Health Sciences; University of Torino; Torino Italy
| | | |
Collapse
|
12
|
Luo W, Yu Z. Calreticulin (CALR) mutation in myeloproliferative neoplasms (MPNs). Stem Cell Investig 2015; 2:16. [PMID: 27358884 DOI: 10.3978/j.issn.2306-9759.2015.08.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022]
Abstract
As a heterogeneous group of disease, myeloproliferative neoplasms (MPNs) have confused hematologists and hematopathologists with their protean clinical presentations and myriads of morphologies. A thought of classifying MPNs based on molecular alterations has gained popularity because there is increasing evidence that molecular or chromosomal alterations have a better correlation with clinical presentation, response to therapies, and prognosis than conventional morphological classification. This type of efforts has been facilitated by the advancement of molecular technologies. A significant number of gene mutations have been identified in MPNs with JAK2 and MPL being the major ones. However, a significant gap is present in that many cases of MPNs do not harbor any of these mutations. This gap is recently filled by the discovery of Calreticulin (CALR) mutation in MPNs without JAK2 or MPL mutation and since then, the clinical and molecular correlation in MPNs has become a hot research topic. There seems to be a fairly consistent correlation between CALR mutation and certain hematological parameters such as a high platelet count and a better prognosis in MPNs with CALR mutation. However, controversies are present regarding the risks of thrombosis, interactions of CALR with other gene mutation, the role of CALR in the pathogenesis, and the optimal treatment strategies. In addition, there are many questions remain to be answered, which all boiled down to the molecular mechanisms by which CALR causes or contributes to MPNs. Here, we summarized current published literatures on CALR mutations in MPNs with an emphasis on the clinical-molecular correlation. We also discussed the controversies and questions remain to be answered.
Collapse
Affiliation(s)
- Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
13
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|