1
|
Vanderboom PM, Chawla Y, Dasari S, Kapoor I, Kumar SK, Nair KS, Gonsalves WI. Differences in the proteome within extracellular vesicles between premalignant and malignant plasma cell disorders. Eur J Haematol 2024; 113:351-356. [PMID: 38804098 PMCID: PMC11296916 DOI: 10.1111/ejh.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Precursor plasma cell disorders such as monoclonal gammopathy of undetermined significance (MGUS) always precede the development of active malignancies such as multiple myeloma (MM). There is a need for novel biomarkers to identify those patients with such precursor plasma cell disorders who rapidly progress to MM. Plasma-derived extracellular vesicles (EVs) may serve as a reservoir of potential biomarkers that can shed light on the pathogenesis and disease biology of MM. METHODS This study isolated small EVs (SEVs) and large EVs (LEVs) from the platelet-poor peripheral blood plasma of MGUS (n = 9) and MM (n = 12) patients using the size exclusion chromatography-based method and evaluated their proteome using a label-free proteomics workflow. RESULTS In total, 2055 proteins were identified in SEVs, while 2794 proteins were identified in LEVs. The transferrin receptor (or CD71) protein was upregulated in both populations of EVs derived from MM patients compared to MGUS patients and was of prognostic significance. Similarly, three isoforms of serum amyloid A (SAA) protein, SAA1, SAA2, and SAA4, were also highly upregulated in SEVs within MM patients relative to MGUS patients. Finally, CD40 expression was also higher in the LEVs derived from MM patients than in MGUS patients. CONCLUSIONS This study demonstrates the feasibility of successfully isolating both SEVs and LEVs from the peripheral blood of patients with plasma cell disorders and quantifying protein biomarkers within these EVs that could be of prognostic and diagnostic interest.
Collapse
Affiliation(s)
- Patrick M. Vanderboom
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Isha Kapoor
- Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
2
|
Tanzi E, Di Modica SM, Bordini J, Olivari V, Pagani A, Furiosi V, Silvestri L, Campanella A, Nai A. Bone marrow Tfr2 deletion improves the therapeutic efficacy of the activin-receptor ligand trap RAP-536 in β-thalassemic mice. Am J Hematol 2024; 99:1313-1325. [PMID: 38629683 DOI: 10.1002/ajh.27336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 06/12/2024]
Abstract
β-thalassemia is a disorder characterized by anemia, ineffective erythropoiesis (IE), and iron overload, whose treatment still requires improvement. The activin receptor-ligand trap Luspatercept, a novel therapeutic option for β-thalassemia, stimulates erythroid differentiation inhibiting the transforming growth factor β pathway. However, its exact mechanism of action and the possible connection with erythropoietin (Epo), the erythropoiesis governing cytokine, remain to be clarified. Moreover, Luspatercept does not correct all the features of the disease, calling for the identification of strategies that enhance its efficacy. Transferrin receptor 2 (TFR2) regulates systemic iron homeostasis in the liver and modulates the response to Epo of erythroid cells, thus balancing red blood cells production with iron availability. Stimulating Epo signaling, hematopoietic Tfr2 deletion ameliorates anemia and IE in Hbbth3/+ thalassemic mice. To investigate whether hematopoietic Tfr2 inactivation improves the efficacy of Luspatercept, we treated Hbbth3/+ mice with or without hematopoietic Tfr2 (Tfr2BMKO/Hbbth3/+) with RAP-536, the murine analog of Luspatercept. As expected, both hematopoietic Tfr2 deletion and RAP-536 significantly ameliorate IE and anemia, and the combined approach has an additive effect. Since RAP-536 has comparable efficacy in both Hbbth3/+ and Tfr2BMKO/Hbbth3/+ animals, we propose that the drug promotes erythroid differentiation independently of TFR2 and EPO stimulation. Notably, the lack of Tfr2, but not RAP-536, can also attenuate iron-overload and related complications. Overall, our results shed further light on the mechanism of action of Luspatercept and suggest that strategies aimed at inhibiting hematopoietic TFR2 might improve the therapeutic efficacy of activin receptor-ligand traps.
Collapse
Affiliation(s)
- Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Jessica Bordini
- Vita-Salute San Raffaele University, Milan, Italy
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Campanella
- Vita-Salute San Raffaele University, Milan, Italy
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
4
|
Xu Y, Mao X, Que Y, Xu M, Li C, Almeida VDF, Wang D, Li C. The exploration of B cell maturation antigen expression in plasma cell dyscrasias beyond multiple myeloma. BMC Cancer 2023; 23:123. [PMID: 36750969 PMCID: PMC9903528 DOI: 10.1186/s12885-023-10591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND B cell maturation antigen (BCMA) targeted immunotherapies have demonstrated remarkable clinical efficacy in multiple myeloma (MM). Here, we evaluated the BCMA expression in MM and other plasma cell dyscrasias (PCDs), hoping to provide a potential treatment strategy for the relapsed/refractory PCDs besides MM. METHODS From January 2018 to August 2021, 377 patients with PCDs were enrolled in this study, including 334 MM, 21 systemic light chain amyloidosis (AL), 5 POEMS syndrome, 14 monoclonal gammopathy of undetermined significance (MGUS), and three monoclonal gammopathy of renal significance (MGRS). The membrane-bound BCMA expression measured by multiparameter flow cytometry was defined by BCMA positivity rate and the mean fluorescence intensity (MFI). RESULTS The patients with MM had a median BCMA positive rate of 88.55% (range, 0.2% - 99.9%) and median BCMA MFI of 1281 (range, 109 - 48586). While the median BCMA positive rate in other PCDs was 55.8% (6.2% -98.9%), and the median BCMA MFI was 553 (182- 5930). BCMA expression level was negatively associated with hemoglobin concentration in multivariate analysis in terms of BCMA positive rate and MFI. CONCLUSIONS In conclusion, BCMA has the potential to be a therapeutic target for other PCDs besides MM.
Collapse
Affiliation(s)
- Yanjie Xu
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | - Xia Mao
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China ,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030 Hubei China
| | - Yimei Que
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | - Menglei Xu
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | - Chunhui Li
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | | | - Di Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei, 430030, P. R. China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Chunrui Li
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei, 430030, P. R. China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
The Key Role of Hepcidin-25 in Anemia in Multiple Myeloma Patients with Renal Impairment. Medicina (B Aires) 2022; 58:medicina58030417. [PMID: 35334593 PMCID: PMC8955231 DOI: 10.3390/medicina58030417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background and objectives: Anemia is common in multiple myeloma (MM) and is caused by a complex pathomechanism, including impaired iron homeostasis. Our aim is to evaluate the biomarkers of iron turnover: serum soluble transferrin receptor (sTfR) and hepcidin-25 in patients at various stages of MM in relation with markers of anemia, iron status, inflammation, renal impairment and burden of the disease and as predictors of mortality. Materials and methods: Seventy-three MM patients (six with smoldering and 67 with symptomatic disease) were recruited and observed for up to 27 months. Control group included 21 healthy individuals. Serum sTfR and hepcidin were measured with immunoenzymatic assays. Results: MM patients with and without anemia had higher sTFR compared to controls, while only anemic patients had higher hepcidin-25. Both hepcidin-25 and sTfR were higher in anemic than non-anemic patients. Higher hepcidin-25 (but not sTfR) was associated with increasing MM advancement (from smoldering to International Staging System stage III disease) and with poor response to MM treatment, which was accompanied by lower blood hemoglobin and increased anisocytosis. Neither serum hepcidin-25 nor sTfR were correlated with markers of renal impairment. Hepcidin-25 predicted blood hemoglobin in MM patients independently of other predictors, including markers of renal impairment, inflammation and MM burden. Moreover, both blood hemoglobin and serum hepcidin-25 were independently associated with patients’ 2-year survival. Conclusions: Our results suggest that hepcidin-25 is involved in anemia in MM and its concentrations are not affected by kidney impairment. Moreover, serum hepcidin-25 may be an early predictor of survival in this disease, independent of hemoglobin concentration. It should be further evaluated whether including hepcidin improves the early diagnosis of anemia in MM.
Collapse
|
6
|
Zhao Y, Huang Z, Peng H. Molecular Mechanisms of Ferroptosis and Its Roles in Hematologic Malignancies. Front Oncol 2021; 11:743006. [PMID: 34778060 PMCID: PMC8582018 DOI: 10.3389/fonc.2021.743006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cell death is essential for the normal metabolism of human organisms. Ferroptosis is a unique regulated cell death (RCD) mode characterized by excess accumulation of iron-dependent lipid peroxide and reactive oxygen species (ROS) compared with other well-known programmed cell death modes. It has been currently recognized that ferroptosis plays a rather important role in the occurrence, development, and treatment of traumatic brain injury, stroke, acute kidney injury, liver damage, ischemia-reperfusion injury, tumor, etc. Of note, ferroptosis may be explained by the expression of various molecules and signaling components, among which iron, lipid, and amino acid metabolism are the key regulatory mechanisms of ferroptosis. Meanwhile, tumor cells of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma (MM), are identified to be sensitive to ferroptosis. Targeting potential regulatory factors in the ferroptosis pathway may promote or inhibit the disease progression of these malignancies. In this review, a systematic summary was conducted on the key molecular mechanisms of ferroptosis and the current potential relationships of ferroptosis with leukemia, lymphoma, and MM. It is expected to provide novel potential therapeutic approaches and targets for hematological malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
7
|
Gurnari C, Pagliuca S, Awada H, Zawit M, Patel BJ, Visconte V, Valent J, Rogers HJ, Maciejewski JP. Monoclonal IgM gammopathy in adult acquired pure red cell aplasia: culprit or innocent bystander? Blood Cells Mol Dis 2021; 91:102595. [PMID: 34280665 DOI: 10.1016/j.bcmd.2021.102595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| | - Simona Pagliuca
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA; Université de Paris, Paris, France
| | - Hassan Awada
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA
| | - Misam Zawit
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA
| | - Bhumika J Patel
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA
| | - Jason Valent
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
9
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
10
|
Liu L, Yu Z, Cheng H, Mao X, Sui W, Deng S, Wei X, Lv J, Du C, Xu J, Huang W, Xia S, An G, Zhou W, Ma X, Cheng T, Qiu L, Hao M. Multiple myeloma hinders erythropoiesis and causes anaemia owing to high levels of CCL3 in the bone marrow microenvironment. Sci Rep 2020; 10:20508. [PMID: 33239656 PMCID: PMC7689499 DOI: 10.1038/s41598-020-77450-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023] Open
Abstract
Anaemia is the most common complication of myeloma and is associated with worse clinical outcomes. Although marrow replacement with myeloma cells is widely considered a mechanistic rationale for anaemia, the exact process has not been fully understood. Our large cohort of 1363 myeloma patients had more than 50% of patients with moderate or severe anaemia at the time of diagnosis. Anaemia positively correlated with myeloma cell infiltration in the bone marrow (BM) and worse patient outcomes. The quantity and erythroid differentiation of HSPCs were affected by myeloma cell infiltration in the BM. The master regulators of erythropoiesis, GATA1 and KLF1, were obviously downregulated in myeloma HSPCs. However, the gene encoding the chemokine CCL3 showed significantly upregulated expression. Elevated CCL3 in the BM plasma of myeloma further inhibited the erythropoiesis of HSPCs via activation of CCL3/CCR1/p38 signalling and suppressed GATA1 expression. Treatment with a CCR1 antagonist effectively recovered GATA1 expression and rescued erythropoiesis in HSPCs. Myeloma cell infiltration causes elevated expression of CCL3 in BM, which suppresses the erythropoiesis of HSPCs and results in anaemia by downregulating the level of GATA1 in HSPCs. Thus, our study indicates that targeting CCL3 would be a potential strategy against anaemia and improve the survival of myeloma patients.
Collapse
Affiliation(s)
- Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Xuehan Mao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Junqiang Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Wen Zhou
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Central South University, Hunan, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi'an, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
11
|
Bordini J, Morisi F, Elia AR, Santambrogio P, Pagani A, Cucchiara V, Ghia P, Bellone M, Briganti A, Camaschella C, Campanella A. Iron Induces Cell Death and Strengthens the Efficacy of Antiandrogen Therapy in Prostate Cancer Models. Clin Cancer Res 2020; 26:6387-6398. [PMID: 32928793 DOI: 10.1158/1078-0432.ccr-20-3182] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE In search of novel strategies to improve the outcome of advanced prostate cancer, we considered that prostate cancer cells rearrange iron homeostasis, favoring iron uptake and proliferation. We exploited this adaptation by exposing prostate cancer preclinical models to high-dose iron to induce toxicity and disrupt adaptation to androgen starvation. EXPERIMENTAL DESIGN We analyzed markers of cell viability and mechanisms underlying iron toxicity in androgen receptor-positive VCaP and LNCaP, castration-resistant DU-145 and PC-3, and murine TRAMP-C2 cells treated with iron and/or the antiandrogen bicalutamide. We validated the results in vivo in VCaP and PC-3 xenografts and in TRAMP-C2 injected mice treated with iron and/or bicalutamide. RESULTS Iron was toxic for all prostate cancer cells. In particular, VCaP, LNCaP, and TRAMP-C2 were highly iron sensitive. Toxicity was mediated by oxidative stress, which primarily affected lipids, promoting ferroptosis. In highly sensitive cells, iron additionally caused protein damage. High-basal iron content and oxidative status defined high iron sensitivity. Bicalutamide-iron combination exacerbated oxidative damage and cell death, triggering protein oxidation also in poorly iron-sensitive DU-145 and PC-3 cells.In vivo, iron reduced tumor growth in TRAMP-C2 and VCaP mice. In PC-3 xenografts, bicalutamide-iron combination caused protein oxidation and successfully impaired tumor expansion while single compounds were ineffective. Macrophages influenced body iron distribution but did not limit the iron effect on tumor expansion. CONCLUSIONS Our models allow us to dissect the direct iron effect on cancer cells. We demonstrate the proof of principle that iron toxicity inhibits prostate cancer cell proliferation, proposing a novel tool to strengthen antiandrogen treatment efficacy.
Collapse
Affiliation(s)
- Jessica Bordini
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Fondazione Centro San Raffaele, Milan, Italy
| | - Federica Morisi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Rita Elia
- Division of Immunology, Transplantations and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Santambrogio
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Cucchiara
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Ghia
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantations and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Clara Camaschella
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Campanella
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Iron Causes Lipid Oxidation and Inhibits Proteasome Function in Multiple Myeloma Cells: A Proof of Concept for Novel Combination Therapies. Cancers (Basel) 2020; 12:cancers12040970. [PMID: 32295216 PMCID: PMC7226326 DOI: 10.3390/cancers12040970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Adaptation to import iron for proliferation makes cancer cells potentially sensitive to iron toxicity. Iron loading impairs multiple myeloma (MM) cell proliferation and increases the efficacy of the proteasome inhibitor bortezomib. Here, we defined the mechanisms of iron toxicity in MM.1S, U266, H929, and OPM-2 MM cell lines, and validated this strategy in preclinical studies using Vk*MYC mice as MM model. High-dose ferric ammonium citrate triggered cell death in all cell lines tested, increasing malondialdehyde levels, the by-product of lipid peroxidation and index of ferroptosis. In addition, iron exposure caused dose-dependent accumulation of polyubiquitinated proteins in highly iron-sensitive MM.1S and H929 cells, suggesting that proteasome workload contributes to iron sensitivity. Accordingly, high iron concentrations inhibited the proteasomal chymotrypsin-like activity of 26S particles and of MM cellular extracts in vitro. In all MM cells, bortezomib-iron combination induced persistent lipid damage, exacerbated bortezomib-induced polyubiquitinated proteins accumulation, and triggered cell death more efficiently than individual treatments. In Vk*MYC mice, addition of iron dextran or ferric carboxymaltose to the bortezomib-melphalan-prednisone (VMP) regimen increased the therapeutic response and prolonged remission without causing evident toxicity. We conclude that iron loading interferes both with redox and protein homeostasis, a property that can be exploited to design novel combination strategies including iron supplementation, to increase the efficacy of current MM therapies.
Collapse
|
13
|
Induction of iron excess restricts malignant plasma cells expansion and potentiates bortezomib effect in models of multiple myeloma. Leukemia 2016; 31:967-970. [PMID: 27881873 DOI: 10.1038/leu.2016.346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Nairz M, Theurl I, Wolf D, Weiss G. Iron deficiency or anemia of inflammation? : Differential diagnosis and mechanisms of anemia of inflammation. Wien Med Wochenschr 2016; 166:411-423. [PMID: 27557596 PMCID: PMC5065583 DOI: 10.1007/s10354-016-0505-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/30/2016] [Indexed: 02/08/2023]
Abstract
Iron deficiency and immune activation are the two most frequent causes of anemia, both of which are based on disturbances of iron homeostasis. Iron deficiency anemia results from a reduction of the body's iron content due to blood loss, inadequate dietary iron intake, its malabsorption, or increased iron demand. Immune activation drives a diversion of iron fluxes from the erythropoietic bone marrow, where hemoglobinization takes place, to storage sites, particularly the mononuclear phagocytes system in liver and spleen. This results in iron-limited erythropoiesis and anemia. This review summarizes current diagnostic and pathophysiological concepts of iron deficiency anemia and anemia of inflammation, as well as combined conditions, and provides a brief outlook on novel therapeutic options.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Igor Theurl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Dominik Wolf
- Medical Clinic III, Department of Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Bouchnita A, Eymard N, Moyo TK, Koury MJ, Volpert V. Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis. Am J Hematol 2016; 91:371-8. [PMID: 26749142 DOI: 10.1002/ajh.24291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) infiltrates bone marrow and causes anemia by disrupting erythropoiesis, but the effects of marrow infiltration on anemia are difficult to quantify. Marrow biopsies of newly diagnosed MM patients were analyzed before and after four 28-day cycles of non-erythrotoxic remission induction chemotherapy. Complete blood cell counts and serum paraprotein concentrations were measured at diagnosis and before each chemotherapy cycle. At diagnosis, marrow area infiltrated by myeloma correlated negatively with hemoglobin, erythrocytes, and marrow erythroid cells. After successful chemotherapy, patients with less than 30% myeloma infiltration at diagnosis had no change in these parameters, whereas patients with more than 30% myeloma infiltration at diagnosis increased all three parameters. Clinical data were used to develop mathematical models of the effects of myeloma infiltration on the marrow niches of terminal erythropoiesis, the erythroblastic islands (EBIs). A hybrid discrete-continuous model of erythropoiesis based on EBI structure/function was extended to sections of marrow containing multiple EBIs. In the model, myeloma cells can kill erythroid cells by physically destroying EBIs and by producing proapoptotic cytokines. Following chemotherapy, changes in serum paraproteins as measures of myeloma cells and changes in erythrocyte numbers as measures of marrow erythroid cells allowed modeling of myeloma cell death and erythroid cell recovery, respectively. Simulations of marrow infiltration by myeloma and treatment with non-erythrotoxic chemotherapy demonstrate that myeloma-mediated destruction and subsequent reestablishment of EBIs and expansion of erythroid cell populations in EBIs following chemotherapy provide explanations for anemia development and its therapy-mediated recovery in MM patients.
Collapse
Affiliation(s)
- Anass Bouchnita
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
| | - Nathalie Eymard
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
| | - Tamara K. Moyo
- Division of Hematology/Oncology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Mark J. Koury
- Division of Hematology/Oncology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
- INRIA Team Dracula, INRIA Antenne Lyon La Doua, Villeurbanne 69603, France, and European Institute of Systems Biology and Medicine; Lyon 69007 France
| |
Collapse
|
16
|
Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood 2016; 127:2327-36. [PMID: 26755707 DOI: 10.1182/blood-2015-11-681494] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein-mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling.
Collapse
|