1
|
Sun N, Wang C, Edwards W, Wang Y, Lu XL, Gu C, McLennan S, Shangaris P, Qi P, Mastronicola D, Scottà C, Lombardi G, Chiappini C. Nanoneedle-Based Electroporation for Efficient Manufacturing of Human Primary Chimeric Antigen Receptor Regulatory T-Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416066. [PMID: 40231643 DOI: 10.1002/advs.202416066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Regulatory T cells (Tregs) play a crucial role in moderating immune responses offering promising therapeutic options for autoimmune diseases and allograft rejection. Genetically engineering Tregs with chimeric antigen receptors (CARs) enhances their targeting specificity and efficacy. With non-viral transfection methods suffering from low efficiency and reduced cell viability, viral transduction is currently the only viable approach for GMP-compliant CAR-Treg production. However, viral transduction raises concerns over immunogenicity, insertional mutagenesis risk, and high costs, which limit clinical scalability. This study introduces a scalable nanoneedle electroporation (nN-EP) platform for GMP-compatible transfection of HLA-A2-specific CAR plasmids into primary human Tregs. The nN-EP system achieves 43% transfection efficiency, outperforming viral transduction at multiplicity of infection 1 by twofold. Importantly, nN-EP preserves Treg viability, phenotype and proliferative capacity. HLA-A2-specific CAR-Tregs generated using nN-EP show specific activation and superior suppressive function compared to polyclonal or virally transduced Tregs in the presence of HLA-A2 expressing antigen presenting cells. These findings underscore the potential of nN-EP as a GMP-suitable method for CAR-Treg production, enabling broader clinical application in immune therapies.
Collapse
Affiliation(s)
- Ningjia Sun
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Cong Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
- Wenzhou Eye Valley Innovation Center, Eye Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - William Edwards
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Yikai Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Xiangrong L Lu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Chenlei Gu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Samuel McLennan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Panicos Shangaris
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- School of Life Course & Population Sciences, 10th Floor North Wing, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, SE1 7EH, UK
| | - Peng Qi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Daniela Mastronicola
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Cristiano Scottà
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, UB8 3PH, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
2
|
Fisher MS, Sennikov SV. T-regulatory cells for the treatment of autoimmune diseases. Front Immunol 2025; 16:1511671. [PMID: 39967659 PMCID: PMC11832489 DOI: 10.3389/fimmu.2025.1511671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Autoimmune diseases result from imbalances in the immune system and disturbances in the mechanisms of immune tolerance. T-regulatory cells (Treg) are key factors in the formation of immune tolerance. Tregs modulate immune responses and repair processes, controlling the innate and adaptive immune system. The use of Tregs in the treatment of autoimmune diseases began with the manipulation of endogenous Tregs using immunomodulatory drugs. Then, a method of adoptive transfer of Tregs grown in vitro was developed. Adoptive transfer of Tregs includes polyclonal Tregs with non-specific effects and antigen-specific Tregs in the form of CAR-Treg and TCR-Treg. This review discusses non-specific and antigen-specific approaches to the use of Tregs, their advantages, disadvantages, gaps in development, and future prospects.
Collapse
Affiliation(s)
- Marina S. Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Han JW, Park SH. Advancing immunosuppression in liver transplantation: the role of regulatory T cells in immune modulation and graft tolerance. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:257-272. [PMID: 39696994 PMCID: PMC11732766 DOI: 10.4285/ctr.24.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Prolonged immunosuppressive therapy in liver transplantation (LT) is associated with significant adverse effects, such as nephrotoxicity, metabolic complications, and heightened risk of infection or malignancy. Regulatory T cells (Tregs) represent a promising target for inducing immune tolerance in LT, with the potential to reduce or eliminate the need for life-long immunosuppression. This review summarizes current knowledge on the roles of Tregs in LT, highlighting their mechanisms and the impact of various immunosuppressive agents on Treg stability and function. The liver's distinct immunological microenvironment, characterized by tolerogenic antigen-presenting cells and high levels of interleukin (IL)-10 and transforming growth factor-β, positions this organ as an ideal setting for Treg-mediated tolerance. We discuss Treg dynamics in LT, their association with rejection risk, and their utility as biomarkers of transplant outcomes. Emerging strategies, including the use of low-dose calcineurin inhibitors with mammalian target of rapamycin inhibitors, adoptive Treg therapy, and low-dose IL-2, aim to enhance Treg function while providing sufficient immunosuppression. Thus, the future of LT involves precision medicine approaches that integrate Treg monitoring with tailored immunosuppressive protocols to optimize long-term outcomes for LT recipients.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
4
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
5
|
Fondelli F, Willemyns J, Domenech-Garcia R, Mansilla MJ, Godoy-Tena G, Ferreté-Bonastre AG, Agúndez-Moreno A, Presas-Rodriguez S, Ramo-Tello C, Ballestar E, Martínez-Cáceres E. Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis. J Clin Invest 2024; 134:e178949. [PMID: 39287981 PMCID: PMC11527446 DOI: 10.1172/jci178949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease characterized by dysregulated self-reactive immune responses that damage the neurons' myelin sheath, leading to progressive disability. The primary therapeutic option, immunosuppressants, inhibits pathogenic anti-myelin responses but depresses the immune system. Antigen-specific monocyte-derived autologous tolerogenic dendritic cells (tolDCs) offer alternative therapeutic approaches to restore tolerance to autoantigens without causing generalized immunosuppression. However, immune dysregulation in MS could impact the properties of the monocytes used as starting material for this cell therapy. Here, we characterized CD14+ monocytes, mature dendritic cells, and vitamin D3-tolDCs (VitD3-tolDCs) from active, treatment-naive MS patients and healthy donors (HDs). Using multiomics, we identified a switch in these cell types toward proinflammatory features characterized by alterations in the aryl hydrocarbon receptor (AhR) and NF-κB pathways. MS patient-derived VitD3-tolDCs showed reduced tolerogenic properties compared with those from HDs, which were fully restored through direct AhR agonism and by use of in vivo or in vitro dimethyl fumarate (DMF) supplementation. Additionally, in the experimental autoimmune encephalomyelitis mouse model, combined therapy of DMF and VitD3-tolDCs was more efficient than monotherapies in reducing the clinical score of mice. We propose that a combined therapy with DMF and VitD3-tolDCs offers enhanced therapeutic potential in treating MS.
Collapse
MESH Headings
- Humans
- Dendritic Cells/immunology
- Receptors, Aryl Hydrocarbon/immunology
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- Animals
- Mice
- Female
- Male
- Immune Tolerance
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Multiple Sclerosis/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Adult
- Middle Aged
- Monocytes/immunology
- Monocytes/metabolism
- NF-kappa B/metabolism
- NF-kappa B/immunology
- Cholecalciferol/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
Collapse
Affiliation(s)
- Federico Fondelli
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jana Willemyns
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Roger Domenech-Garcia
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria José Mansilla
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Anna G. Ferreté-Bonastre
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Alex Agúndez-Moreno
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Presas-Rodriguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China
| | - Eva Martínez-Cáceres
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
7
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
8
|
Fisher MS, Kurilin VV, Bulygin AS, Shevchenko JA, Philippova JG, Taranov OS, Ivleva EK, Maksyutov AZ, Sennikov SV. Dendritic cells transfected with DNA constructs encoding CCR9, IL-10, and type II collagen demonstrate induction of immunological tolerance in an arthritis model. Front Immunol 2024; 15:1447897. [PMID: 39161770 PMCID: PMC11330828 DOI: 10.3389/fimmu.2024.1447897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Restoring immune tolerance is a promising area of therapy for autoimmune diseases. One method that helps restore immunological tolerance is the approach using tolerogenic dendritic cells (tolDCs). In our study, we analyzed the effectiveness of using dendritic cells transfected with DNA constructs encoding IL-10, type II collagen, and CCR9 to induce immune tolerance in an experimental model of arthritis. Methods Dendritic cell cultures were obtained from bone marrow cells of Balb/c mice. Dendritic cells (DCs) cultures were transfected with pmaxCCR9, pmaxIL-10, and pmaxCollagen type II by electroporation. The phenotype and functions of DCs were studied using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Migration of electroporated DCs was assessed in vitro. Induction of antigen-collagen induced arthritis (ACIA) was carried out according to the protocol in Balb/c mice. DCs were then administered to ACIA mice. The development of arthritis was monitored by measuring paw swelling with a caliper at different time points. The immunological changes were assessed by analyzing the content of antibodies to type II collagen using enzyme immunoassay. Additionally, a histological examination of the joint tissue was conducted, followed by data analysis. The results are as follows DCs were obtained, characterized by reduced expression of CD80, CD86, and H-2Db (MHC class I), increased expression of CCR9, as well as producing IL-10 and having migratory activity to thymus cells. Transfected DCs induced T-regulatory cells (T-reg) and increased the intracellular content of IL-10 and TGF-β in CD4+T cells in their co-culture, and also suppressed their proliferative activity in response to antigen. The administration of tolDCs transfected with DNA constructs encoding type II collagen, IL-10, and CCR9 to mice with ACIA demonstrated a reduction in paw swelling, a reduction in the level of antibodies to type II collagen, and a regression of histological changes. Conclusion The study presents an approach by which DCs transfected with DNA constructs encoding epitopes of type II collagen, IL-10 and CCR9 promote the development of antigen-specific tolerance, control inflammation and reduce the severity of experimental arthritis through the studied mechanisms: induction of T-reg, IL-10, TGF-β.
Collapse
Affiliation(s)
- Marina S. Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vasily V. Kurilin
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Aleksey S. Bulygin
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia G. Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Oleg S. Taranov
- Department of Microscopic Research, State Research Centre for Virology and Biotechnology «Vektor», Koltsovo, Russia
| | - Elena K. Ivleva
- Department of Microscopic Research, State Research Centre for Virology and Biotechnology «Vektor», Koltsovo, Russia
| | - Amir Z. Maksyutov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Theoretical Department, State Research Center for Virology and Biotechnology “Vektor”, Koltsovo, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
9
|
Zhang J, Liu H, Chen Y, Liu H, Zhang S, Yin G, Xie Q. Augmenting regulatory T cells: new therapeutic strategy for rheumatoid arthritis. Front Immunol 2024; 15:1312919. [PMID: 38322264 PMCID: PMC10844451 DOI: 10.3389/fimmu.2024.1312919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Abhishek K, Nidhi M, Chandran S, Shevkoplyas SS, Mohan C. Manufacturing regulatory T cells for adoptive cell therapy in immune diseases: A critical appraisal. Clin Immunol 2023; 251:109328. [PMID: 37086957 PMCID: PMC11003444 DOI: 10.1016/j.clim.2023.109328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Regulatory T cells (Tregs) are a unique subset of lymphocytes that play a vital role in regulating the immune system by suppressing unwanted immune responses and thus preventing autoimmune diseases and inappropriate inflammatory reactions. In preclinical and clinical trials, these cells have demonstrated the ability to prevent and treat graft vs. host disease, alleviate autoimmune symptoms, and promote transplant tolerance. In this review, we provide a background on Treg cells with a focus on important Treg cell markers and Treg subsets, and outline the methodology currently used for manufacturing adoptive regulatory T cell therapies (TRACT). Finally, we discuss the approaches and outcomes of several clinical trials in which Tregs have been adoptively transferred to patients.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States of America
| | - Malavika Nidhi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States of America
| | - Srinandhini Chandran
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States of America
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States of America.
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States of America.
| |
Collapse
|
11
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Huang DL, He YR, Liu YJ, He HY, Gu ZY, Liu YM, Liu WJ, Luo Z, Ju MJ. The immunomodulation role of Th17 and Treg in renal transplantation. Front Immunol 2023; 14:1113560. [PMID: 36817486 PMCID: PMC9928745 DOI: 10.3389/fimmu.2023.1113560] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Kidney transplantation (KT) is an ultimate treatment of end-stage chronic kidney disease, which can meet a lot of complications induced by immune system. With under-controlled immunosuppression, the patient will obtain a good prognosis. Otherwise, allograft disfunction will cause severe organ failure and even immune collapse. Acute or chronic allograft dysfunction after KT is related to Th17, Treg, and Th17/Treg to a certain extent. Elevated Th17 levels may lead to acute rejection or chronic allograft dysfunction. Treg mainly plays a protective role on allografts by regulating immune response. The imbalance of the two may further aggravate the balance of immune response and damage the allograft. Controlling Th17 level, improving Treg function and level, and adjusting Th17/Treg ratio may have positive effects on longer allograft survival and better prognosis of receptors.
Collapse
Affiliation(s)
- Dan-Lei Huang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Ran He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Jing Liu
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong-Yu He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhun-Yong Gu
- Department of Urinary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Mei Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Jun Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Min-Jie Ju, ; Zhe Luo,
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Min-Jie Ju, ; Zhe Luo,
| |
Collapse
|
13
|
Ahmadi L, Eskandari N, Ghanadian M, Rahmati M, Kasiri N, Etamadifar M, Toghyani M, Alsahebfosoul F. The Immunomodulatory Aspect of Quercetin Penta Acetate on Th17 Cells Proliferation and Gene Expression in Multiple Sclerosis. CELL JOURNAL 2023; 25:110-117. [PMID: 36840457 PMCID: PMC9968368 DOI: 10.22074/cellj.2022.557560.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 02/26/2023]
Abstract
OBJECTIVE The function of Th17 cells in the neuroinflammatory process in multiple sclerosis (MS) has been previously clarified. It has been suggested that Quercetin can influence MS due to a variety of anti-inflammatory effects. The present study aimed to examine in vitro immunomodulatory aspects of Quercetin Penta Acetate as a modified compound on Th17 cells of MS patients and also to compare its effects with Quercetin. MATERIALS AND METHODS In this experimental study, peripheral blood mononuclear cell (PBMCs) were isolated and stained with CFSE then, half-maximal inhibitory concentration (IC50) values were determined using different doses and times for Quercetin Penta Acetate, and Methyl Prednisolone Acetate. Th17 cell proliferation was analyzed by flow cytometry and the expression levels of IL-17 and RORc genes were assessed by real-time polymerase chain reaction (PCR) method. RESULTS The results showed that IL-17 gene expression was inhibited by Quercetin Penta Acetate (P=0.0081), but Quercetin Penta Acetate did not have a significant inhibitory effect on Th17 cells proliferation (P= 0.59) and RORc gene expression (P=0.1), compared to Quercetin. CONCLUSION Taken together, our results showed some immunomodulatory aspects of Quercetin Penta Acetate on Th17 cells are more effective than Quercetin and it could be considered in the treatment of MS.
Collapse
Affiliation(s)
- Leila Ahmadi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,P.O.Box: 8174673461Department of ImmunologyFaculty of MedicineIsfahan University of Medical SciencesIsfahanIran
Emails:, Institute
| | - Mustafa Ghanadian
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Rahmati
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Kasiri
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etamadifar
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Iranian Multiple Sclerosis and Neuroimmunology Research Center, Isfahan, Iran
| | - Mohadeseh Toghyani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosoul
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Iranian Multiple Sclerosis and Neuroimmunology Research Center, Isfahan, Iran,P.O.Box: 8174673461Department of ImmunologyFaculty of MedicineIsfahan University of Medical SciencesIsfahanIran
Emails:, Institute
| |
Collapse
|
14
|
Robinson GA, Peng J, Peckham H, Butler G, Pineda-Torra I, Ciurtin C, Jury EC. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. THE LANCET. RHEUMATOLOGY 2022; 4:e710-e724. [PMID: 36353692 PMCID: PMC9633330 DOI: 10.1016/s2665-9913(22)00198-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Sexual dimorphisms, which vary depending on age group and pubertal status, have been described across both the innate and adaptive immune system. We explored the influence of sex hormones on immune phenotype in the context of adolescent health and autoimmunity. Methods In this cross-sectional study, healthy, post-pubertal cisgender individuals (aged 16-25 years); healthy, pre-pubertal cisgender individuals (aged 6-11 years); transgender individuals (aged 18-19 years) undergoing gender-affirming treatment (testosterone in individuals assigned female sex at birth and oestradiol in individuals assigned male sex at birth); and post-pubertal cisgender individuals (aged 14-25 years) with juvenile-onset systemic lupus erythematosus (SLE) age-matched to cisgender individuals without juvenile-onset SLE were eligible for inclusion. Frequencies of 28 immune-cell subsets (including different T cell, B cell, and monocyte subsets) from each participant were measured in peripheral blood mononuclear cells by flow cytometry and analysed by balanced random forest machine learning. RNA-sequencing was used to compare sex and gender differences in regulatory T (Treg) cell phenotype between participants with juvenile-onset SLE, age-matched cis-gender participants without the disease, and age matched transgender individuals on gender-affirming sex hormone treatment. Differentially expressed genes were analysed by cluster and pathway analysis. Suppression assays assessed the anti-inflammatory function of Treg cells in vitro. Findings Between Sept 5, 2012, and Nov 6, 2019, peripheral blood was collected from 39 individuals in the post-pubertal group (17 [44%] cisgender men, mean age 18·76 years [SD 2·66]; 22 [56%] cisgender women, mean age 18·59 years [2·81]), 14 children in the cisgender pre-pubertal group (seven [50%] cisgender boys, mean age 8·90 [1·66]; seven [50%] cisgender girls, mean age 8·40 [1·58]), ten people in the transgender group (five [50%] transgender men, mean age 18·20 years [0·47]; five [50%] transgender women, mean age 18·70 years [0·55]), and 35 people in the juvenile-onset SLE group (12 [34%] cisgender men, mean age 18·58 years [2·35]; 23 [66%] cisgender women, mean age 19·48 [3·08]). Statistically significantly elevated frequencies of Treg cells were one of the top immune-cell features differentiating young post-pubertal cisgender men from similarly aged cisgender women (p=0·0097). Treg cells from young cisgender men had a statistically significantly increased suppressive capacity in vitro compared with those from cisgender women and a distinct transcriptomic signature significantly enriched for genes in the PI3K-AKT signalling pathway. Gender-affirming sex hormones in transgender men and transgender women induced multiple statistically significant changes in the Treg-cell transcriptome, many of which enriched functional pathways that overlapped with those altered between cisgender men and cisgender women, highlighting a hormonal influence on Treg-cell function by gender. Finally, sex differences in Treg-cell frequency were absent and suppressive capacity was reversed in patients with juvenile-onset SLE, but sex differences in Treg-cell transcriptional signatures were significantly more pronounced in patients with juvenile-onset SLE compared with individuals without juvenile-onset SLE, suggesting that sex hormone signalling could be dysregulated in autoimmunity. Interpretation Sex-chromosomes and hormones might drive changes in Treg-cell frequency and function. Young post-pubertal men have a more anti-inflammatory Treg-cell profile, which could explain inflammatory disease susceptibilities, and inform sex-tailored therapeutic strategies. Funding Versus Arthritis, UK National Institute for Health Research University College London Hospital Biomedical Research Centre, Lupus UK, and The Rosetrees Trust.
Collapse
Affiliation(s)
- George A Robinson
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Junjie Peng
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Gary Butler
- Department of Paediatric and Adolescent Endocrinology, University College London Hospital and Great Ormond Street Institute of Child Health, University College London, London, UK
- Gender Identity Development Service, Tavistock and Portman NHS Foundation Trust, London, UK
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| |
Collapse
|
15
|
Palatella M, Guillaume SM, Linterman MA, Huehn J. The dark side of Tregs during aging. Front Immunol 2022; 13:940705. [PMID: 36016952 PMCID: PMC9398463 DOI: 10.3389/fimmu.2022.940705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.
Collapse
Affiliation(s)
- Martina Palatella
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Bacterial and Viral Infection and Sepsis in Kidney Transplanted Patients. Biomedicines 2022; 10:biomedicines10030701. [PMID: 35327510 PMCID: PMC8944970 DOI: 10.3390/biomedicines10030701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Kidney transplanted patients are a unique population with intrinsic susceptibility to viral and bacterial infections, mainly (but not exclusively) due to continuous immunosuppression. In this setting, infectious episodes remain among the most important causes of death, with different risks according to the degree of immunosuppression, time after transplantation, type of infection, and patient conditions. Prevention, early diagnosis, and appropriate therapy are the goals of infective management, taking into account that some specific characteristics of transplanted patients may cause a delay (the absence of fever or inflammatory symptoms, the negativity of serological tests commonly adopted for the general population, or the atypical anatomical presentation depending on the surgical site and graft implantation). This review considers the recent available findings of the most common viral and bacterial infection in kidney transplanted patients and explores risk factors and outcomes in septic evolution.
Collapse
|
17
|
Rickert CG, Markmann JF. Transplantation in the Age of Precision Medicine: The Emerging Field of Treg Therapy. Semin Nephrol 2022; 42:76-85. [DOI: 10.1016/j.semnephrol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Yao JM, Yang D, Clark MC, Otoukesh S, Cao T, Ali H, Arslan S, Aldoss I, Artz A, Amanam I, Salhotra A, Pullarkat V, Sandhu K, Stein A, Marcucci G, Forman SJ, Nakamura R, Al Malki MM. Tacrolimus initial steady state level in post-transplant cyclophosphamide-based GvHD prophylaxis regimens. Bone Marrow Transplant 2021; 57:232-242. [PMID: 34802049 PMCID: PMC8825746 DOI: 10.1038/s41409-021-01528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
Post-transplant cyclophosphamide (PTCy) combined with tacrolimus (TAC) as graft-versus-host disease (GvHD) prophylaxis post-hematopoietic cell transplantation (HCT) is safe and effective. Optimal serum levels of TAC in this combination remain undetermined. We hypothesized that TAC at initial steady state (TISS) of <10 ng/mL could promote optimal transplant outcomes and prevent TAC-associated toxicities. We retrospectively analyzed a consecutive case series of 210 patients who received PTCy/TAC-based prophylaxis post-HCT from 1/2013–6/2018. Patients received HCT from haploidentical (n=172) or mismatched donors (n=38), and flat dose (FD) or weight-based dose (WBD) TAC. Twenty-four-month overall survival (OS), disease free survival (DFS), and relapse rate (RR) were 61%, 56%, and 22%, respectively, in TISS <10 ng/mL cohort (n=176), and 50%, 43%, and 35%, respectively, in TISS ≥10 ng/mL cohort (n=34) (OS, P=0.71; DFS, P=0.097; RR, P=0.031). OS, DFS, RR, non-relapse mortality, acute GvHD grade II-IV, grade III-IV or chronic GvHD by TISS were similar in multivariable analysis. TISS ≥10 ng/mL conferred increased risk of viral infection (P=0.003). More patients receiving FD vs. WBD had TISS <10 ng/mL (P=0.001). Overall, TISS <10 ng/mL early post HCT conferred similar survival outcomes and lowered risk of viral infection and toxicities compared to TISS ≥10 ng/mL.
Collapse
Affiliation(s)
- Janny M Yao
- Department of Pharmacy, City of Hope National Medical Center, Duarte, CA, USA
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, Division of Biostatistics, City of Hope National Medical Center, Duarte, CA, USA
| | - Mary C Clark
- Department of Clinical and Translational Project Development, City of Hope National Medical Center, Duarte, CA, USA
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Thai Cao
- Bone Marrow Transplant Department, Kaiser Permanente, Los Angeles, CA, USA
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Shukaib Arslan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrew Artz
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Karamjeet Sandhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Anthony Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
19
|
Landwehr-Kenzel S, Zobel A, Schmitt-Knosalla I, Forke A, Hoffmann H, Schmueck-Henneresse M, Klopfleisch R, Volk HD, Reinke P. Cyclosporine A but Not Corticosteroids Support Efficacy of Ex Vivo Expanded, Adoptively Transferred Human Tregs in GvHD. Front Immunol 2021; 12:716629. [PMID: 34707604 PMCID: PMC8543016 DOI: 10.3389/fimmu.2021.716629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Reshaping the immune balance by adoptive transfer of regulatory T-cells (Tregs) has emerged as a promising strategy to combat undesired immune reactions, including in Graft-versus-Host Disease (GvHD), which is the most lethal non-relapse complication of allogeneic hematopoietic stem cell transplantation. Currently however, little is known about the potentially inhibitory in vivo effects of conventional immunosuppressive drugs, which are routinely used to treat GvHD, on adoptively transferred Tregs. Here we demonstrate drug-specific effects of the conventional immunosuppressive drugs Cyclosporine A, Mycophenolate mofetil and methylprednisolone on adoptively transferred Tregs in a humanized NOD/SCID/IL2Rgamma-/- GvHD mouse model. The clinical course of GvHD and postmortem organ histology, including cellular organ infiltration, showed that co-administration of Cyclosporine A and Tregs is highly beneficial as it enhanced Treg accumulation at inflammatory sites like lung and liver. Similarly, co-administration of Mycophenolate mofetil and Tregs improved clinical signs of GvHD. In contrast, co-administration of methylprednisolone and Tregs resulted in reduced Treg recruitment to inflammatory sites and the fast deterioration of some animals. Consequently, when clinical trials investigating safety and efficacy of adjunctive Treg therapy in GvHD are designed, we suggest co-administering Cyclosporine A, whereas high doses of glucocorticosteroids should be avoided.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Zobel
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Isabela Schmitt-Knosalla
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Forke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Henrike Hoffmann
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
He X, Li S, Zhang J, Cao L, Yang C, Rong P, Yi S, Ghimire K, Ma X, Wang W. Benefit of Belatacept in Cord Blood-Derived Regulatory T Cell-Mediated Suppression of Alloimmune Response. Cell Transplant 2021; 30:9636897211046556. [PMID: 34570631 PMCID: PMC8718163 DOI: 10.1177/09636897211046556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of Regulatory T cells (Tregs) in tolerance induction post-transplantation is well-established, but Tregs adoptive transfer alone without combined immunosuppressants have failed so far in achieving clinical outcomes. Here we applied a set of well-designed criteria to test the influence of commonly used immunosuppressants (belatacept, tacrolimus, and mycophenolate) on cord blood-derived Tregs (CB-Tregs). Our study shows that while none of these immunosuppressants modulated the stability and expression of homing molecules by CB-Tregs, belatacept met all other selective criteria, shown by its ability to enhance CB-Tregs-mediated in vitro suppression of the allogeneic response without affecting their viability, proliferation, mitochondrial metabolism and expression of functional markers. In contrast, treatment with tacrolimus or mycophenolate led to reduced expression of functional molecule GITR in CB-Tregs, impaired their viability, proliferation and mitochondrial metabolism. These findings indicate that belatacept could be considered as a candidate in Tregs-based clinical immunomodulation regimens to induce transplant tolerance.
Collapse
Affiliation(s)
- Xing He
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Sang Li
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shounan Yi
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China.,Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
21
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
22
|
Robinson S, Thomas R. Potential for Antigen-Specific Tolerizing Immunotherapy in Systematic Lupus Erythematosus. Front Immunol 2021; 12:654701. [PMID: 34335564 PMCID: PMC8322693 DOI: 10.3389/fimmu.2021.654701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic complex systemic autoimmune disease characterized by multiple autoantibodies and clinical manifestations, with the potential to affect nearly every organ. SLE treatments, including corticosteroids and immunosuppressive drugs, have greatly increased survival rates, but there is no curative therapy and SLE management is limited by drug complications and toxicities. There is an obvious clinical need for safe, effective SLE treatments. A promising treatment avenue is to restore immunological tolerance to reduce inflammatory clinical manifestations of SLE. Indeed, recent clinical trials of low-dose IL-2 supplementation in SLE patients showed that in vivo expansion of regulatory T cells (Treg cells) is associated with dramatic but transient improvement in SLE disease markers and clinical manifestations. However, the Treg cells that expanded were short-lived and unstable. Alternatively, antigen-specific tolerance (ASIT) approaches that establish long-lived immunological tolerance could be deployed in the context of SLE. In this review, we discuss the potential benefits and challenges of nanoparticle ASIT approaches to induce prolonged immunological tolerance in SLE.
Collapse
Affiliation(s)
- Sean Robinson
- School of Medicine, Faculty of Medicine and Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
23
|
Baeten P, Van Zeebroeck L, Kleinewietfeld M, Hellings N, Broux B. Improving the Efficacy of Regulatory T Cell Therapy. Clin Rev Allergy Immunol 2021; 62:363-381. [PMID: 34224053 PMCID: PMC8256646 DOI: 10.1007/s12016-021-08866-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Autoimmunity is caused by an unbalanced immune system, giving rise to a variety of organ-specific to system disorders. Patients with autoimmune diseases are commonly treated with broad-acting immunomodulatory drugs, with the risk of severe side effects. Regulatory T cells (Tregs) have the inherent capacity to induce peripheral tolerance as well as tissue regeneration and are therefore a prime candidate to use as cell therapy in patients with autoimmune disorders. (Pre)clinical studies using Treg therapy have already established safety and feasibility, and some show clinical benefits. However, Tregs are known to be functionally impaired in autoimmune diseases. Therefore, ex vivo manipulation to boost and stably maintain their suppressive function is necessary when considering autologous transplantation. Similar to autoimmunity, severe coronavirus disease 2019 (COVID-19) is characterized by an exaggerated immune reaction and altered Treg responses. In light of this, Treg-based therapies are currently under investigation to treat severe COVID-19. This review provides a detailed overview of the current progress and clinical challenges of Treg therapy for autoimmune and hyperinflammatory diseases, with a focus on recent successes of ex vivo Treg manipulation.
Collapse
Affiliation(s)
- Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Lauren Van Zeebroeck
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium. .,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Romano M, Sen M, Scottà C, Alhabbab RY, Rico-Armada A, Lechler RI, Burch M, Lombardi G. Isolation and expansion of thymus-derived regulatory T cells for use in pediatric heart transplant patients. Eur J Immunol 2021; 51:2086-2092. [PMID: 33949684 DOI: 10.1002/eji.202048949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
Regulatory T-cells (Tregs) are a subset of T cells generated in the thymus with intrinsic immunosuppressive properties. Phase I clinical trials have shown safety and feasibility of Treg infusion to promote immune tolerance and new studies are ongoing to evaluate their efficacy. During heart transplantation, thymic tissue is routinely discarded providing an attractive source of Tregs. In this study, we developed a GMP-compatible protocol for expanding sorted thymus-derived CD3+ CD4+ CD25+ CD127- (Tregs) as well as CD3+ CD4+ CD25+ CD127- CD45RA+ (RA+ Tregs) cells. We aimed to understand whether thymic RA+ Tregs can be isolated and expanded offering an advantage in terms of stability as it has been previously shown for circulating adult CD45RA+ Tregs. We show that both Tregs and RA+ Tregs could be expanded in large numbers and the presence of rapamycin is essential to inhibit the growth of IFN-γ producing cells. High levels of FOXP3, CTLA4, and CD25 expression, demethylation of the FOXP3 promoter, and high suppressive ability were found with no differences between Tregs and RA+ Tregs. After freezing and thawing, all Treg preparations maintained their suppressive ability, stability, as well as CD25 and FOXP3 expression. The number of thymic Tregs that could be isolated with our protocol, their fold expansion, and functional characteristics allow the clinical application of this cell population to promote tolerance in pediatric heart transplant patients.
Collapse
Affiliation(s)
- Marco Romano
- MRC Centre for Transplantation, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Monica Sen
- MRC Centre for Transplantation, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Cristiano Scottà
- MRC Centre for Transplantation, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Rowa Y Alhabbab
- Applied Medical Sciences Department, Division of Immunology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andres Rico-Armada
- Department of Paediatric Cardiology and Transplant Cardiology, Great Ormond Street Hospital, London, UK
| | - Robert I Lechler
- MRC Centre for Transplantation, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Michael Burch
- Department of Paediatric Cardiology and Transplant Cardiology, Great Ormond Street Hospital, London, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
25
|
Zeng Q, Yuan X, Cao J, Zhao X, Wang Y, Liu B, Liu W, Zhu Z, Dou J. Mycophenolate mofetil enhances the effects of tacrolimus on the inhibitory function of regulatory T cells in patients after liver transplantation via PD-1 and TIGIT receptors. Immunopharmacol Immunotoxicol 2021; 43:239-246. [PMID: 33657960 DOI: 10.1080/08923973.2021.1891247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Regulatory T cells (Tregs) induce immune tolerance in patients after organ transplantation. Various immunosuppressors can affect Tregs function through different mechanisms. PD-1 and TIGIT are important receptors on Tregs surface. Here, we investigated the effects of Tacrolimus and mycophenolate mofetil (MMF) on the inhibitory function of Tregs and explored the regulatory mechanism in patients after liver transplantation. METHODS Thirty patients that underwent a liver transplant and 15 healthy people were enrolled. Fifteen patients received Tacrolimus only, and 15 received a combination of Tacrolimus and MMF. Tregs and effector T cells (Teffs) were isolated using magnetic beads and were mixed at different ratios of 0:1, 1:4, 1:2 and 1:1. An inhibition assay was performed by adding anti-PD-1 and anti-TIGIT when the mixture ratio was 1:1. The Tregs inhibition rate was determined and the levels of IFN-γ and TNF-α were measured. RESULTS As the ratios of Tregs to Teffs in the mixture increased, the Tregs inhibition rate increased and the levels of IFN-γ and TNF-α decreased. At each mixture ratio, Tacrolimus + MMF group had the highest Tregs inhibition rate compared to Tacrolimus and control group. At the specific mixture ratio of 1:1, the addition of both anti- PD-1 and anti-TIGIT led to lower Tregs inhibition rate and higher IFN-γ and TNF-α levels in all three groups as opposed to the addition of each antibody separately. Additionally, both the decrease in the Tregs inhibition rate and the increase in the IFN-γ and TNF-α levels were the most for Tacrolimus + MMF group among all cases, either adding antibodies alone or mixed. CONCLUSION Tacrolimus and MMF enhanced the function of Tregs by synergistically affecting PD-1 and TIGIT in liver transplant patients.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoye Yuan
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baowang Liu
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhijun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Jian Dou
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
Janikashvili N, Gérard C, Thébault M, Brazdova A, Boibessot C, Cladière C, Ciudad M, Greigert H, Ouandji S, Ghesquière T, Samson M, Audia S, Saas P, Bonnotte B. Efficiency of human monocyte-derived suppressor cell-based treatment in graft-versus-host disease prevention while preserving graft-versus-leukemia effect. Oncoimmunology 2021; 10:1880046. [PMID: 33659098 PMCID: PMC7899641 DOI: 10.1080/2162402x.2021.1880046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Immunosuppressive cell-based therapy is a recent strategy for controlling Graft-versus-Host Disease (GvHD). Such cells ought to maintain their suppressive function in inflammatory conditions and in the presence of immunosuppressive agents currently used in allogeneic hematopoietic cell transplantation (allo-HCT). Moreover, these therapies should not diminish the benefits of allo-HCT, the Graft-versus-Leukemia (GvL) effect. We have previously reported on a novel subset of human monocyte-derived suppressor cells (HuMoSC) as a prospective approach for controlling GvHD.Objective The objective of this study was to explore the therapeutic relevance of the HuMoSC in clinical conditions. Methods Immune regulatory functions of HuMoSC were assessed in inflammatory conditions and in the presence of immunosuppressants. The therapeutic efficiency of the association of HuMoSC with immunosuppressants was evaluated in an experimental model of GvHD induced by human PBMC in NOD/SCID/IL2-Rγc−/− (NSG) mice. Interestingly, the inhibitory functions of HuMoSC against T lymphocytes and their ability to polarize Treg are preserved, in vitro, in inflammatory environments and are not affected by immunosuppressive agents. In vivo, the association of HuMoSC-based treatment with an immunosuppressive drug showed a synergistic effect for controlling GvHD. Furthermore, HuMoSC control GvHD while preserving GvL effect in a xeno-GvHD conditioned mouse model with cell neoplasm (CAL-1). HuMoSC are generated according to good manufacturing practices (GMP) and we demonstrated that these cells tolerate long-term preservation with unaltered phenotype and function.Conclusion HuMoSC-based therapy represents a promising approach for controlling GvHD and could be quickly implemented in clinical practice.
Collapse
Affiliation(s)
- Nona Janikashvili
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Immunology, Faculty of Medicine, Tbilisi State Medical University (TSMU), Tbilisi, Georgia
| | - Claire Gérard
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Marine Thébault
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Andrea Brazdova
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Clovis Boibessot
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Claudie Cladière
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Marion Ciudad
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Hélène Greigert
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Séthi Ouandji
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Thibault Ghesquière
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Maxime Samson
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Sylvain Audia
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Philippe Saas
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Besançon, France
| | - Bernard Bonnotte
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| |
Collapse
|
27
|
Tregs and GvHD prevention by extracorporeal photopheresis: observations from a clinical trial. Exp Hematol Oncol 2021; 10:14. [PMID: 33593442 PMCID: PMC7887801 DOI: 10.1186/s40164-021-00210-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to evaluate the circulating T regulatory cells (Tregs) in patients undergoing extracorporeal photopheresis (ECP) for the prevention of chronic graft-versus-host disease (GvHD) and to search for any correlation between Tregs counts and chronic GvHD occurrence. Among n = 12 patients with complete longitudinal data, the median cumulative values of absolute peripheral Tregs counts were 21.64 and 63.49 cells/µL for patients who developed chronic GvHD and those who did not develop it, respectively (p = 0.05). The analysis of the median absolute counts of peripheral HLA-DR + Tregs provided similar results, showing that 20% (1 out of 5) and 100% (7 out of 7) of patients with HLA-DR + Tregs values of > 5 cells/µL were in the GvHD and non-GvHD groups, respectively (p = 0.01). In conclusion, the present results support the involvement of Tregs in the prevention of chronic GvHD in patients receiving ECP and suggest Tregs count as a potential biomarker of ECP effectiveness. Future strategies are needed to enhance Tregs expansion and/or activity in conjunction with ECP for an effective chronic GvHD prevention.
Collapse
|
28
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
29
|
Liu Y, Ma Y, Peng X, Wang L, Li H, Cheng W, Zheng X. Cetuximab-conjugated perfluorohexane/gold nanoparticles for low intensity focused ultrasound diagnosis ablation of thyroid cancer treatment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 21:856-866. [PMID: 33551680 PMCID: PMC7850351 DOI: 10.1080/14686996.2020.1855064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report the formulation of nanoassemblies (NAs) comprising C225 conjugates Au-PFH-NAs (C-Au-PFH-NAs) for low-intensity focused ultrasound diagnosis ablation of thyroid cancer. C-Au-PFH-NAs showed excellent stability in water, phosphate-buffered saline (PBS), and 20% rat serum. Transmission electron microscopy (TEM) images also revealed the effective construction of C-Au-PFH-NAs as common spherical assemblies. The incubation of C625 thyroid carcinoma with C-Au-PFH-NAs triggers apoptosis, as confirmed by flow cytometry analysis. The C-Au-PFH-NAs exhibited antitumour efficacy in human thyroid carcinoma xenografts, where histopathological results further confirmed these outcomes. Furthermore, we were able to use low-intensity focused ultrasound diagnosis imaging (LIFUS) to examine the efficiency of C-Au-PFH-NAs in thyroid carcinoma in vivo. These findings clearly show that the use of LIFUS agents with high-performance imaging in different therapeutic settings will have extensive potential for future biomedical applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Yue Ma
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Xiaoshan Peng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Lingling Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Haixia Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Xiulan Zheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
- CONTACT Xiulan Zheng No.150, Haping Road, Harbin150081, P.R. China
| |
Collapse
|
30
|
Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, Miyara M, Scottà C. Treg cell therapy: How cell heterogeneity can make the difference. Eur J Immunol 2020; 51:39-55. [PMID: 33275279 DOI: 10.1002/eji.201948131] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
CD4+ CD25high CD127low/- FOXP3+ T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation. However, a large part of them utilizes total Treg cells without distinction of their biological variability. Many studies on the heterogeneity of Treg cell population revealed distinct subsets with different functions in the control of the immune response and induction of peripheral tolerance. Some of these subsets also showed a role in controlling the general homeostasis of non-lymphoid tissues. All these Treg cell subsets and their peculiar properties can be therefore exploited to develop novel therapeutic approaches. This review describes these functionally distinct subsets, their phenotype, homing properties and functions in lymphoid and non-lymphoid tissues. In addition, we also discuss the limitations in using Treg cells as a cellular therapy and the strategies to enhance their efficacy.
Collapse
Affiliation(s)
- Giulio Giganti
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Muhammad Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Yasmin Mohseni
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Daniela Mastronicola
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Nathali Grageda
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Giovanni Am Povoleri
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Cristiano Scottà
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| |
Collapse
|
31
|
Martin A, Daris M, Johnston JA, Cui J. HLA-A*02:01-directed chimeric antigen receptor/forkhead box P3-engineered CD4+ T cells adopt a regulatory phenotype and suppress established graft-versus-host disease. Cytotherapy 2020; 23:131-136. [PMID: 33309258 DOI: 10.1016/j.jcyt.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS To investigate the feasibility of using CD4 + T cells genetically modified to express an allo-HLA directed CAR and FOXP3 to suppress T cell proliferation and cytokine secretion in GvHD. METHODS Human CD4+ T cells from A*02:01 negative donors were transduced to express A*02 CAR and FOXP3 and co-cultured in mixed lymphocyte reaction assays to demonstrate T cell suppression. A*02- CAR/FOXP CD4+ T cells were then injected into mice engrafted with allogeneic T cells in a GvHD mouse model. RESULTS CD4+ T cells genetically modified to express allo-HLA-directed CAR and FOXP3 proliferate rapidly, downregulate CD127 and interferon-γ, express high CD25 and Helios and convert to a stable antigen-dependent suppressive phenotype. In mixed lymphocyte reaction assays, these cells potently suppressed T-cell proliferation and secreted IL-10. In a graft-versus-host disease model, A*02-CAR/FOXP3 CD4+ T cells outperformed polyclonal Tregs by reducing liver and lung inflammation, inhibiting pro-inflammatory cytokine production and limiting grafted CD3+ T-cell expansion. CONCLUSIONS CD4 + T cells expressing allo-antigen directed HLA-specific CAR and FOXP3 act as potent, specific and stable suppressors of inflammation that out-perform their Treg counterparts both in vitro and in vivo.
Collapse
Affiliation(s)
- Aaron Martin
- A2 Biotherapeutics Inc., Agoura Hills, California, USA
| | - Mark Daris
- A2 Biotherapeutics Inc., Agoura Hills, California, USA
| | | | - Jiajia Cui
- A2 Biotherapeutics Inc., Agoura Hills, California, USA
| |
Collapse
|
32
|
Morante-Palacios O, Fondelli F, Ballestar E, Martínez-Cáceres EM. Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends Immunol 2020; 42:59-75. [PMID: 33293219 DOI: 10.1016/j.it.2020.11.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs), the most efficient antigen-presenting cells, are necessary for the effective activation of naïve T cells. DCs can also acquire tolerogenic functions in vivo and in vitro in response to various stimuli, including interleukin (IL)-10, transforming growth factor (TGF)-β, vitamin D3, corticosteroids, and rapamycin. In this review, we provide a wide perspective on the regulatory mechanisms, including crosstalk with other cell types, downstream signaling pathways, transcription factors, and epigenetics, underlying the acquisition of tolerogenesis by DCs, with a special focus on human studies. Finally, we present clinical assays targeting, or based on, tolerogenic DCs in inflammatory diseases. Our discussion provides a useful resource for better understanding the biology of tolerogenic DCs and their manipulation to improve the immunological fitness of patients with certain inflammatory conditions.
Collapse
Affiliation(s)
- Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain
| | - Federico Fondelli
- Division of Immunology, Germans Trias i Pujol Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain; Department of Cell Biology, Physiology, Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain.
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain; Department of Cell Biology, Physiology, Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
33
|
Eggenhuizen PJ, Ng BH, Ooi JD. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int J Mol Sci 2020; 21:E7015. [PMID: 32977677 PMCID: PMC7582931 DOI: 10.3390/ijms21197015] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are a small yet critical subset of CD4+ T cells, which have the role of maintaining immune homeostasis by, for example, regulating self-tolerance, tumor immunity, anti-microbial resistance, allergy and transplantation rejection. The suppressive mechanisms by which Tregs function are varied and pleiotropic. The ability of Tregs to maintain self-tolerance means they are critical for the control and prevention of autoimmune diseases. Irregularities in Treg function and number can result in loss of tolerance and autoimmune disease. Restoring immune homeostasis and tolerance through the promotion, activation or delivery of Tregs has emerged as a focus for therapies aimed at curing or controlling autoimmune diseases. Such therapies have focused on the Treg cell subset by using drugs to suppress T effector cells and promote Tregs. Other approaches have trialed inducing tolerance by administering the autoantigen via direct administration, by transient expression using a DNA vector, or by antigen-specific nanoparticles. More recently, cell-based therapies have been developed as an approach to directly or indirectly enhance Treg cell specificity, function and number. This can be achieved indirectly by transfer of tolerogenic dendritic cells, which have the potential to expand antigen-specific Treg cells. Treg cells can be directly administered to treat autoimmune disease by way of polyclonal Tregs or Tregs transduced with a receptor with high affinity for the target autoantigen, such as a high affinity T cell receptor (TCR) or a chimeric antigen receptor (CAR). This review will discuss the strategies being developed to redirect autoimmune responses to a state of immune tolerance, with the aim of the prevention or amelioration of autoimmune disease.
Collapse
Affiliation(s)
| | | | - Joshua D. Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia; (P.J.E.); (B.H.N.)
| |
Collapse
|
34
|
Ulbar F, Villanova I, Giancola R, Baldoni S, Guardalupi F, Fabi B, Olioso P, Capone A, Sola R, Ciardelli S, Del Papa B, Brattelli A, Ricciardi I, Taricani S, Sabbatinelli G, Iuliani O, Passeri C, Sportoletti P, Santarone S, Pierini A, Calabrese G, Falzetti F, Bonfini T, Accorsi P, Ruggeri L, Martelli MF, Velardi A, Di Ianni M. Clinical-Grade Expanded Regulatory T Cells Are Enriched with Highly Suppressive Cells Producing IL-10, Granzyme B, and IL-35. Biol Blood Marrow Transplant 2020; 26:2204-2210. [PMID: 32961369 DOI: 10.1016/j.bbmt.2020.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
In the setting of T cell-depleted, full-haplotype mismatched transplantation, adoptive immunotherapy with regulatory T cells (Tregs) and conventional T cells (Tcons) can prevent graft-versus-host disease (GVHD) and improve post-transplantation immunologic reconstitution and is associated with a powerful graft-versus-leukemia effect. To improve the purity and the quantity of the infused Tregs, good manufacturing practices (GMP)-compatible expansion protocols are needed. Here we expanded Tregs using an automated, clinical-grade protocol. Cells were extensively characterized in vitro, and their efficiency was tested in vivo in a mouse model. Tregs were selected by CliniMacs (CD4+CD25+, 94.5 ± 6.3%; FoxP3+, 63.7 ± 11.5%; CD127+, 20 ± 3%; suppressive activity, 60 ± 7%), and an aliquot of 100 × 106 was expanded for 14 days using the CliniMACS Prodigy System, obtaining 684 ± 279 × 106 cells (CD4+CD25+, 99.6 ± 0.2%; FoxP3+, 82 ± 8%; CD127+, 1.1 ± 0.8%; suppressive activity, 75 ± 12%). CD39 and CTLA4 expression levels increased from 22.4 ± 12% to 58.1 ± 13.3% (P < .05) and from 20.4 ± 6.7% to 85.4 ± 9.8% (P < .01), respectively. TIM3 levels increased from .4 ± .05% to 29 ± 16% (P < .05). Memory Tregs were the prevalent population, whereas naive Tregs almost disappeared at the end of the culture. mRNA analysis displayed significant increases in CD39, IL-10, granzyme B, and IL-35 levels at the end of culture period (P < .05). Conversely, IFNγ expression decreased significantly by day +14. Expanded Tregs were sorted according to TIM3, CD39, and CD62L expression levels (purity >95%). When sorted populations were analyzed, TIM3+ cells showed significant increases in IL-10 and granzyme B (P < .01) .When expanded Tregs were infused in an NSG murine model, mice that received Tcons only died of GVHD, whereas mice that received both Tcons and Tregs survived without GVHD. GMP grade expanded cells that display phenotypic and functional Treg characteristics can be obtained using a fully automated system. Treg suppression is mediated by multiple overlapping mechanisms (eg, CTLA-4, CD39, IL-10, IL-35, TGF-β, granzyme B). TIM3+ cells emerge as a potentially highly suppressive population. © 2020 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Francesca Ulbar
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Ida Villanova
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | | | - Stefano Baldoni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Bianca Fabi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Paola Olioso
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Anita Capone
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Rosaria Sola
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Sara Ciardelli
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | | | - Ilda Ricciardi
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Stefano Taricani
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Giulia Sabbatinelli
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Ornella Iuliani
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Cecilia Passeri
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Paolo Sportoletti
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Stella Santarone
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Antonio Pierini
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Giuseppe Calabrese
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Franca Falzetti
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Tiziana Bonfini
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Patrizia Accorsi
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Loredana Ruggeri
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Massimo Fabrizio Martelli
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy; Department of Oncology Hematology, Pescara Hospital, Pescara, Italy.
| |
Collapse
|
35
|
Identification, selection, and expansion of non-gene modified alloantigen-reactive Tregs for clinical therapeutic use. Cell Immunol 2020; 357:104214. [PMID: 32977154 PMCID: PMC8482792 DOI: 10.1016/j.cellimm.2020.104214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/29/2022]
Abstract
Transplantation is limited by the need for life-long pharmacological immunosuppression, which carries significant morbidity and mortality. Regulatory T cell (Treg) therapy holds significant promise as a strategy to facilitate immunosuppression minimization. Polyclonal Treg therapy has been assessed in a number of Phase I/II clinical trials in both solid organ and hematopoietic transplantation. Attention is now shifting towards the production of alloantigen-reactive Tregs (arTregs) through co-culture with donor antigen. These allospecific cells harbour potent suppressive function and yet their specificity implies a theoretical reduction in off-target effects. This review will cover the progress in the development of arTregs including their potential application for clinical use in transplantation, the knowledge gained so far from clinical trials of Tregs in transplant patients, and future directions for Treg therapy.
Collapse
|
36
|
Roberts MB, Fishman JA. Immunosuppressive Agents and Infectious Risk in Transplantation: Managing the "Net State of Immunosuppression". Clin Infect Dis 2020; 73:e1302-e1317. [PMID: 32803228 DOI: 10.1093/cid/ciaa1189] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Successful solid organ transplantation reflects meticulous attention to the details of immunosuppression, balancing risks for graft rejection against risks for infection. The 'net state of immune suppression' is a conceptual framework of all factors contributing to infectious risk. Assays which measure immune function in the immunosuppressed transplant recipient relative to infectious risk and allograft function are lacking. The best measures of integrated immune function may be quantitative viral loads to assess the individual's ability to control latent viral infections. Few studies address adjustment of immunosuppression during active infections. Thus, confronted with infection in solid organ recipients, the management of immunosuppression is based largely on clinical experience. This review examines known measures of immune function and the immunologic effects of common immunosuppressive drugs and available studies reporting modification of drug regimens for specific infections. These data provide a conceptual framework for the management of immunosuppression during infection in organ recipients.
Collapse
Affiliation(s)
- Matthew B Roberts
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Churov AV, Mamashov KY, Novitskaia AV. Homeostasis and the functional roles of CD4 + Treg cells in aging. Immunol Lett 2020; 226:83-89. [PMID: 32717201 DOI: 10.1016/j.imlet.2020.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE An upward trend in life expectancy has been observed in a majority of developed countries and leading to increasing in aging-related diseases. Aging is a risk factor for the development of widespread clinical conditions such as cardiovascular and autoimmune diseases, cancer, infections. Although studies have been very active, the problem of aging still remains one of the most obscure aspects of human biology. Regulatory T (Treg) cells with immunosuppressive properties have a pivotal role in the maintenance of immune homeostasis. Alterations in Treg cell functionality appear to be of great importance in the development of immune senescence and contribute to increased susceptibility to immune-mediated diseases with age. DESIGN This review highlights recent findings regarding the age-related changes in the numbers and functional activity of human Tregs. Some of the mechanisms that maintain the balance of Tregs during human aging are discussed. The possible roles of Tregs in the pathogenesis of diseases associated with advanced age are also considered. RESULTS Age-related systemic changes, such as thymic involution, hormonal status, and epigenetic modifications, may affect the state of the Treg population and trigger various diseases. These changes involve decline or amplification in the functional activity of Tregs, an increase in the memory Treg subset and shifting of a Th17/Treg balance. CONCLUSION Taken together, the reviewed data suggest equal or even increased Treg functionality with age. Thus, age-mediated Treg expansion and higher Treg activity may contribute to elevated immune suppression and increased risk of infections and cancer.
Collapse
Affiliation(s)
- Alexey V Churov
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia.
| | | | - Anastasiia V Novitskaia
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
38
|
Xu H, Steinberger Z, Wang L, Han R, Zhang Y, Hancock WW, Levin LS. Limited efficacy of rapamycin monotherapy in vascularized composite allotransplantation. Transpl Immunol 2020; 61:101308. [PMID: 32535143 DOI: 10.1016/j.trim.2020.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is a novel and life-enhancing procedure to restore a patient's function and/or appearance. Current immunosuppression in VCA recipients is based on calcineurin inhibitor (CNI) therapy that can lead to severe complications, such that inducing immune tolerance is a major goal of VCA research. In contrast to CNI, rapamycin (RPM) is thought to be beneficial to the development of immune tolerance by suppressing T-effector cells (Teffs) and expanding T-regulatory (Treg) cells. However, we found high dose RPM monotherapy prolonged VCA survival by only a few days, leading us to explore the mechanisms responsible. METHODS A mouse orthotopic forelimb transplantation model (BALB/c- > C57BL/6) was established using WT mice, as well as C57BL/6 recipients with conditional deletion of T-bet within their Treg cells. Events in untreated VCA recipients or those receiving RPM or FK506 therapy were analyzed by flow-cytometry, histopathology and real-time qPCR. RESULTS Therapy with RPM (2 mg/kg/d, p < .005) or FK506 (2 mg/kg/d, p < .005) each prolonged VCA survival. In contrast to FK506, RPM increased the ratio of splenic Treg to Teff cells (p < .05) by suppressing Teff and expanding Treg cells. While the proportion of activated splenic CD4 + Foxp3- T cells expressing IFN-γ were similar in control and RPM-treated groups, RPM decreased the proportions ICOS+ and CD8+ IFN-γ + splenic T cells. However, RPM also downregulated CXCR3+ expression by Tregs, and forelimb allografts had reduced infiltration by CXCR3+ Treg cells. In addition, allograft recipients whose Tregs lacked T-bet underwent accelerated rejection compared to WT mice despite RPM therapy. CONCLUSIONS We demonstrate that while RPM increased the ratio of Treg to Teff cells and suppressed CD8+ T cell allo-activation, it failed to prevent CD4 Teff cell activation and impaired CXCR3-dependent Treg graft homing, thereby limiting the efficacy of RPM in VCA recipients.
Collapse
Affiliation(s)
- Heng Xu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Zvi Steinberger
- Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rongxiang Han
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - L Scott Levin
- Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America; Department of Surgery, Division of Plastic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
39
|
El-Ayachi I, Washburn WK, Schenk AD. Recent Progress in Treg Biology and Transplant Therapeutics. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00278-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Purpose of Review
Regulatory T cell (Treg) biology continues to evolve at a rapid pace. The role of Tregs in solid organ transplantation offers a unique window into Treg ontogeny and function as well as limitless possibilities for clinical application. Here we review recent significant discoveries and key translational work.
Recent Findings
Advances in transplantation deepen understanding of Treg differentiation, expansion, transcription, co-stimulation, and signaling. T cell receptor (TCR) sequencing and single-cell analytics allow unprecedented insight into Treg repertoire diversity and phenotypic heterogeneity. Efforts to replace conventional immunosuppression with Treg adoptive immunotherapy are underway and coalescing around strategies to increase efficiency through development of donor-reactive Tregs.
Summary
Adoptive immunotherapy with Tregs is a leading tolerogenic strategy. Early clinical trials suggest that Treg infusion is safe and reports on efficacy will soon follow.
Collapse
|
40
|
Whangbo JS, Antin JH, Koreth J. The role of regulatory T cells in graft-versus-host disease management. Expert Rev Hematol 2020; 13:141-154. [PMID: 31874061 DOI: 10.1080/17474086.2020.1709436] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Despite improvements in human leukocyte antigen (HLA) matching algorithms and supportive care, graft-versus-host disease (GVHD) remains the leading cause of non-relapse morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HSCT). Acute GVHD, typically occurring in the first 100 days post-HSCT, is mediated by mature effector T cells from the donor (graft) that become activated after encountering alloantigens in the recipient (host). Chronic GVHD, characterized by aberrant immune responses to both autoantigens and alloantigens, occurs later and arises from a failure to develop tolerance after HSCT. CD4+ CD25+ CD127- FOXP3+ regulatory T cells (Tregs) function to suppress auto- and alloreactive immune responses and are key mediators of immune tolerance.Areas covered: In this review, authors discuss the biologic and therapeutic roles of Tregs in acute and chronic GVHD, including in vivo and ex vivo strategies for Treg expansion and adoptive Treg cellular therapy.Expert opinion: Although they comprise only a small subset of circulating CD4 + T cells, Tregs play an important role in establishing and maintaining immune tolerance following allogeneic HSCT. The development of GVHD has been associated with reduced Treg frequency or numbers. Consequently, the immunosuppressive properties of Tregs are being harnessed in clinical trials for GVHD prevention and treatment.
Collapse
Affiliation(s)
- Jennifer S Whangbo
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Joseph H Antin
- Harvard Medical School, Boston, MA, USA.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John Koreth
- Harvard Medical School, Boston, MA, USA.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
41
|
Highton PJ, White AEM, Nixon DGD, Wilkinson TJ, Neale J, Martin N, Bishop NC, Smith AC. Influence of acute moderate- to high-intensity aerobic exercise on markers of immune function and microparticles in renal transplant recipients. Am J Physiol Renal Physiol 2020; 318:F76-F85. [DOI: 10.1152/ajprenal.00332.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renal transplant recipients (RTRs) and patients with nondialysis chronic kidney disease display elevated circulating microparticle (MP) counts, while RTRs display immunosuppression-induced infection susceptibility. The impact of aerobic exercise on circulating immune cells and MPs is unknown in RTRs. Fifteen RTRs [age: 52.8 ± 14.5 yr, estimated glomerular filtration rate (eGFR): 51.7 ± 19.8 mL·min−1·1.73 m−2 (mean ± SD)] and 16 patients with nondialysis chronic kidney disease (age: 54.8 ± 16.3 yr, eGFR: 61.9 ± 21.0 mL·min−1·1.73 m−2, acting as a uremic control group), and 16 healthy control participants (age: 52.2 ± 16.2 yr, eGFR: 85.6 ± 6.1 mL·min−1·1.73 m−2) completed 20 min of walking at 60–70% peak O2 consumption. Venous blood samples were taken preexercise, postexercise, and 1 h postexercise. Leukocytes and MPs were assessed using flow cytometry. Exercise increased classical ( P = 0.001) and nonclassical ( P = 0.002) monocyte subset proportions but decreased the intermediate subset ( P < 0.001) in all groups. Exercise also decreased the percentage of platelet-derived MPs that expressed tissue factor in all groups ( P = 0.01), although no other exercise-dependent effects were observed. The exercise-induced reduction in intermediate monocyte percentage suggests an anti-inflammatory effect, although this requires further investigation. The reduction in the percentage of tissue factor-positive platelet-derived MPs suggests reduced prothrombotic potential, although further functional assays are required. Exercise did not cause aberrant immune cell activation, suggesting its safety from an immunological standpoint (ISRCTN38935454).
Collapse
Affiliation(s)
- Patrick J. Highton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Alice E. M. White
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Daniel G. D. Nixon
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Thomas J. Wilkinson
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jill Neale
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Naomi Martin
- Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Nicolette C. Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Alice C. Smith
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
42
|
Churov A, Siutkina A, Mamashov K, Oleinik E. The potential of CD4+ regulatory T cells for the therapy of autoimmune diseases. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the considerable progress in the therapy of autoimmune pathologies, the existing methods are associated with the risk of serious adverse events. We think that regulatory T cells hold great promise for the therapy of disorders caused by a breakdown in immunological self-tolerance. This article aims at estimating the possible challenges facing Treg-based clinical approaches and offers solutions to the technical issues associated with the use of these cells in the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- A.V. Churov
- Institute of Biology, Karelian Research Center of RAS, Petrozavodsk, Republic of Karelia
| | | | | | - E.K. Oleinik
- Institute of Biology, Karelian Research Center of RAS, Petrozavodsk, Republic of Karelia
| |
Collapse
|
43
|
Horwitz DA, Fahmy TM, Piccirillo CA, La Cava A. Rebalancing Immune Homeostasis to Treat Autoimmune Diseases. Trends Immunol 2019; 40:888-908. [PMID: 31601519 DOI: 10.1016/j.it.2019.08.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
During homeostasis, interactions between tolerogenic dendritic cells (DCs), self-reactive T cells, and T regulatory cells (Tregs) contribute to maintaining mammalian immune tolerance. In response to infection, immunogenic DCs promote the generation of proinflammatory effector T cell subsets. When complex homeostatic mechanisms maintaining the balance between regulatory and effector functions become impaired, autoimmune diseases can develop. We discuss some of the newest advances on the mechanisms of physiopathologic homeostasis that can be employed to develop strategies to restore a dysregulated immune equilibrium. Some of these designs are based on selectively activating regulators of immunity and inflammation instead of broadly suppressing these processes. Promising approaches include the use of nanoparticles (NPs) to restore Treg control over self-reactive cells, aiming to achieve long-term disease remission, and potentially to prevent autoimmunity in susceptible individuals.
Collapse
Affiliation(s)
- David A Horwitz
- General Nanotherapeutics, LLC, Santa Monica, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Tarek M Fahmy
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Antonio La Cava
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
44
|
Mukhin VE, Polyakova YV, Kaabak MM, Babenko NN, Bryzgalina EV, V'yunkova YN. [Control and prevention of kidney transplant rejection: the role and possibilities for the clinical use of regulatory T-cells in transplantation]. Khirurgiia (Mosk) 2019:80-85. [PMID: 31532171 DOI: 10.17116/hirurgia201909180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article discusses the need to implement effective methods for monitoring immune status and rehabilitation of patients after kidney transplantation. Induction of immunological tolerance which allows minimizing or even completely canceling supportive immunosuppressive therapy is one of the key tasks in the field of organ transplantation. Regulatory T-cells (TREGs) play an important role in maintaining immunological homeostasis, including limiting kidney transplant rejection, and potentially contribute to the development of immunological tolerance. At the same time, for the introduction of TREG therapy into clinical practice, it is necessary to overcome a number of unsolved problems, such as induction and cultivation of a sufficient number of TREG cells for therapeutic action as well as reducing the risks associated with TREG conversion to effector lymphocytes or an undesirable non-specific immunosuppressive effect. This review examines both the impact of common post-transplant pharmacological immunosuppression approaches on TREGs and the therapeutic potential of TREG cell cultures in prevention of kidney transplant rejection. The questions of ex vivo TREG manufacturing process and possible threats of applying cell technologies in this branch of transplantology were considered.
Collapse
Affiliation(s)
- V E Mukhin
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - Yu V Polyakova
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - M M Kaabak
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - N N Babenko
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - E V Bryzgalina
- Moscow State University im. M.V. Lomonosov, Moscow, Russia
| | - Yu N V'yunkova
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| |
Collapse
|
45
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
46
|
Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, Present, and Future of Regulatory T Cell Therapy in Transplantation and Autoimmunity. Front Immunol 2019; 10:43. [PMID: 30804926 PMCID: PMC6371029 DOI: 10.3389/fimmu.2019.00043] [Citation(s) in RCA: 377] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs) are important for the induction and maintenance of peripheral tolerance therefore, they are key in preventing excessive immune responses and autoimmunity. In the last decades, several reports have been focussed on understanding the biology of Tregs and their mechanisms of action. Preclinical studies have demonstrated the ability of Tregs to delay/prevent graft rejection and to control autoimmune responses following adoptive transfer in vivo. Due to these promising results, Tregs have been extensively studied as a potential new tool for the prevention of graft rejection and/or the treatment of autoimmune diseases. Currently, solid organ transplantation remains the treatment of choice for end-stage organ failure. However, chronic rejection and the ensuing side effects of immunosuppressants represent the main limiting factors for organ acceptance and patient survival. Autoimmune disorders are chronic diseases caused by the breakdown of tolerance against self-antigens. This is triggered either by a numerical or functional Treg defect, or by the resistance of effector T cells to suppression. In this scenario, patients receiving high doses of immunosuppressant are left susceptible to life-threatening opportunistic infections and have increased risk of malignancies. In the last 10 years, a few phase I clinical trials aiming to investigate safety and feasibility of Treg-based therapy have been completed and published, whilst an increasing numbers of trials are still ongoing. The first results showed safety and feasibility of Treg therapy and phase II clinical trials are already enrolling. In this review, we describe our understanding of Tregs focussing primarily on their ontogenesis, mechanisms of action and methods used in the clinic for isolation and expansion. Furthermore, we will describe the ongoing studies and the results from the first clinical trials with Tregs in the setting of solid organ transplantation and autoimmune disorders. Finally, we will discuss strategies to further improve the success of Treg therapy.
Collapse
Affiliation(s)
- Marco Romano
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giorgia Fanelli
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Caraugh Jane Albany
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giulio Giganti
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Scuola di Specializzazione in Medicina Interna, Universita' degli Studi di Milano, Milan, Italy
| | - Giovanna Lombardi
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
47
|
Landwehr-Kenzel S, Zobel A, Hoffmann H, Landwehr N, Schmueck-Henneresse M, Schachtner T, Roemhild A, Reinke P. Ex vivo expanded natural regulatory T cells from patients with end-stage renal disease or kidney transplantation are useful for autologous cell therapy. Kidney Int 2018; 93:1452-1464. [PMID: 29792274 DOI: 10.1016/j.kint.2018.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Novel concepts employing autologous, ex vivo expanded natural regulatory T cells (nTreg) for adoptive transfer has potential to prevent organ rejection after kidney transplantation. However, the impact of dialysis and maintenance immunosuppression on the nTreg phenotype and peripheral survival is not well understood, but essential when assessing patient eligibility. The current study investigates regulatory T-cells in dialysis and kidney transplanted patients and the feasibility of generating a clinically useful nTreg product from these patients. Heparinized blood from 200 individuals including healthy controls, dialysis patients with end stage renal disease and patients 1, 5, 10, 15, 20 years after kidney transplantation were analyzed. Differentiation and maturation of nTregs were studied by flow cytometry in order to compare dialysis patients and kidney transplanted patients under maintenance immunosuppression to healthy controls. CD127 expressing CD4+CD25highFoxP3+ nTregs were detectable at increased frequencies in dialysis patients with no negative impact on the nTreg end product quality and therapeutic usefulness of the ex vivo expanded nTregs. Further, despite that immunosuppression mildly altered nTreg maturation, neither dialysis nor pharmacological immunosuppression or previous acute rejection episodes impeded nTreg survival in vivo. Accordingly, the generation of autologous, highly pure nTreg products is feasible and qualifies patients awaiting or having received allogenic kidney transplantation for adoptive nTreg therapy. Thus, our novel treatment approach may enable us to reduce the incidence of organ rejection and reduce the need of long-term immunosuppression.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatrics, Division of Pneumonology and Immunology, Charité University Medicine Berlin, Berlin, Germany.
| | - Anne Zobel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Henrike Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Niels Landwehr
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany; University of Potsdam, Department for Computer Science, Potsdam, Germany
| | - Michael Schmueck-Henneresse
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany; Institute of Medical Immunology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Thomas Schachtner
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
48
|
Martin-Moreno PL, Tripathi S, Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin J Am Soc Nephrol 2018; 13:1760-1764. [PMID: 29789350 PMCID: PMC6237070 DOI: 10.2215/cjn.01750218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.
Collapse
Affiliation(s)
- Paloma Leticia Martin-Moreno
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Nephrology Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sudipta Tripathi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
49
|
Romano M, Fanelli G, Tan N, Nova-Lamperti E, McGregor R, Lechler RI, Lombardi G, Scottà C. Expanded Regulatory T Cells Induce Alternatively Activated Monocytes With a Reduced Capacity to Expand T Helper-17 Cells. Front Immunol 2018; 9:1625. [PMID: 30079063 PMCID: PMC6062605 DOI: 10.3389/fimmu.2018.01625] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) are essential in maintaining peripheral immunological tolerance by modulating several subsets of the immune system including monocytes. Under inflammatory conditions, monocytes migrate into the tissues, where they differentiate into dendritic cells or tissue-resident macrophages. As a result of their context-dependent plasticity, monocytes have been implicated in the development/progression of graft-vs-host disease (GvHD), autoimmune diseases and allograft rejection. In the last decade, Tregs have been exploited for their use in cell therapy with the aim to induce tolerance after solid organ transplantation and for the treatment of autoimmune diseases and GvHD. To date, safety and feasibility of Treg infusion has been demonstrated; however, many questions of how these cells induce tolerance have been raised and need to be answered. As monocytes constitute the major cellular component in inflamed tissues, we have developed an in vitro model to test how Tregs modulate their phenotype and function. We demonstrated that expanded Tregs can drive monocytes toward an alternatively activated state more efficiently than freshly isolated Tregs. The effect of expanded Tregs on monocytes led to a reduced production of pro-inflammatory cytokines (IL-6 and tumor necrosis factor-α) and NF-κB activation. Furthermore, monocytes co-cultured with expanded Tregs downregulated the expression of co-stimulatory and MHC-class II molecules with a concomitant upregulation of M2 macrophage specific markers, CD206, heme oxygenase-1, and increased interleukin-10 production. Importantly, monocytes co-cultured with expanded Tregs showed a reduced capacity to expand IL-17-producing T cells compared with monocyte cultured with freshly isolated Tregs and conventional T cells. The capacity to decrease the expansion of pro-inflammatory Th-17 was not cytokine mediated but the consequence of their lower expression of the co-stimulatory molecule CD86. Our data suggest that expanded Tregs have the capacity to induce phenotypical and functional changes in monocytes that might be crucial for tolerance induction in transplantation and the prevention/treatment of GvHD and autoimmune diseases.
Collapse
Affiliation(s)
- Marco Romano
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giorgia Fanelli
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Nicole Tan
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Estefania Nova-Lamperti
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Reuben McGregor
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Robert I Lechler
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Cristiano Scottà
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
50
|
Atif M, Warner S, Oo YH. Linking the gut and liver: crosstalk between regulatory T cells and mucosa-associated invariant T cells. Hepatol Int 2018; 12:305-314. [PMID: 30027532 PMCID: PMC6097019 DOI: 10.1007/s12072-018-9882-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
The gut–liver axis is increasingly considered to play a vital part in the progression of chronic inflammatory gut and liver diseases. Hence, a detailed understanding of the local and systemic regulatory mechanisms is crucial to develop novel therapeutic approaches. In this review, we discuss in-depth the roles of regulatory T cells (Tregs) and mucosal-associated invariant T cells (MAITs) within the context of inflammatory bowel disease, primary sclerosing cholangitis, and non-alcoholic steatohepatitis. Tregs are crucial in maintaining peripheral tolerance and preventing autoimmunity. MAIT cells have a unique ability to rapidly recognize microbial metabolites and mount a local immune response and act as a ‘biliary firewall’ at the gut and biliary epithelial barrier. We also outline how current knowledge can be exploited to develop novel therapies to control the propagation of chronic gut- and liver-related inflammatory and autoimmune conditions. We specifically focus on the nature of the Tregs’ cell therapy product and outline an adjunctive role for low-dose IL-2. All in all, it is clear that translational immunology is at crucial crossroads. The success of ongoing clinical trials in cellular therapies for inflammatory gut and liver conditions could revolutionize the treatment of these conditions and the lives of our patients in the coming years.
Collapse
Affiliation(s)
- Muhammad Atif
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK.,Academic Department of Surgery, University of Birmingham, Birmingham, UK
| | - Suz Warner
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK. .,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|