1
|
Tebbi CK, Sahakian E, Shah B, Yan J, Mediavilla-Varela M, Patel S. Aspergillus flavus with Mycovirus as an Etiologic Factor for Acute Leukemias in Susceptible Individuals: Evidence and Discussion. Biomedicines 2025; 13:488. [PMID: 40002901 PMCID: PMC11853382 DOI: 10.3390/biomedicines13020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Several etiologic factors for the development of acute leukemias have been suggested; however, none is applicable to all cases. We isolated a certain mycovirus-containing Aspergillus flavus (MCAF) from the home of a patient with acute lymphoblastic leukemia. Repeated electron microscopic evaluations proved the existence of mycovirus in this organism. According to chemical analysis, this organism does not produce any aflatoxin, possibly due to its infestation with mycoviruses. We reported that using the ELISA technique, forty pediatric patients with acute lymphoblastic leukemia (ALL) uniformly had antibodies to the products of MCAF. In contrast, three separate groups of controls, consisting of normal blood donors, individuals with solid tumors, and patients with sickle cell disease, were negative. In vitro exposure of mononuclear blood cells from patients with ALL, in full remission, to the products of MCAF induced redevelopment of cell surface phenotypes and genetic markers characteristic of ALL. The controls were negative. The incubation of normal and ALL cell lines with the products of MCAF resulted in significant cellular apoptosis, changes in the cell cycle, and the downregulation of transcription factors, including PAX-5 and Ikaros (75 and 55 kDa). Fungi are widespread in nature, and many contain mycoviruses. Normally, an individual inhales 1 to 10 fungal spores per minute, while farmers can inhale up to 75,000 spores per minute. It is known that farmers and foresters, who are more exposed to fungi, have a higher rate of acute leukemia. In contrast, asthmatics, most of whom are allergic to fungal agents, and individuals working in office settings have a lower rate. One of the theories for the development of acute leukemia suggests a genetic predisposition followed by exposure to an infectious agent. With the above findings, we propose that mycovirus-containing Aspergillus flavus may have an etiological role in leukemogenesis in immune-depressed and genetically susceptible individuals.
Collapse
Affiliation(s)
- Cameron K. Tebbi
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA;
| | - Eva Sahakian
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (B.S.); (M.M.-V.)
| | - Bijal Shah
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (B.S.); (M.M.-V.)
| | - Jiyu Yan
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA;
| | | | | |
Collapse
|
2
|
Østergaard A, Boer JM, van Leeuwen FN, Pieters R, Den Boer ML. IKZF1 in acute lymphoblastic leukemia: the rise before the fall? Leuk Lymphoma 2024; 65:2077-2087. [PMID: 39210599 DOI: 10.1080/10428194.2024.2396046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents and in recent decades, the survival rates have risen to >90% in children largely due the introduction of risk adapted therapy. Therefore, knowledge of factors influencing risk of relapse is important. The transcription factor IKAROS is a regulator of lymphocyte development and alterations of its coding gene, IKZF1, are frequent in ALL and are associated with higher relapse risk. This concise review will discuss the normal function of IKAROS together with the effect of gene alterations in ALL such as relieved energy restriction and altered response to anti-leukemic drugs. Besides the biology, the clinical impact of gene alterations in the different subtypes of ALL will be discussed. Finally, possibilities for treating ALL with IKZF1 alterations will be considered including novel therapies like cell signaling inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Vervoort BMT, Butler M, Grünewald KJT, Schenau DSVI, Tee TM, Lucas L, Huitema ADR, Boer JM, Bornhauser BC, Bourquin JP, Hoogerbrugge PM, Van der Velden VHJ, Kuiper RP, Van der Meer LT, Van Leeuwen FN. IKZF1 gene deletions drive resistance to cytarabine in B-cell precursor acute lymphoblastic leukemia. Haematologica 2024; 109:3904-3917. [PMID: 38841778 PMCID: PMC11609812 DOI: 10.3324/haematol.2023.284357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
IKZF1 deletions occur in 10-15% of patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and predict a poor outcome. However, the impact of IKZF1 loss on sensitivity to drugs used in contemporary treatment protocols has remained underexplored. Here we show in experimental models and in patients that loss of IKZF1 promotes resistance to cytarabine (AraC), a key component of both upfront and relapsed treatment protocols. We attribute this resistance, in part, to diminished import and incorporation of AraC due to reduced expression of the solute carrier hENT1. Moreover, we found elevated mRNA expression of Evi1, a known driver of therapy resistance in myeloid malignancies. Finally, a kinase directed CRISPR/Cas9-screen identified that inhibition of either mediator kinases CDK8/19 or casein kinase 2 can restore response to AraC. We conclude that this high-risk group of patients could benefit from alternative antimetabolites, or targeted therapies that re-sensitize leukemic cells to AraC.
Collapse
Affiliation(s)
| | - Miriam Butler
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS
| | | | | | - Trisha M Tee
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS
| | - Luc Lucas
- Netherlands Cancer Institute, Amsterdam
| | - Alwin D R Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, the Netherlands; Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS
| | - Beat C Bornhauser
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, CH-8008
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, CH-8008
| | | | | | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, the Netherlands; Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht The Netherlands
| | | | | |
Collapse
|
4
|
Moreno-Lorenzana D, Juárez-Velázquez R, Reyes-León A, Martínez-Anaya D, Juárez-Villegas L, Zapata Tarrés M, López Santiago N, Pérez-Vera P. CRLF2 and IKZF1 abnormalities in childhood hematological malignancies other than B-cell Acute Lymphoblastic Leukemia. Leuk Lymphoma 2024; 65:1853-1863. [PMID: 39034479 DOI: 10.1080/10428194.2024.2378817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Rearrangements and overexpression of CRLF2 are hallmarks of poor outcomes in BCR::ABL1-like B-ALL, and CRLF2 overexpression is a high-risk marker in T-ALL. However, CRLF2 alterations in pediatric hematologic malignancies other than B-ALL have not been reported. In this study, we analyzed the CRLF2 overexpression, rearrangements (P2RY8::CRLF2 and IGH::CRLF2), activation (pSTAT5 and pERK), and the expression of dominant-negative IKZF1 isoforms (Ik6 and Ik8), implied in CRLF2 dysregulation, in 16 pediatric patients (AML, n = 9; T-ALL, n = 3; LBL, n = 2; HL, n = 1; cytopenia, n = 1). A high frequency of CRLF2 rearrangements and overexpression was found in the 16 patients: 28.6% (4/14) showed CRLF2 overexpression, 93.8% (15/16) were positive for CRLF2 total protein (cell-surface and/or cytoplasmic), while 62.5% (10/16) were positive for P2RY8::CRLF2 and 12.6% (2/16) for IGH::CRLF2. In addition, 43.8% (7/16) expressed Ik6 and Ik8 isoforms. However, only a few patients were positive for the surrogate markers pSTAT5 (14.3%; 2/14) and pERK (21.4%; 3/14).
Collapse
Affiliation(s)
- Dafné Moreno-Lorenzana
- CONAHCYT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Rocío Juárez-Velázquez
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Adriana Reyes-León
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Daniel Martínez-Anaya
- CONAHCYT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Luis Juárez-Villegas
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Martha Zapata Tarrés
- Coordinación de Investigación, Fundación IMSS, A.C., Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Patricia Pérez-Vera
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| |
Collapse
|
5
|
Kato S, Sato-Otsubo A, Nakamura W, Sugawa M, Okada A, Chiba K, Takasugi N, Irikura T, Hidaka M, Sekiguchi M, Watanabe K, Shiraishi Y, Kato M. Genome profiling with targeted adaptive sampling long-read sequencing for pediatric leukemia. Blood Cancer J 2024; 14:145. [PMID: 39198403 PMCID: PMC11358412 DOI: 10.1038/s41408-024-01108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Affiliation(s)
- Shota Kato
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Wataru Nakamura
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Sugawa
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Nao Takasugi
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tomoya Irikura
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Moe Hidaka
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kentaro Watanabe
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Eckardt JN, Stasik S, Röllig C, Petzold A, Sauer T, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Herbst R, Hänel M, Hanoun M, Kaiser U, Kaufmann M, Rácil Z, Mayer J, Oelschlägel U, Berdel WE, Ehninger G, Serve H, Müller-Tidow C, Platzbecker U, Baldus CD, Dahl A, Schetelig J, Bornhäuser M, Middeke JM, Thiede C. Mutated IKZF1 is an independent marker of adverse risk in acute myeloid leukemia. Leukemia 2023; 37:2395-2403. [PMID: 37833543 PMCID: PMC10681898 DOI: 10.1038/s41375-023-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Genetic lesions of IKZF1 are frequent events and well-established markers of adverse risk in acute lymphoblastic leukemia. However, their function in the pathophysiology and impact on patient outcome in acute myeloid leukemia (AML) remains elusive. In a multicenter cohort of 1606 newly diagnosed and intensively treated adult AML patients, we found IKZF1 alterations in 45 cases with a mutational hotspot at N159S. AML with mutated IKZF1 was associated with alterations in RUNX1, GATA2, KRAS, KIT, SF3B1, and ETV6, while alterations of NPM1, TET2, FLT3-ITD, and normal karyotypes were less frequent. The clinical phenotype of IKZF1-mutated AML was dominated by anemia and thrombocytopenia. In both univariable and multivariable analyses adjusting for age, de novo and secondary AML, and ELN2022 risk categories, we found mutated IKZF1 to be an independent marker of adverse risk regarding complete remission rate, event-free, relapse-free, and overall survival. The deleterious effects of mutated IKZF1 also prevailed in patients who underwent allogeneic hematopoietic stem cell transplantation (n = 519) in both univariable and multivariable models. These dismal outcomes are only partially explained by the hotspot mutation N159S. Our findings suggest a role for IKZF1 mutation status in AML risk modeling.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Sebastian Stasik
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andreas Petzold
- Dresden-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Tim Sauer
- German Cancer Research Center (DKFZ) and Medical Clinic V, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Jena University Hospital, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Jena University Hospital, Jena, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology, and Cell Therapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Cell Therapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralph Naumann
- Medical Clinic III, St. Marien-Hospital Siegen, Siegen, Germany
| | - Björn Steffen
- Medical Clinic II, University Hospital Frankfurt, Frankfurt (Main), Germany
| | - Volker Kunzmann
- Medical Clinic and Policlinic II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medical Clinic and Policlinic II, University Hospital Würzburg, Würzburg, Germany
| | - Markus Schaich
- Department of Hematology, Oncology and Palliative Care, Rems-Murr-Hospital Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps-University-Marburg, Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, Philipps-University-Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- Department of Internal Medicine V, Paracelsus Medizinische Privatuniversität and University Hospital Nuremberg, Nuremberg, Germany
| | | | - Stefan W Krause
- Medical Clinic V, University Hospital Erlangen, Erlangen, Germany
| | - Regina Herbst
- Medical Clinic III, Chemnitz Hospital AG, Chemnitz, Germany
| | - Mathias Hänel
- Medical Clinic III, Chemnitz Hospital AG, Chemnitz, Germany
| | - Maher Hanoun
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Ulrich Kaiser
- Medical Clinic II, St. Bernward Hospital, Hildesheim, Germany
| | - Martin Kaufmann
- Department of Hematology, Oncology and Palliative Care, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Zdenek Rácil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Uta Oelschlägel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hubert Serve
- Medical Clinic II, University Hospital Frankfurt, Frankfurt (Main), Germany
| | - Carsten Müller-Tidow
- German Cancer Research Center (DKFZ) and Medical Clinic V, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Platzbecker
- Medical Clinic I Hematology and Celltherapy, University Hospital Leipzig, Leipzig, Germany
| | - Claudia D Baldus
- Department of Internal Medicine, University Hospital Kiel, Kiel, Germany
| | - Andreas Dahl
- Dresden-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany
- National Center for Tumor Disease (NCT), Dresden, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
7
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
8
|
Zhang X, Huang A, Liu L, Qin J, Wang C, Yang M, Lou Y, Wang L, Ni X, Hu X, Tang G, Zhang M, Cao S, Mao L, Qian J, Xu W, Wei J, Xu G, Meng H, Mai W, Yang C, Zhu H, Tong H, Yang J, Yu W, Wang J, Jin J. The clinical impact of IKZF1 mutation in acute myeloid leukemia. Exp Hematol Oncol 2023; 12:33. [PMID: 36997950 PMCID: PMC10061890 DOI: 10.1186/s40164-023-00398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractGenetic heterogeneity poses a great challenge to the understanding and management of acute myeloid leukemia (AML). Knowledge of the IKZF1 mutation in AML specifically is extremely limited. In a previous work, we described the distribution pattern of IKZF1 mutation in AML, but its clinical impact has remained undefined due to the limited number of cases. Herein, we attempt to answer this question in one relatively large cohort covering 522 newly diagnosed AML patients. A total of 26 IKZF1 mutations were found in 20 AML patients (20/522, 3.83%). This condition has a young median age of onset of morbidity (P = 0.032). The baseline characteristics of IKZF1-mutated and wild-type patients were comparable. IKZF1 mutation showed significant co-occurrences with CEBPA (P < 0.001), SF3B1 (P < 0.001), and CSF3R (P = 0.005) mutations, and it was mutually exclusive with NPM1 mutation (P = 0.033). Although IKZF1-mutated AML was more preferably classified into the intermediate-risk group (P = 0.004), it showed one inferior complete remission rate (P = 0.032). AML with high burden of IKZF1 mutation (variant allele frequency > 0.20) showed relatively short overall survival period (P = 0.012), and it was an independent factor for the increased risk of death (hazard ratio, 6.101; 95% CI 2.278–16.335; P = 0.0003). In subgroup analysis, our results showed that IKZF1 mutation conferred poor therapeutic response and prognosis for SF3B1-mutated AML (P = 0.0017). We believe this work improves our knowledge of IKZF1 mutation.
Collapse
|
9
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Parciante E, Coccaro N, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater? Int J Mol Sci 2023; 24:3282. [PMID: 36834692 PMCID: PMC9961161 DOI: 10.3390/ijms24043282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Nicoletta Coccaro
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
10
|
Tissue-Specific Variations in Transcription Factors Elucidate Complex Immune System Regulation. Genes (Basel) 2022; 13:genes13050929. [PMID: 35627314 PMCID: PMC9140347 DOI: 10.3390/genes13050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Gene expression plays a key role in health and disease. Estimating the genetic components underlying gene expression can thus help understand disease etiology. Polygenic models termed “transcriptome imputation” are used to estimate the genetic component of gene expression, but these models typically consider only the cis regions of the gene. However, these cis-based models miss large variability in expression for multiple genes. Transcription factors (TFs) that regulate gene expression are natural candidates for looking for additional sources of the missing variability. We developed a hypothesis-driven approach to identify second-tier regulation by variability in TFs. Our approach tested two models representing possible mechanisms by which variations in TFs can affect gene expression: variability in the expression of the TF and genetic variants within the TF that may affect the binding affinity of the TF to the TF-binding site. We tested our TF models in whole blood and skeletal muscle tissues and identified TF variability that can partially explain missing gene expression for 1035 genes, 76% of which explains more than the cis-based models. While the discovered regulation patterns were tissue-specific, they were both enriched for immune system functionality, elucidating complex regulation patterns. Our hypothesis-driven approach is useful for identifying tissue-specific genetic regulation patterns involving variations in TF expression or binding.
Collapse
|
11
|
Xia R, Cheng Y, Han X, Wei Y, Wei X. Ikaros Proteins in Tumor: Current Perspectives and New Developments. Front Mol Biosci 2021; 8:788440. [PMID: 34950704 PMCID: PMC8689071 DOI: 10.3389/fmolb.2021.788440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Ikaros is a zinc finger transcription factor (TF) of the Krüppel family member, which significantly regulates normal lymphopoiesis and tumorigenesis. Ikaros can directly initiate or suppress tumor suppressors or oncogenes, consequently regulating the survival and proliferation of cancer cells. Over recent decades, a series of studies have been devoted to exploring and clarifying the relationship between Ikaros and associated tumors. Therapeutic strategies targeting Ikaros have shown promising therapeutic effects in both pre-clinical and clinical trials. Nevertheless, the increasingly prominent problem of drug resistance targeted to Ikaros and its analog is gradually appearing in our field of vision. This article reviews the role of Ikaros in tumorigenesis, the mechanism of drug resistance, the progress of targeting Ikaros in both pre-clinical and clinical trials, and the potential use of associated therapy in cancer therapy.
Collapse
Affiliation(s)
- Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Gentle IE, Moelter I, Badr MT, Döhner K, Lübbert M, Häcker G. The AML-associated K313 mutation enhances C/EBPα activity by leading to C/EBPα overexpression. Cell Death Dis 2021; 12:675. [PMID: 34226527 PMCID: PMC8257693 DOI: 10.1038/s41419-021-03948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Mutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.
Collapse
Affiliation(s)
- Ian Edward Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany.
| | - Isabel Moelter
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
13
|
Transcriptomic and genomic heterogeneity in blastic plasmacytoid dendritic cell neoplasms: from ontogeny to oncogenesis. Blood Adv 2021; 5:1540-1551. [PMID: 33687433 DOI: 10.1182/bloodadvances.2020003359] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenesis and ontogeny of blastic plasmacytoid dendritic cell neoplasm (BPDCN) remain uncertain, between canonical plasmacytoid dendritic cells (pDCs) and AXL+ SIGLEC6+ DCs (AS-DCs). We compared 12 BPDCN to 164 acute leukemia by Affymetrix HG-U133 Plus 2.0 arrays: BPDCN were closer to B-cell acute lymphoblastic leukemia (ALL), with enrichment in pDC, B-cell signatures, vesicular transport, deubiquitination pathways, and AS-DC signatures, but only in some cases. Importantly, 1 T-cell ALL clustered with BPDCN, with compatible morphology, immunophenotype (cCD3+ sCD3- CD123+ cTCL1+ CD304+), and genetics. Many oncogenetic pathways are deregulated in BPDCN compared with normal pDC, such as cell-cycle kinases, and importantly, the transcription factor SOX4, involved in B ontogeny, pDC ontogeny, and cancer cell invasion. High-throughput sequencing (HaloPlex) showed myeloid mutations (TET2, 62%; ASXL1, 46%; ZRSR2, 31%) associated with lymphoid mutations (IKZF1), whereas single-nucleotide polymorphism (SNP) array (Affymetrix SNP array 6.0) revealed frequent losses (mean: 9 per patient) involving key hematological oncogenes (RB1, IKZF1/2/3, ETV6, NR3C1, CDKN2A/B, TP53) and immune response genes (IFNGR, TGFB, CLEC4C, IFNA cluster). Various markers suggest an AS-DC origin, but not in all patients, and some of these abnormalities are related to the leukemogenesis process, such as the 9p deletion, leading to decreased expression of genes encoding type I interferons. In addition, the AS-DC profile is only found in a subgroup of patients. Overall, the cellular ontogenic origin of BPDCN remains to be characterized, and these results highlight the heterogeneity of BPDCN, with a risk of a diagnostic trap.
Collapse
|
14
|
Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv 2021; 5:900-912. [PMID: 33560403 DOI: 10.1182/bloodadvances.2020003709] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi-whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All of the mentioned genes have either never been reported at diagnosis in de novo AML or have been reported at low frequency, suggesting important roles for these alterations predominantly in disease progression and/or resistance to therapy. Our findings shed further light on the complexity of relapsed AML and identified previously unappreciated alterations that may lead to improved outcomes through personalized medicine.
Collapse
|
15
|
Nishiguchi G, Keramatnia F, Min J, Chang Y, Jonchere B, Das S, Actis M, Price J, Chepyala D, Young B, McGowan K, Slavish PJ, Mayasundari A, Jarusiewicz JA, Yang L, Li Y, Fu X, Garrett SH, Papizan JB, Kodali K, Peng J, Pruett Miller SM, Roussel MF, Mullighan C, Fischer M, Rankovic Z. Identification of Potent, Selective, and Orally Bioavailable Small-Molecule GSPT1/2 Degraders from a Focused Library of Cereblon Modulators. J Med Chem 2021; 64:7296-7311. [PMID: 34042448 PMCID: PMC8201443 DOI: 10.1021/acs.jmedchem.0c01313] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whereas the PROTAC approach to target protein degradation greatly benefits from rational design, the discovery of small-molecule degraders relies mostly on phenotypic screening and retrospective target identification efforts. Here, we describe the design, synthesis, and screening of a large diverse library of thalidomide analogues against a panel of patient-derived leukemia and medulloblastoma cell lines. These efforts led to the discovery of potent and novel GSPT1/2 degraders displaying selectivity over classical IMiD neosubstrates, such as IKZF1/3, and high oral bioavailability in mice. Taken together, this study offers compound 6 (SJ6986) as a valuable chemical probe for studying the role of GSPT1/2 in vitro and in vivo, and it supports the utility of a diverse library of CRBN binders in the pursuit of targeting undruggable oncoproteins.
Collapse
Affiliation(s)
- Gisele Nishiguchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Fatemeh Keramatnia
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Barbara Jonchere
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marisa Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jeanine Price
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Divyabharathi Chepyala
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kevin McGowan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - P Jake Slavish
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jamie A Jarusiewicz
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Xiang Fu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Shalandus H Garrett
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - James B Papizan
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Shondra M Pruett Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
16
|
Klink M, Rahman MA, Song C, Dhanyamraju PK, Ehudin M, Ding Y, Steffens S, Bhadauria P, Iyer S, Aliaga C, Desai D, Huang S, Claxton D, Sharma A, Gowda C. Mechanistic Basis for In Vivo Therapeutic Efficacy of CK2 Inhibitor CX-4945 in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13051127. [PMID: 33807974 PMCID: PMC7975325 DOI: 10.3390/cancers13051127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Acute Myeloid Leukemia is an aggressive disease with poor outcomes. New targeted therapies that can boost the effects of currently used chemotherapy medications without added toxicity are needed. Targeting an overactive kinase, called the protein Kinase CK2 in AML, helps leukemia cells undergo cell death and helps certain chemotherapy drugs work better. Here, we present evidence that CX-4945, a CK2 inhibitor drug, effectively kills leukemia cells in mouse models and shows the mechanism of action responsible for these effects. Leukemia cells are more sensitive to a decrease in CK2 kinase levels than normal cells. Our results show that inhibiting CK2 kinase makes AML cells more susceptible to anthracycline-induced cell death. Anthracyclines like daunorubicin and doxorubicin are widely used to treat leukemia in children and adults. A rational combination of protein kinase CK2 inhibitors with the standard of care chemotherapy may help treat AML more effectively. Abstract Protein Kinase CK2 (Casein Kinase 2 or CK2) is a constitutively active serine-threonine kinase overactive in human malignancies. Increased expression and activity of CK2 in Acute Myeloid Leukemia (AML) is associated with a poor outcome. CK2 promotes AML cell survival by impinging on multiple oncogenic signaling pathways. The selective small-molecule CK2 inhibitor CX-4945 has shown in vitro cytotoxicity in AML. Here, we report that CX-4945 has a strong in vivo therapeutic effect in preclinical models of AML. The analysis of genome-wide DNA-binding and gene expression in CX-4945 treated AML cells shows that one mechanism, by which CK2 inhibition exerts a therapeutic effect in AML, involves the revival of IKAROS tumor suppressor function. CK2 phosphorylates IKAROS and disrupts IKAROS’ transcriptional activity by impairing DNA-binding and association with chromatin modifiers. Here, we demonstrate that CK2 inhibition decreases IKAROS phosphorylation and restores IKAROS binding to DNA. Further functional experiments show that IKAROS negatively regulates the transcription of anti-apoptotic genes, including BCL-XL (B cell Lymphoma like–2 like 1, BCL2L1). CX-4945 restitutes the IKAROS-mediated repression of BCL-XL in vivo and sensitizes AML cells to apoptosis. Using CX-4945, alongside the cytotoxic chemotherapeutic drug daunorubicin, augments BCL-XL suppression and AML cell apoptosis. Overall, these results establish the in vivo therapeutic efficacy of CX-4945 in AML preclinical models and determine the role of CK2 and IKAROS in regulating apoptosis in AML. Furthermore, our study provides functional and mechanistic bases for the addition of CK2 inhibitors to AML therapy.
Collapse
Affiliation(s)
- Morgann Klink
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Mohammad Atiqur Rahman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Pavan Kumar Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Melanie Ehudin
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Sadie Steffens
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Preeti Bhadauria
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Radiation Oncology, University of Chicago,Chicago, IL 60607, USA
| | - Cesar Aliaga
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Suming Huang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - David Claxton
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Correspondence: ; Tel.: 717-531-6012; Fax: 717-531-4789
| |
Collapse
|
17
|
Liss F, Frech M, Wang Y, Giel G, Fischer S, Simon C, Weber LM, Nist A, Stiewe T, Neubauer A, Burchert A, Liefke R. IRF8 Is an AML-Specific Susceptibility Factor That Regulates Signaling Pathways and Proliferation of AML Cells. Cancers (Basel) 2021; 13:cancers13040764. [PMID: 33673123 PMCID: PMC7917770 DOI: 10.3390/cancers13040764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Despite progress, acute myeloid leukemia (AML) remains one of the deadliest cancer diseases. The identification of novel molecular targets may allow developing innovative and alternative treatment options for AML. Using public data from genome-edited cancer cells, we identified factors that are specifically essential for AML cell growth. We validated the critical role of the transcription factor IRF8 and demonstrated that it modulates the function of the cells by regulating important signaling molecules. These results support that IRF8 may be a suitable molecular target for the treatment of AML. Abstract Personalized treatment of acute myeloid leukemia (AML) that target individual aberrations strongly improved the survival of AML patients. However, AML is still one of the most lethal cancer diseases of the 21st century, demonstrating the need to find novel drug targets and to explore alternative treatment strategies. Upon investigation of public perturbation data, we identified the transcription factor IRF8 as a novel AML-specific susceptibility gene in humans. IRF8 is upregulated in a subset of AML cells and its deletion leads to impaired proliferation in those cells. Consistently, high IRF8 expression is associated with poorer patients’ prognoses. Combining gene expression changes upon IRF8 deletion and the genome-wide localization of IRF8 in the AML cell line MV4-11, we demonstrate that IRF8 directly regulates key signaling molecules, such as the kinases SRC and FAK, the transcription factors RUNX1 and IRF5, and the cell cycle regulator Cyclin D1. IRF8 loss impairs AML-driving signaling pathways, including the WNT, Chemokine, and VEGF signaling pathways. Additionally, many members of the focal adhesion pathway showed reduced expression, providing a putative link between high IRF8 expression and poor prognosis. Thus, this study suggests that IRF8 could serve as a biomarker and potential molecular target in a subset of human AMLs.
Collapse
Affiliation(s)
- Franziska Liss
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Miriam Frech
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Ying Wang
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Gavin Giel
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Andreas Neubauer
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Andreas Burchert
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
- Correspondence: ; Tel.: +49-6421-28-66697
| |
Collapse
|
18
|
Liu M, Jin J, Ji Y, Shan H, Zou Z, Cao Y, Yang L, Liu L, Zhou L, Lei H, Wu Y, Xu H, Wu Y. Hsp90/C terminal Hsc70-interacting protein regulates the stability of Ikaros in acute myeloid leukemia cells. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1481-1490. [PMID: 33439458 DOI: 10.1007/s11427-020-1860-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022]
Abstract
The stability of Ikaros family zinc finger protein 1 (Ikaros), a critical hematopoietic transcription factor, can be regulated by cereblon (CRBN) ubiquitin ligase stimulated by immunomodulatory drugs in multiple myeloma. However, other stabilization mechanisms of Ikaros have yet to be elucidated. In this study, we show that the pharmacologic inhibition or knockdown of Hsp90 downregulates Ikaros in acute myeloid leukemia (AML) cells. Proteasome inhibitor MG132 but not autophagy inhibitor chloroquine could suppress the Hsp90 inhibitor STA-9090-induced reduction of Ikaros, which is accompanied with the increased ubiquitination of Ikaros. Moreover, Ikaros interacts with E3 ubiquitin-ligase C terminal Hsc70 binding protein (CHIP), which mediates the STA-9090-induced ubiquitination of Ikaros. In addition, the knockdown of Ikaros effectively inhibits the proliferation of leukemia cells, but this phenomenon could be rescued by Ikaros overexpression. Collectively, our findings indicate that the interplay between HSP90 and CHIP regulates the stability of Ikaros in AML cells, which provides a novel strategy for AML treatment through targeting the HSP90/Ikaros/CHIP axis.
Collapse
Affiliation(s)
- Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Jin
- Department of Ultrasound, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihui Zou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhao Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Qin P, Pang Y, Hou W, Fu R, Zhang Y, Wang X, Meng G, Liu Q, Zhu X, Hong N, Cheng T, Jin W. Integrated decoding hematopoiesis and leukemogenesis using single-cell sequencing and its medical implication. Cell Discov 2021; 7:2. [PMID: 33408321 PMCID: PMC7788081 DOI: 10.1038/s41421-020-00223-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA sequencing provides exciting opportunities to unbiasedly study hematopoiesis. However, our understanding of leukemogenesis was limited due to the high individual differences. Integrated analyses of hematopoiesis and leukemogenesis potentially provides new insights. Here we analyzed ~200,000 single-cell transcriptomes of bone marrow mononuclear cells (BMMCs) and its subsets from 23 clinical samples. We constructed a comprehensive cell atlas as hematopoietic reference. We developed counterpart composite index (CCI; available at GitHub: https://github.com/pengfeeei/cci) to search for the healthy counterpart of each leukemia cell subpopulation, by integrating multiple statistics to map leukemia cells onto reference hematopoietic cells. Interestingly, we found leukemia cell subpopulations from each patient had different healthy counterparts. Analysis showed the trajectories of leukemia cell subpopulations were similar to that of their healthy counterparts, indicating that developmental termination of leukemia initiating cells at different phases leads to different leukemia cell subpopulations thus explained the origin of leukemia heterogeneity. CCI further predicts leukemia subtypes, cellular heterogeneity, and cellular stemness of each leukemia patient. Analyses of leukemia patient at diagnosis, refractory, remission and relapse vividly presented dynamics of cell population during leukemia treatment. CCI analyses showed the healthy counterparts of relapsed leukemia cells were closer to the root of hematopoietic tree than that of other leukemia cells, although single-cell transcriptomic genetic variants and haplotype tracing analyses showed the relapsed leukemia cell were derived from an early minor leukemia cell population. In summary, this study developed a unified framework for understanding leukemogenesis with hematopoiesis reference, which provided novel biological and medical implication.
Collapse
Affiliation(s)
- Pengfei Qin
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yakun Pang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenhong Hou
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ruiqing Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Pediatric Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xuefei Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guofeng Meng
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Pediatric Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ni Hong
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine & Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Zhang X, Zhang X, Li X, Lv Y, Zhu Y, Wang J, Jin J, Yu W. The specific distribution pattern of IKZF1 mutation in acute myeloid leukemia. J Hematol Oncol 2020; 13:140. [PMID: 33081843 PMCID: PMC7574539 DOI: 10.1186/s13045-020-00972-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 11/10/2022] Open
Abstract
IKZF1 belongs to the IKAROS family of transcription factors, and its deletion/mutation frequently affects acute lymphoblastic leukemia. In acute myeloid leukemia, IKZF1 deletion has been demonstrated recurrent, but whether IKZF1 mutation also exists in AML remained largely unknown. Herein, we analyzed the IKZF1 mutation in AML. In our cohort, the frequency of IKZF1 mutation was 2.6% (5/193), and 5 frameshift/nonsense mutations as well as 2 missense mutations were identified in total. Molecularly, IKZF1 mutation was absent in fusion gene-positive AML, but it was demonstrated as the significant concomitant genetic alteration with SF3B1 or bi-alleleCEBPA mutation in AML. Clinically, two IKZF1, PTPN11 and SF3B1-mutated AML patients exhibited one aggressive clinical course and showed primary resistant to chemotherapy. Furthermore, we confirmed the recurrent IKZF1 mutation in AML with cBioPortal tool from OHSU, TCGA and TARGET studies. Interestingly, OHSU study also showed that SF3B1 mutation was the significant concomitant genetic alteration with IKZF1 mutation, indicating their strong synergy in leukemogenesis. In conclusion, IKZF1 mutation recurrently affected AML.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China
| | - Xuewu Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China
| | - Yunfei Lv
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China
| | - Yanan Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China.
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Rd Zhejiang Province, Hangzhou, 310003, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
IKZF1 rs4132601 and rs11978267 Gene Polymorphisms and Acute Lymphoblastic Leukemia: Relation to Disease Susceptibility and Outcome. J Pediatr Hematol Oncol 2020; 42:420-428. [PMID: 32769565 DOI: 10.1097/mph.0000000000001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
(IKZF1) rs4132601 and rs11978267 are common gene polymorphisms and have been associated with the risk of acute lymphoblastic leukemia. However, these associations are less evident in races and/or ethnicities other than European and Hispanic. Therefore, we investigated the association between these single-nucleotide polymorphisms and acute lymphoblastic leukemia susceptibility and disease outcome. Real-time polymerase chain reaction typing was performed for IKZF1 rs4132601 and rs11978267 for 128 pediatric acute lymphoblastic leukemia (pALL), 45 adult acute lymphoblastic leukemia (aALL), and 436 healthy controls. The G allele-containing and G-containing genotypes (GG+GT) of rs4132601 were significantly higher in pALL (P=0.003, odds ratio [OR]=1.65, 0.009, OR=1.42, respectively) and aALL (P=0.016, OR=1.81 and 0.011, OR=1.61, respectively). However, the GG haplotype was associated with the risk of pALL (P=0.044), the GA haplotype was associated with the risk of aALL (P=0.007). In aALL, the GG genotype of rs4132601 was associated with absence of remission and poor overall survival (P=0.003 and 0.041, respectively). The IKZF1 rs4132601 single-nucleotide polymorphism can be considered a susceptibility risk factor for the development of pALL and aALL in the studied cohort of Egyptian patients. The GG genotype of IKZF1 rs4132601 may be a risk factor for poor outcome in aALL patients.
Collapse
|
22
|
Mai K, Chen X, Wang C, Wu S, Yang L, Huang Z, Zhang G, Zhang VW, Wang J, Chen D. B-lymphocyte deficiency and recurrent respiratory infections in a 6-month-old female infant with mosaic monosomy 7. Immunobiology 2020; 225:152005. [PMID: 32962823 DOI: 10.1016/j.imbio.2020.152005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/24/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Monosomy 7 is generally considered as an acquired cytogenetic abnormality within hematopoietic cells, and indicates an especially high risk of progression to bone marrow failure, myelodysplastic syndrome (MDS) or juvenile myelomonocytic leukemia (JMML). We report a case of a 6-month-old female infant with mosaic monosomy 7 who presented with clinical and laboratory evidences of immunodeficiency. The patient had suffered from recurrent respiratory infections since she was born. Peripheral blood lymphocyte subsets revealed an extremely low level of CD19+ B lymphocytes (0.3∼0.8%, normal range: 6.4∼22.6%) and a decreased CD4/CD8 ratio (0.67∼1.12, normal range: 1.4∼2.0). Decreased serum levels of IgG (1.53 g/L, normal range: 4.09∼7.03 g/L), IgA (0.10 g/L, normal range: 0.21∼0.47 g/L) and IgM (0.26 g/L, normal range: 0.33∼0.73 g/L) were detected, while complements were normal. Excepting transient neutropenia, routine blood tests were within normal limits. Clinical exome sequencing identified a de novo mosaic monosomy 7, while no pathogenic mutation associated with immunodeficiency was detected. However, peripheral blood cytogenetic analysis was failure to detect monosomy 7 due to the very few cell mitosis. Subsequent fluorescence in situ hybridization (FISH) identified a mosaic monosomy 7 in 58 cells within a total number of 100 cells, which was consistent with clinical exome sequencing. Therefore, the patient was diagnosed with primary immunodeficiency disease (PID) due to mosaic monosomy 7. Intravenous treatment with multiple antibiotic agents and infusion of gamma globulin could control the patient's respiratory infections effectively. A better understanding of PIDs will enable effective treatments and prevention of infections in these patients.
Collapse
Affiliation(s)
- Kailin Mai
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunli Wang
- AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Shangzhi Wu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhang Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Victor Wei Zhang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, USA
| | - Jing Wang
- AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Zhang J, Lee D, Dhiman V, Jiang P, Xu J, McGillivray P, Yang H, Liu J, Meyerson W, Clarke D, Gu M, Li S, Lou S, Xu J, Lochovsky L, Ung M, Ma L, Yu S, Cao Q, Harmanci A, Yan KK, Sethi A, Gürsoy G, Schoenberg MR, Rozowsky J, Warrell J, Emani P, Yang YT, Galeev T, Kong X, Liu S, Li X, Krishnan J, Feng Y, Rivera-Mulia JC, Adrian J, Broach JR, Bolt M, Moran J, Fitzgerald D, Dileep V, Liu T, Mei S, Sasaki T, Trevilla-Garcia C, Wang S, Wang Y, Zang C, Wang D, Klein RJ, Snyder M, Gilbert DM, Yip K, Cheng C, Yue F, Liu XS, White KP, Gerstein M. An integrative ENCODE resource for cancer genomics. Nat Commun 2020; 11:3696. [PMID: 32728046 PMCID: PMC7391744 DOI: 10.1038/s41467-020-14743-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers hundreds of cell types, providing a universal annotation for genome interpretation. However, for particular applications, it may be advantageous to use a customized annotation. Here, we develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is comprehensive and experimentally derived networks of both transcription factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal application for such a network-based annotation. Specifically, for cancer-associated cell types, we put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic transformations in the context of a broad cell space; here, many normal-to-tumor transitions move towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we organize the resource into a coherent workflow to prioritize key elements and variants, in addition to regulators. We showcase the application of this prioritization to somatic burdening, cancer differential expression and GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the ENCODE resource.
Collapse
Affiliation(s)
- Jing Zhang
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Donghoon Lee
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Vineet Dhiman
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Peng Jiang
- Department of Data Science, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick McGillivray
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Jason Liu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - William Meyerson
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Mengting Gu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shantao Li
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jinrui Xu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Lucas Lochovsky
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Ung
- Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03765, USA
| | - Lijia Ma
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Shan Yu
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Arif Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Koon-Kiu Yan
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Anurag Sethi
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gamze Gürsoy
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael Rutenberg Schoenberg
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Joel Rozowsky
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Prashant Emani
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yucheng T Yang
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiangmeng Kong
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shuang Liu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiaotong Li
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jayanth Krishnan
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yanlin Feng
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jessica Adrian
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Michael Bolt
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Jennifer Moran
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Dominic Fitzgerald
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Claudia Trevilla-Garcia
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Su Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanli Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Kevin Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Chao Cheng
- Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03765, USA
- Department of Medicine, Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
| | - Kevin P White
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
- Tempus Labs, Chicago, IL, 60654, USA.
| | - Mark Gerstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA.
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
24
|
Crowgey EL, Mahajan N, Wong WH, Gopalakrishnapillai A, Barwe SP, Kolb EA, Druley TE. Error-corrected sequencing strategies enable comprehensive detection of leukemic mutations relevant for diagnosis and minimal residual disease monitoring. BMC Med Genomics 2020; 13:32. [PMID: 32131829 PMCID: PMC7057603 DOI: 10.1186/s12920-020-0671-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Pediatric leukemias have a diverse genomic landscape associated with complex structural variants, including gene fusions, insertions and deletions, and single nucleotide variants. Routine karyotype and fluorescence in situ hybridization (FISH) techniques lack sensitivity for smaller genomic alternations. Next-generation sequencing (NGS) assays are being increasingly utilized for assessment of these various lesions. However, standard NGS lacks quantitative sensitivity for minimal residual disease (MRD) surveillance due to an inherently high error rate. Methods Primary bone marrow samples from pediatric leukemia (n = 32) and adult leukemia subjects (n = 5), cell line MV4–11, and an umbilical cord sample were utilized for this study. Samples were sequenced using molecular barcoding with targeted DNA and RNA library enrichment techniques based on anchored multiplexed PCR (AMP®) technology, amplicon based error-corrected sequencing (ECS) or a human cancer transcriptome assay. Computational analyses were performed to quantitatively assess limit of detection (LOD) for various DNA and RNA lesions, which could be systematically used for MRD assays. Results Matched leukemia patient samples were analyzed at three time points; diagnosis, end of induction (EOI), and relapse. Similar to flow cytometry for ALL MRD, the LOD for point mutations by these sequencing strategies was ≥0.001. For DNA structural variants, FLT3 internal tandem duplication (ITD) positive cell line and patient samples showed a LOD of ≥0.001 in addition to previously unknown copy number losses in leukemia genes. ECS in RNA identified multiple novel gene fusions, including a SPANT-ABL gene fusion in an ALL patient, which could have been used to alter therapy. Collectively, ECS for RNA demonstrated a quantitative and complex landscape of RNA molecules with 12% of the molecules representing gene fusions, 12% exon duplications, 8% exon deletions, and 68% with retained introns. Droplet digital PCR validation of ECS-RNA confirmed results to single mRNA molecule quantities. Conclusions Collectively, these assays enable a highly sensitive, comprehensive, and simultaneous analysis of various clonal leukemic mutations, which can be tracked across disease states (diagnosis, EOI, and relapse) with a high degree of sensitivity. The approaches and results presented here highlight the ability to use NGS for MRD tracking.
Collapse
Affiliation(s)
- Erin L Crowgey
- Biomedical Research Department, Nemours / A.I. DuPont Children's Hospital, Wilmington, DE, USA
| | - Nitin Mahajan
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63108, USA
| | - Wing Hing Wong
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63108, USA
| | | | - Sonali P Barwe
- Biomedical Research Department, Nemours / A.I. DuPont Children's Hospital, Wilmington, DE, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, USA
| | - Todd E Druley
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63110, USA. .,Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63108, USA.
| |
Collapse
|
25
|
Regulation of Small GTPase Rab20 by Ikaros in B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21051718. [PMID: 32138279 PMCID: PMC7084408 DOI: 10.3390/ijms21051718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Ikaros is a DNA-binding protein that regulates gene expression and functions as a tumor suppressor in B-cell acute lymphoblastic leukemia (B-ALL). The full cohort of Ikaros target genes have yet to be identified. Here, we demonstrate that Ikaros directly regulates expression of the small GTPase, Rab20. Using ChIP-seq and qChIP we assessed Ikaros binding and the epigenetic signature at the RAB20 promoter. Expression of Ikaros, CK2, and RAB20 was determined by qRT-PCR. Overexpression of Ikaros was achieved by retroviral transduction, whereas shRNA was used to knockdown Ikaros and CK2. Regulation of transcription from the RAB20 promoter was analyzed by luciferase reporter assay. The results showed that Ikaros binds the RAB20 promoter in B-ALL. Gain-of-function and loss-of-function experiments demonstrated that Ikaros represses RAB20 transcription via chromatin remodeling. Phosphorylation by CK2 kinase reduces Ikaros’ affinity toward the RAB20 promoter and abolishes its ability to repress RAB20 transcription. Dephosphorylation by PP1 phosphatase enhances both Ikaros’ DNA-binding affinity toward the RAB20 promoter and RAB20 repression. In conclusion, the results demonstrated opposing effects of CK2 and PP1 on expression of Rab20 via control of Ikaros’ activity as a transcriptional regulator. A novel regulatory signaling network in B-cell leukemia that involves CK2, PP1, Ikaros, and Rab20 is identified.
Collapse
|
26
|
Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL, Dovat S. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul 2019; 75:100665. [PMID: 31623972 PMCID: PMC7239353 DOI: 10.1016/j.jbior.2019.100665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Alterations in normal regulation of gene expression is one of the key features of hematopoietic malignancies. In order to gain insight into the mechanisms that regulate gene expression in these diseases, we dissected the role of the Ikaros protein in leukemia. Ikaros is a DNA-binding, zinc finger protein that functions as a transcriptional regulator and a tumor suppressor in leukemia. The use of ChIP-seq, RNA-seq, and ATAC-seq—coupled with functional experiments—revealed that Ikaros regulates both the global epigenomic landscape and epigenetic signature at promoter regions of its target genes. Casein kinase II (CK2), an oncogenic kinase that is overexpressed in leukemia, directly phosphorylates Ikaros at multiple, evolutionarily-conserved residues. Phosphorylation of Ikaros impairs the protein's ability to regulate both the transcription of its target genes and global epigenetic landscape in leukemia. Treatment of leukemia cells with a specific inhibitor of CK2 restores Ikaros function, resulting in cytotoxicity of leukemia cells. Here, we review the mechanisms through which the CK2-Ikaros signaling axis regulates the global epigenomic landscape and expression of genes that control cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pavan K Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yevgeniya Bamme
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
27
|
Berry NK, Scott RJ, Rowlings P, Enjeti AK. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit Rev Oncol Hematol 2019; 142:58-67. [PMID: 31377433 DOI: 10.1016/j.critrevonc.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphism (SNP) microarrays are commonly used for the clinical investigation of constitutional genomic disorders; however, their adoption for investigating somatic changes is being recognised. With increasing importance being placed on defining the cancer genome, a shift in technology is imperative at a clinical level. Microarray platforms have the potential to become frontline testing, replacing or complementing standard investigations such as FISH or karyotype. This 'molecular karyotype approach' exemplified by SNP-microarrays has distinct advantages in the investigation of several haematological malignancies. A growing body of literature, including guidelines, has shown support for the use of SNP-microarrays in the clinical laboratory to aid in a more accurate definition of the cancer genome. Understanding the benefits of this technology along with discussing the barriers to its implementation is necessary for the development and incorporation of SNP-microarrays in a clinical laboratory for the investigation of haematological malignancies.
Collapse
Affiliation(s)
- Nadine K Berry
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia
| | - Philip Rowlings
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| |
Collapse
|
28
|
Chen Q, Shi Y, Chen Y, Ji T, Li Y, Yu L. Multiple functions of Ikaros in hematological malignancies, solid tumor and autoimmune diseases. Gene 2019; 684:47-52. [DOI: 10.1016/j.gene.2018.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
|
29
|
Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene U2af1. Proc Natl Acad Sci U S A 2018; 115:E10437-E10446. [PMID: 30322915 PMCID: PMC6217397 DOI: 10.1073/pnas.1812669115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Somatic mutations in some splicing factor genes are frequently found in myelodysplastic syndromes (MDS) and MDS-related acute myeloid leukemia (AML), blood cancers with few effective treatment options. However, the pathophysiological effects of these mutations remain poorly characterized. Here, we report the establishment of mouse models to study a common splicing factor mutation, U2AF1(S34F). Production of the mutant protein in the murine hematopoietic compartment disrupts hematopoiesis in ways resembling human MDS. We further identified deletion of the Runx1 gene and other known oncogenic mutations as changes that might collaborate with U2af1(S34F) to give rise to frank AML in mice. However, the U2af1(S34F) mutation was absent in two of the three AML cases, raising the possibility that this mutant protein plays a dispensable role in tumor maintenance. Mutations affecting the spliceosomal protein U2AF1 are commonly found in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). We have generated mice that carry Cre-dependent knock-in alleles of U2af1(S34F), the murine version of the most common mutant allele of U2AF1 encountered in human cancers. Cre-mediated recombination in murine hematopoietic lineages caused changes in RNA splicing, as well as multilineage cytopenia, macrocytic anemia, decreased hematopoietic stem and progenitor cells, low-grade dysplasias, and impaired transplantability, but without lifespan shortening or leukemia development. In an attempt to identify U2af1(S34F)-cooperating changes that promote leukemogenesis, we combined U2af1(S34F) with Runx1 deficiency in mice and further treated the mice with a mutagen, N-ethyl-N-nitrosourea (ENU). Overall, 3 of 16 ENU-treated compound transgenic mice developed AML. However, AML did not arise in mice with other genotypes or without ENU treatment. Sequencing DNA from the three AMLs revealed somatic mutations homologous to those considered to be drivers of human AML, including predicted loss- or gain-of-function mutations in Tet2, Gata2, Idh1, and Ikzf1. However, the engineered U2af1(S34F) missense mutation reverted to WT in two of the three AML cases, implying that U2af1(S34F) is dispensable, or even selected against, once leukemia is established.
Collapse
|
30
|
Wlodarski MW, Sahoo SS, Niemeyer CM. Monosomy 7 in Pediatric Myelodysplastic Syndromes. Hematol Oncol Clin North Am 2018; 32:729-743. [DOI: 10.1016/j.hoc.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Abstract
Transcription factor IKZF1 (IKAROS) acts as a critical regulator of lymphoid differentiation and is frequently deleted or mutated in B-cell precursor acute lymphoblastic leukemia. IKZF1 gene defects are associated with inferior treatment outcome in both childhood and adult B-cell precursor acute lymphoblastic leukemia and occur in more than 70% of BCR-ABL1-positive and BCR-ABL1-like cases of acute lymphoblastic leukemia. Over the past few years, much has been learned about the tumor suppressive function of IKZF1 during leukemia development and the molecular pathways that relate to its impact on treatment outcome. In this review, we provide a concise overview on the role of IKZF1 during normal lymphopoiesis and the pathways that contribute to leukemia pathogenesis as a consequence of altered IKZF1 function. Furthermore, we discuss different mechanisms by which IKZF1 alterations impose therapy resistance on leukemic cells, including enhanced cell adhesion and modulation of glucocorticoid response.
Collapse
Affiliation(s)
- René Marke
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands .,Department of Pathology, Radboud University Medical Center; Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| |
Collapse
|
32
|
Myeloid neoplasms with germline DDX41 mutation. Int J Hematol 2017; 106:163-174. [PMID: 28547672 DOI: 10.1007/s12185-017-2260-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|
33
|
Hepatic Transcriptome Profiles of Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E. Int J Mol Sci 2017; 18:ijms18030593. [PMID: 28282876 PMCID: PMC5372609 DOI: 10.3390/ijms18030593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/04/2017] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin alleviates hepatic lipid accumulation and peroxidation, inflammation, and fibrosis in mice with high-cholesterol, high-cholate, and high-fat (CL) diet-induced nonalcoholic steatohepatitis (NASH). It has been proposed as a potential new treatment to inhibit the progression of NASH in humans. In this study, we compared hepatic gene expression profiles after treatment with astaxanthin or the antioxidant vitamin E in mice with CL diet-induced NASH. Comprehensive gene expression analyses of the livers of mice fed a standard, CL, or CL diet containing astaxanthin or vitamin E for 12 weeks were performed using a DNA microarray. Both astaxanthin and vitamin E effectively improved gene expression associated with eukaryotic initiation factor-2 (EIF2) signaling, which is suppressed in NASH by endoplasmic reticulum (ER) stress in the liver. However, astaxanthin did not improve the expression of genes associated with mitochondrial dysfunction. Astaxanthin, but not vitamin E, was predicted to suppress the actions of ligand-dependent nuclear receptors peroxisome proliferator-activated receptors, (PPAR) α (PPARA) and PPARδ (PPARD), and to affect related molecules. Establishing a new therapy using astaxanthin will require elucidation of astaxanthin’s molecular action on the functions of PPARα and related molecules in the livers of mice with diet-induced NASH.
Collapse
|
34
|
Somatic mutations in children with GATA2-associated myelodysplastic syndrome who lack other features of GATA2 deficiency. Blood Adv 2017; 1:443-448. [PMID: 29296959 DOI: 10.1182/bloodadvances.2016002311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
Approximately 10% of children with primary myelodysplastic syndrome (MDS) have germ line GATA2 mutations, leading to the proposal that all children with primary MDS and certain cytogenetic findings, including monosomy 7, be tested for germ line GATA2 mutations regardless of family history or other clinical features associated with GATA2 deficiency. In adults with familial GATA2-MDS, those with somatic mutations in ASXL1 experience rapid disease progression to acute myeloid leukemia (AML) and poor prognosis after stem cell transplantation; however, the prevalence of somatic mutations in primary pediatric GATA2-MDS is unclear. Here, we studied a cohort of 8 pediatric patients with MDS and lacking additional GATA2-associated clinical features or significant family history and identified heterozygous germ line GATA2 mutations in 5 patients, including 1 with a normal karyotype. For those with GATA2-MDS, we screened for somatic mutations in genes with prognostic relevance in AML/MDS, using a targeted next-generation sequencing panel. Although no somatic mutations in ASXL1 were observed, somatic mutations were found in RUNX1, SETBP1, IKZF1, and CRLF2. One subject with deleterious mutations in RUNX1, SETBP1, and IKZF1 rapidly progressed to AML with disease that was refractory to treatment. Our findings confirm the importance of GATA2 testing in primary pediatric MDS, even in the absence of other clinical features of GATA2 deficiency. Further, similar to what has been observed in adults with GATA2-MDS, somatic mutations with potential prognostic effect occur in children with MDS associated with mutations in GATA2.
Collapse
|
35
|
Gur HD, Wang SA, Tang Z, Hu S, Li S, Medeiros LJ, Tang G. Clinical significance of isolated del(7p) in myeloid neoplasms. Leuk Res 2017; 55:18-22. [PMID: 28119224 DOI: 10.1016/j.leukres.2017.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/24/2022]
Abstract
Sole del(7p) is a rare finding in myeloid neoplasms and its clinical significance is largely unknown. Here we report 10 patients with isolated del(7p), 4 had acute myeloid leukemia (AML), 2 myelodysplastic syndromes (MDS), 1 chronic myelomonocytic leukemia (CMML), 1 primary myelofibrosis (PMF), and 2 AML in remission. Seven patients had large and 3 had small del(7p) clone. For patients with AML, 3 acquired del(7p) either at disease relapse or disease progression, then became refractory to therapy and died shortly thereafter (median 5 months). Detection of del(7p) in patients with MDS, CMML, or PMF appeared to predict poorer prognosis as all 4 patients experienced disease progression or transformation to AML after 5-24 months. In the remaining 3 patients (1 AML and 2 AML in remission), del(7p) was only detected in 10% to 30% of metaphases and was a transient finding that did not appear to have any clinical impact. We conclude that detection of del(7p) in myeloid neoplasms, when presents as a major clone, often poses a high risk for disease progression and refractoriness to therapy; whereas when del(7p) presents as a small clone, it may not carry any clinical significance.
Collapse
Affiliation(s)
- Hatice Deniz Gur
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
36
|
The Philadelphia chromosome in leukemogenesis. CHINESE JOURNAL OF CANCER 2016; 35:48. [PMID: 27233483 PMCID: PMC4896164 DOI: 10.1186/s40880-016-0108-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Philadelphia chromosome (Ph) and is a hallmark of chronic myeloid leukemia (CML). In leukemia cells, Ph not only impairs the physiological signaling pathways but also disrupts genomic stability. This aberrant fusion gene encodes the breakpoint cluster region-proto-oncogene tyrosine-protein kinase (BCR-ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity. The kinase activity is responsible for maintaining proliferation, inhibiting differentiation, and conferring resistance to cell death. During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase, the expression patterns of different BCR-ABL1 transcripts vary. Each BCR-ABL1 transcript is present in a distinct leukemia phenotype, which predicts both response to therapy and clinical outcome. Besides CML, the Ph is found in acute lymphoblastic leukemia, acute myeloid leukemia, and mixed-phenotype acute leukemia. Here, we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph-positive leukemia and highlight key findings regarding leukemogenesis.
Collapse
|