1
|
Zhu Y, Li X, Lei X, Tang L, Wen D, Zeng B, Zhang X, Huang Z, Guo Z. The potential mechanism and clinical application value of remote ischemic conditioning in stroke. Neural Regen Res 2025; 20:1613-1627. [PMID: 38845225 PMCID: PMC11688546 DOI: 10.4103/nrr.nrr-d-23-01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024] Open
Abstract
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingwei Lei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuyang Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daochen Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Wang L, Zeng H, Li H, Dai J, You S, Jiang H, Wei Q, Dong Z, Liu S, Ren J, Zhu Y, Yang X, He F, Hu L. Recombinant humanized type I collagen remodels decidual immune microenvironment at maternal-fetal interface by modulating Th17/Treg imbalance. Int J Biol Macromol 2024; 276:133994. [PMID: 39032906 DOI: 10.1016/j.ijbiomac.2024.133994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Disruption of the extracellular matrix and dysregulation of the balance between Th17 and regulatory T cells are recognized as risk factors for recurrent spontaneous abortion (RSA). However, the interaction between matrix components and the Th17/Treg axis remains poorly elucidated. The result of this study revealed that the absence of type I collagen in the decidua is linked to Th17/Treg imbalance in RSA. Furthermore, we discovered that biomaterial recombinant humanized type I collagen (rhCOLI) promoted T cell differentiation into Tregs by inhibition the Notch1/Hes1 signaling pathway and enhanced the immunosuppressive function of Tregs, as indicated by increased secretion level of IL-10 and TGF-β. Importantly, this study is the first to demonstrate that rhCOLI can modulate the Th17/Treg imbalance, reduce embryo resorption rates, reshape the immune microenvironment at the maternal-fetal interface, and improve fertility in an RSA mouse model. Collectively, these findings suggest that type I collagen deficiency may contribute to, rather than result from, RSA, and propose a potential intervention for RSA using rhCOLI.
Collapse
Affiliation(s)
- Li Wang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hui Zeng
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hu Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jingcong Dai
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shuang You
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huanhuan Jiang
- Yangzhou Maternal and Child Care Service Centre, Yangzhou 225000, Jiangsu, China
| | - Quan Wei
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhiyong Dong
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shuaibin Liu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ju Ren
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Yang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, Shanxi, China
| | - Fan He
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing 400010, China; Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing 400010, China.
| | - Lina Hu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing 400010, China; Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing 400010, China.
| |
Collapse
|
3
|
Cao L, Ruiz Buendía GA, Fournier N, Liu Y, Armand F, Hamelin R, Pavlou M, Radtke F. Resistance mechanism to Notch inhibition and combination therapy in human T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:6240-6252. [PMID: 37358480 PMCID: PMC10589794 DOI: 10.1182/bloodadvances.2023010380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023] Open
Abstract
Gain-of-function mutations in NOTCH1 are among the most frequent genetic alterations in T-cell acute lymphoblastic leukemia (T-ALL), highlighting the Notch signaling pathway as a promising therapeutic target for personalized medicine. Yet, a major limitation for long-term success of targeted therapy is relapse due to tumor heterogeneity or acquired resistance. Thus, we performed a genome-wide CRISPR-Cas9 screen to identify prospective resistance mechanisms to pharmacological NOTCH inhibitors and novel targeted combination therapies to efficiently combat T-ALL. Mutational loss of phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) causes resistance to Notch inhibition. PIK3R1 deficiency leads to increased PI3K/AKT signaling, which regulates cell cycle and the spliceosome machinery, both at the transcriptional and posttranslational level. Moreover, several therapeutic combinations have been identified, in which simultaneous targeting of the cyclin-dependent kinases 4 and 6 (CDK4/6) and NOTCH proved to be the most efficacious in T-ALL xenotransplantation models.
Collapse
Affiliation(s)
- Linlin Cao
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Translational Data Science, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
- Translational Data Science, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Yuanlong Liu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Maria Pavlou
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| |
Collapse
|
4
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
5
|
Sancerni T, Renoult O, Luby A, Caradeuc C, Lenoir V, Croyal M, Ransy C, Aguilar E, Postic C, Bertho G, Dentin R, Prip-Buus C, Pecqueur C, Alves-Guerra MC. UCP2 silencing restrains leukemia cell proliferation through glutamine metabolic remodeling. Front Immunol 2022; 13:960226. [PMID: 36275699 PMCID: PMC9582289 DOI: 10.3389/fimmu.2022.960226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T cell progenitors. Since relapsed T-ALL is associated with a poor prognosis improving initial treatment of patients is essential to avoid resistant selection of T-ALL. During initiation, development, metastasis and even in response to chemotherapy, tumor cells face strong metabolic challenges. In this study, we identify mitochondrial UnCoupling Protein 2 (UCP2) as a tricarboxylic acid (TCA) cycle metabolite transporter controlling glutamine metabolism associated with T-ALL cell proliferation. In T-ALL cell lines, we show that UCP2 expression is controlled by glutamine metabolism and is essential for their proliferation. Our data show that T-ALL cell lines differ in their substrate dependency and their energetic metabolism (glycolysis and oxidative). Thus, while UCP2 silencing decreases cell proliferation in all leukemia cells, it also alters mitochondrial respiration of T-ALL cells relying on glutamine-dependent oxidative metabolism by rewiring their cellular metabolism to glycolysis. In this context, the function of UCP2 in the metabolite export of malate enables appropriate TCA cycle to provide building blocks such as lipids for cell growth and mitochondrial respiration. Therefore, interfering with UCP2 function can be considered as an interesting strategy to decrease metabolic efficiency and proliferation rate of leukemia cells.
Collapse
Affiliation(s)
| | | | - Angèle Luby
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | | | - Véronique Lenoir
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Mikael Croyal
- Nantes Université, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Céline Ransy
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Esther Aguilar
- Asociación Española Contra el Cáncer (AECC), Fundación Científica AECC, Madrid, Spain
| | - Catherine Postic
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | | | - Renaud Dentin
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Carina Prip-Buus
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | | | - Marie-Clotilde Alves-Guerra
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- *Correspondence: Marie-Clotilde Alves-Guerra,
| |
Collapse
|
6
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
7
|
Chen X, Yu D, Zhou H, Zhang X, Hu Y, Zhang R, Gao X, Lin M, Guo T, Zhang K. The role of EphA7 in different tumors. Clin Transl Oncol 2022; 24:1274-1289. [PMID: 35112312 DOI: 10.1007/s12094-022-02783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 12/06/2022]
Abstract
Ephrin receptor A7 (EphA7) is a member of the Eph receptor family. It is widely involved in signal transduction between cells, regulates cell proliferation and differentiation, and participates in developing neural tubes and brain. In addition, EphA7 also has a dual role of tumor promoter and tumor suppressor. It can participate in cell proliferation, migration and apoptosis through various mechanisms, and affect tumor differentiation, staging and prognosis. EphA7 may be a potential diagnostic marker and tumor treatment target. This article reviews the effects of EphA7 on a variety of tumor biological processes and pathological characteristics, as well as specific effects and regulatory mechanisms.
Collapse
Affiliation(s)
- Xiangyi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Dechen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China. .,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China. .,Xigu District People's Hospital, Lanzhou, 730030, China.
| | - Xiaobo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Ruihao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Xidan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Kun Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| |
Collapse
|
8
|
Perrone C, Pomella S, Cassandri M, Pezzella M, Milano GM, Colletti M, Cossetti C, Pericoli G, Di Giannatale A, de Billy E, Vinci M, Petrini S, Marampon F, Quintarelli C, Taulli R, Roma J, Gallego S, Camero S, Mariottini P, Cervelli M, Maestro R, Miele L, De Angelis B, Locatelli F, Rota R. MET Inhibition Sensitizes Rhabdomyosarcoma Cells to NOTCH Signaling Suppression. Front Oncol 2022; 12:835642. [PMID: 35574376 PMCID: PMC9092259 DOI: 10.3389/fonc.2022.835642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.
Collapse
Affiliation(s)
- Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Radiotherapy, Sapienza University, Rome, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Cossetti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Pericoli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Mariottini
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Manuela Cervelli
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, Sapienza University, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
9
|
Zhang C, Liu N. Noncoding RNAs in the Glycolysis of Ovarian Cancer. Front Pharmacol 2022; 13:855488. [PMID: 35431949 PMCID: PMC9005897 DOI: 10.3389/fphar.2022.855488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
Energy metabolism reprogramming is the characteristic feature of tumors. The tumorigenesis, metastasis, and drug resistance of ovarian cancer (OC) is dependent on energy metabolism. Even under adequate oxygen conditions, OC cells tend to convert glucose to lactate, and glycolysis can rapidly produce ATP to meet their metabolic energy needs. Non-coding RNAs (ncRNAs) interact directly with DNA, RNA, and proteins to function as an essential regulatory in gene expression and tumor pathology. Studies have shown that ncRNAs regulate the process of glycolysis by interacting with the predominant glycolysis enzyme and cellular signaling pathway, participating in tumorigenesis and progression. This review summarizes the mechanism of ncRNAs regulation in glycolysis in OC and investigates potential therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Hlozkova K, Hermanova I, Safrhansova L, Alquezar-Artieda N, Kuzilkova D, Vavrova A, Sperkova K, Zaliova M, Stary J, Trka J, Starkova J. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Sci Rep 2022; 12:4043. [PMID: 35260738 PMCID: PMC8904819 DOI: 10.1038/s41598-022-08049-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Childhood T-cell acute lymphoblastic leukemia (T-ALL) still remains a therapeutic challenge due to relapses which are resistant to further treatment. l-asparaginase (ASNase) is a key therapy component in pediatric T-ALL and lower sensitivity of leukemia cells to this drug negatively influences overall treatment efficacy and outcome. PTEN protein deletion and/or activation of the PI3K/Akt signaling pathway leading to altered cell growth and metabolism are emerging as a common feature in T-ALL. We herein investigated the relationship amongst PTEN deletion, ASNase sensitivity and glucose metabolism in T-ALL cells. First, we found significant differences in the sensitivity to ASNase amongst T-ALL cell lines. While cell lines more sensitive to ASNase were PTEN wild type (WT) and had no detectable level of phosphorylated Akt (P-Akt), cell lines less sensitive to ASNase were PTEN-null with high P-Akt levels. Pharmacological inhibition of Akt in the PTEN-null cells rendered them more sensitive to ASNase and lowered their glycolytic function which then resembled PTEN WT cells. In primary T-ALL cells, although P-Akt level was not dependent exclusively on PTEN expression, their sensitivity to ASNase could also be increased by pharmacological inhibition of Akt. In summary, we highlight a promising therapeutic option for T-ALL patients with aberrant PTEN/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Katerina Hlozkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Hermanova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Safrhansova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniela Kuzilkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adela Vavrova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Sperkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic. .,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic. .,University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
11
|
Grant AH, Ayala-Marin YM, Mohl JE, Robles-Escajeda E, Rodriguez G, Dutil J, Kirken RA. The Genomic Landscape of a Restricted ALL Cohort from Patients Residing on the U.S./Mexico Border. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147345. [PMID: 34299796 PMCID: PMC8307122 DOI: 10.3390/ijerph18147345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) has identified unique biomarkers yielding new strategies in precision medicine for the treatment of Acute lymphoblastic leukemia (ALL). Hispanics show marked health disparities in ALL, often absent in clinical trials or cancer research. Thus, it is unknown whether Hispanics would benefit equally from curated data currently guiding precision oncology. Using whole-exome sequencing, nine ALL patients were screened for mutations within genes known to possess diagnostic, prognostic and therapeutic value. Genes mutated in Hispanic ALL patients from the borderland were mined for potentially pathogenic variants within clinically relevant genes. KRAS G12A was detected in this unique cohort and its frequency in Hispanics from the TARGET-ALL Phase II database was three-fold greater than that of non-Hispanics. STAT5B N642H was also detected with low frequency in Hispanic and non-Hispanic individuals within TARGET. Its detection within this small cohort may reflect a common event in this demographic. Such variants occurring in the MAPK and JAK/STAT pathways may be contributing to Hispanic health disparities in ALL. Notable variants in ROS1, WT1, and NOTCH2 were observed in the ALL borderland cohort, with NOTCH2 C19W occurring most frequently. Further investigations on the pathogenicity of these variants are needed to assess their relevance in ALL.
Collapse
Affiliation(s)
- Alice Hernandez Grant
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Yoshira Marie Ayala-Marin
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Jonathon Edward Mohl
- Department of Mathematical Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Elisa Robles-Escajeda
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Georgialina Rodriguez
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Julie Dutil
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA;
| | - Robert Arthur Kirken
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
- Correspondence: ; Tel.: +1-(915)-747-5536
| |
Collapse
|
12
|
Wu Y, Ma Y, Li J, Zhou XL, Li L, Xu PX, Li XR, Xue M. The bioinformatics and metabolomics research on anti-hypoxic molecular mechanisms of Salidroside via regulating the PTEN mediated PI3K/Akt/NF-κB signaling pathway. Chin J Nat Med 2021; 19:442-453. [PMID: 34092295 DOI: 10.1016/s1875-5364(21)60043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/08/2022]
Abstract
Salidroside (SAL), a major bioactive compound of Rhodiola crenulata, has significant anti-hypoxia effect, however, its underlying molecular mechanism has not been elucidated. In order to explore the protective mechanism of SAL, the lactate dehydrogenase (LDH), reactive oxygen species (ROS), superoxide dismutase (SOD) and hypoxia-induced factor 1α (HIF-1α) were measured to establish the PC12 cell hypoxic model. Cell staining and cell viability analyses were performed to evaluate the protective effects of SAL. The metabolomics and bioinformatics methods were used to explore the protective effects of salidroside under hypoxia condition. The metabolite-protein interaction networks were further established and the protein expression level was examined by Western blotting. The results showed that 59 endogenous metabolites changed and the expression of the hub proteins of CK2, p-PTEN/PTEN, PI3K, p-Akt/Akt, NF-κB p65 and Bcl-2 were increased, suggesting that SAL could increase the expression of CK2, which induced the phosphorylation and inactivation of PTEN, reduced the inhibitory effect on PI3K signaling pathways and activated the PI3K/Akt/NF-κB survival signaling pathway. Our study provided an important insight to reveal the protective molecular mechanism of SAL as a novel drug candidate.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yi Ma
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xue-Lin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China
| | - Lei Li
- Central Laboratory, Capital Medical University, Beijing 100069, China
| | - Ping-Xiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China
| | - Xiao-Rong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China.
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China.
| |
Collapse
|
13
|
Zhang YQ, Liang YK, Wu Y, Chen M, Chen WL, Li RH, Zeng YZ, Huang WH, Wu JD, Zeng D, Gao WL, Chen CF, Lin HY, Yang RQ, Zhu JW, Liu WL, Bai JW, Wei M, Wei XL, Zhang GJ. Notch3 inhibits cell proliferation and tumorigenesis and predicts better prognosis in breast cancer through transactivating PTEN. Cell Death Dis 2021; 12:502. [PMID: 34006834 PMCID: PMC8131382 DOI: 10.1038/s41419-021-03735-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
Notch receptors (Notch1-4) play critical roles in tumorigenesis and metastasis of malignant tumors, including breast cancer. Although abnormal Notch activation is related to various tumors, the importance of single receptors and their mechanism of activation in distinct breast cancer subtypes are still unclear. Previous studies by our group demonstrated that Notch3 may inhibit the emergence and progression of breast cancer. PTEN is a potent tumor suppressor, and its loss of function is sufficient to promote the occurrence and progression of tumors. Intriguingly, numerous studies have revealed that Notch1 is involved in the regulation of PTEN through its binding to CBF-1, a Notch transcription factor, and the PTEN promoter. In this study, we found that Notch3 and PTEN levels correlated with the luminal phenotype in breast cancer cell lines. Furthermore, we demonstrated that Notch3 transactivated PTEN by binding CSL-binding elements in the PTEN promoter and, at least in part, inhibiting the PTEN downstream AKT-mTOR pathway. Notably, Notch3 knockdown downregulated PTEN and promoted cell proliferation and tumorigenesis. In contrast, overexpression of the Notch3 intracellular domain upregulated PTEN and inhibited cell proliferation and tumorigenesis in vitro and in vivo. Moreover, inhibition or overexpression of PTEN partially reversed the promotion or inhibition of cell proliferation induced by Notch3 alterations. In general, Notch3 expression positively correlated with elevated expression of PTEN, ER, lower Ki-67 index, and incidence of involved node status and predicted better recurrence-free survival in breast cancer patients. Therefore, our findings demonstrate that Notch3 inhibits breast cancer proliferation and suppresses tumorigenesis by transactivating PTEN expression.
Collapse
Affiliation(s)
- Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Yuan-Ke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Yang Wu
- Klinikum rechts der Isar der Technischen Universität München Institut für Allgemeine Pathologie und Pathologische Anatomie, Ismaninger Str. 22, 81675, München, Germany
| | - Min Chen
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Rong-Hui Li
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Yun-Zhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Wen-He Huang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jun-Dong Wu
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Wen-Liang Gao
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Chun-Fa Chen
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
| | - Rui-Qin Yang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jiang-Wen Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jing-Wen Bai
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Min Wei
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China.
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China.
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen, China.
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China.
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
14
|
Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures. Nat Commun 2021; 12:2507. [PMID: 33947863 PMCID: PMC8097059 DOI: 10.1038/s41467-021-22787-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Notch1 is a crucial oncogenic driver in T-cell acute lymphoblastic leukemia (T-ALL), making it an attractive therapeutic target. However, the success of targeted therapy using γ-secretase inhibitors (GSIs), small molecules blocking Notch cleavage and subsequent activation, has been limited due to development of resistance, thus restricting its clinical efficacy. Here, we systematically compare GSI resistant and sensitive cell states by quantitative mass spectrometry-based phosphoproteomics, using complementary models of resistance, including T-ALL patient-derived xenografts (PDX) models. Our datasets reveal common mechanisms of GSI resistance, including a distinct kinase signature that involves protein kinase C delta. We demonstrate that the PKC inhibitor sotrastaurin enhances the anti-leukemic activity of GSI in PDX models and completely abrogates the development of acquired GSI resistance in vitro. Overall, we highlight the potential of proteomics to dissect alterations in cellular signaling and identify druggable pathways in cancer. NOTCH1 is a driver of T-cell acute lymphoblastic leukemia that can be inhibited by γ-secretase inhibitors (GSIs), but their clinical efficacy is limited. Here, the authors compare the phosphoproteomes of GSI resistant and sensitive models, and identify potential kinase targets to overcome GSI resistance.
Collapse
|
15
|
Cabezón-Gutiérrez L, Custodio-Cabello S, Palka-Kotlowska M, Alonso-Viteri S, Khosravi-Shahi P. Biomarkers of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Beyond PD-L1. Clin Lung Cancer 2021; 22:381-389. [PMID: 33875382 DOI: 10.1016/j.cllc.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Immunotherapy has markedly improved the survival rate of patients with non-small cell lung cancer (NSCLC) and has introduced a new era in lung cancer treatment. Although some patients achieve durable responses to checkpoint blockade, not all experience such benefits, and some suffer from significant immunotoxicities. Thus, it is crucial to identify potential biomarkers suitable for screening the population that may benefit from immunotherapy. Based on the current clinical trials, the aim of the present study was to review the biomarkers for immune checkpoint inhibition that may have the potential to predict the response to immunotherapy in patients with lung cancer. A non-systematic literature review was done. We searched for eligible randomized controlled trials (RCTs) from PubMed, Embase, and the Cochrane Central Register of Controlled Trials from January 2015 to January 2021. The keywords included biomarkers, immunotherapy, immune checkpoint inhibition, programmed death ligand 1 (PD-L1), and non-small cell lung cancer. Additional biomarkers beyond PD-L1 that have been shown to have predictive capacity include tumor mutational burden, microsatellite instability, lung immune prognostic index, gut microbiome, and certain alterations in genes (eg, STK11 deletion, LKB1 kinase mutation, MDM2/4 amplification) that confer immunoresistance. The biomarkers reviewed in this article could help us better select the appropriate immunotherapy treatment for patients with NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Parham Khosravi-Shahi
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
16
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
17
|
Zheng R, Li M, Wang S, Liu Y. Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2020; 9:31. [PMID: 33292596 PMCID: PMC7664086 DOI: 10.1186/s40164-020-00187-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the hematological malignancies. With the applications of chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the cure rate of T-ALL has been significantly improved. However, patients with relapsed and refractory T-ALL still lack effective treatment options. Gene mutations play an important role in T-ALL. The NOTCH1 gene mutation is the important one among these genetic mutations. Since the mutation of NOTCH1 gene is considered as a driving oncogene in T-ALL, targeting the NOTCH1 signaling patheway may be an effective option to overcome relapsed and refractory T-ALL. This review mainly summarizes the recent research advances of targeting on NOTCH1 signaling pathway in T-ALL.
Collapse
Affiliation(s)
- Ruyue Zheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Menglin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
18
|
Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Mol Pharmacol 2020; 98:559-576. [PMID: 32913140 DOI: 10.1124/molpharm.120.000006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The Notch family consists of four highly conserved transmembrane receptors. The release of the active intracellular domain requires the enzymatic activity of γ-secretase. Notch is involved in embryonic development and in many physiologic processes of normal cells, in which it regulates growth, apoptosis, and differentiation. Notch1, a member of the Notch family, is implicated in many types of cancer, including breast cancer (especially triple-negative breast cancer), leukemias, brain tumors, and many others. Notch1 is tightly connected to many signaling pathways that are therapeutically involved in tumorigenesis. Together, they impact apoptosis, proliferation, chemosensitivity, immune response, and the population of cancer stem cells. Notch1 inhibition can be achieved through various and diverse methods, the most common of which are the γ-secretase inhibitors, which produce a pan-Notch inhibition, or the use of Notch1 short interference RNA or Notch1 monoclonal antibodies, which produce a more specific blockade. Downregulation of Notch1 can be used alone or in combination with chemotherapy, which can achieve a synergistic effect and a decrease in chemoresistance. Targeting Notch1 in cancers that harbor high expression levels of Notch1 offers an addition to therapeutic strategies recruited for managing cancer. Considering available evidence, Notch1 offers a legitimate target that might be incorporated in future strategies for combating cancer. In this review, the possible clinical applications of Notch1 inhibition and the obstacles that hinder its clinical application are discussed. SIGNIFICANCE STATEMENT: Notch1 plays an important role in different types of cancer. Numerous approaches of Notch1 inhibition possess potential benefits in the management of various clinical aspects of cancer. The application of different Notch1 inhibition modalities faces many challenges.
Collapse
Affiliation(s)
- L Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - N Elmadany
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - K Alwosaibai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - W Alshaer
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| |
Collapse
|
19
|
Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R, Zhong H, Cui Y, Yuan L, Gong F, Wang Z, Li H, Peng H, Zhang G. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia. Cancer Commun (Lond) 2020; 40:501-517. [PMID: 32820611 PMCID: PMC7571401 DOI: 10.1002/cac2.12080] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background T‐cell acute lymphoblastic leukemia (T‐ALL) is an uncommon and aggressive subtype of acute lymphoblastic leukemia (ALL). In the serum of T‐ALL patients, the activity of lactate dehydrogenase A (LDHA) is increased. We proposed that targeting LDHA may be a potential strategy to improve T‐ALL outcomes. The current study was conducted to investigate the antileukemic effect of LDHA gene‐targeting treatment on T‐ALL and the underlying molecular mechanism. Methods Primary T‐ALL cell lines Jurkat and DU528 were treated with the LDH inhibitor oxamate. MTT, colony formation, apoptosis, and cell cycle assays were performed to investigate the effects of oxamate on T‐ALL cells. Quantitative real‐time PCR (qPCR) and Western blotting analyses were applied to determine the related signaling pathways. A mitochondrial reactive oxygen species (ROS) assay was performed to evaluate ROS production after T‐ALL cells were treated with oxamate. A T‐ALL transgenic zebrafish model with LDHA gene knockdown was established using CRISPR/Cas9 gene‐editing technology, and then TUNEL, Western blotting, and T‐ALL tumor progression analyses were conducted to investigate the effects of LDHA gene knockdown on T‐ALL transgenic zebrafish. Results Oxamate significantly inhibited proliferation and induced apoptosis of Jurkat and DU528 cells. It also arrested Jurkat and DU528 cells in G0/G1 phase and stimulated ROS production (all P < 0.001). Blocking LDHA significantly decreased the gene and protein expression of c‐Myc, as well as the levels of phosphorylated serine/threonine kinase (AKT) and glycogen synthase kinase 3 beta (GSK‐3β) in the phosphatidylinositol 3′‐kinase (PI3K) signaling pathway. LDHA gene knockdown delayed disease progression and down‐regulated c‐Myc mRNA and protein expression in T‐ALL transgenic zebrafish. Conclusion Targeting LDHA exerted an antileukemic effect on T‐ALL, representing a potential strategy for T‐ALL treatment.
Collapse
Affiliation(s)
- Haizhi Yu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Respiratory and Critical Medicine, NHC Key Laboratory of Pulmonary Immune-related Diseases, People's Hospital of Guizhou University, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, P. R. China
| | - Yafei Yin
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Hematology, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, P. R. China
| | - Yifang Yi
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Hematology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, P. R. China
| | - Zhao Cheng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Wenyong Kuang
- Department of Hematology, Hunan Children's Hospital, Changsha, Hunan, 410005, P. R. China
| | - Ruijuan Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Haiying Zhong
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Yajuan Cui
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Lingli Yuan
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Fanjie Gong
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Zhihua Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Heng Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan, 410011, P. R. China
| | - Guangsen Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| |
Collapse
|
20
|
Wang L, Hu Y, Wang S, Shen J, Wang X. Biomarkers of immunotherapy in non-small cell lung cancer. Oncol Lett 2020; 20:139. [PMID: 32934707 PMCID: PMC7471728 DOI: 10.3892/ol.2020.11999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has markedly improved the survival rate of patients with non-small cell lung cancer (NSCLC) and has introduced a new era in lung cancer treatment. However, not all patients with lung cancer benefit from checkpoint blockade, and some suffer from notable immunotoxicities. Thus, it is crucial to identify potential biomarkers suitable for screening the population that may benefit from immunotherapy. Based on the current clinical trials, the aim of the present study was to review the biomarkers for immune checkpoint inhibition, as well as other effective, invalid and hyperprogression markers that may have the potential to better predict responders to immunotherapy among patients with NSCLC. All these biomarkers may be incorporated into the predictive utility of bio-score systems and decision-making algorithms, to better guide the application of immunotherapy in the clinical setting.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yue Hu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Shengchao Wang
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiali Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
21
|
Bonaccorso P, Bugarin C, Buracchi C, Fazio G, Biondi A, Lo Nigro L, Gaipa G. Single‐cell profiling of pediatric T‐cell acute lymphoblastic leukemia: Impact of
PTEN
exon 7 mutation on
PI3K
/
Akt
and
JAK–STAT
signaling pathways. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:491-503. [DOI: 10.1002/cyto.b.21882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Paola Bonaccorso
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
- Center of Pediatric Hematology Oncology Azienda Policlinico‐OVE, University of Catania Catania Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Chiara Buracchi
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Grazia Fazio
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Andrea Biondi
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
- Pediatric Clinic University of Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo Monza Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology Azienda Policlinico‐OVE, University of Catania Catania Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| |
Collapse
|
22
|
Küçükcankurt F, Erbilgin Y, Fırtına S, Hatırnaz Ng Ö, Karakaş Z, Celkan T, Ünüvar A, Özbek U, Sayitoğlu M. PTEN and AKT1 Variations in Childhood T-Cell Acute Lymphoblastic Leukemia. Turk J Haematol 2020; 37:98-103. [PMID: 31744268 PMCID: PMC7236415 DOI: 10.4274/tjh.galenos.2019.2019.0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objective: PTEN/AKT pathway deregulations have been reported to be associated with treatment response in acute leukemia. This study examined pediatric T-cell acute lymphoblastic leukemia (T-ALL) samples for PTEN and AKT1 gene variations and evaluated the clinical findings. Materials and Methods: Fifty diagnostic bone marrow samples of childhood T-ALL cases were investigated for the hotspot regions of the PTEN and AKT1 genes by targeted next-generation sequencing. Results: A total of five PTEN variations were found in three of the 50 T-ALL cases (6%). Three of the PTEN variations were first reported in this study. Furthermore, one patient clearly had two different mutant clones for PTEN. Two intronic single-nucleotide variations were found in AKT1 and none of the patients carried pathogenic AKT1 variations. Conclusion: Targeted deep sequencing allowed us to detect both low-level variations and clonal diversity. Low-level PTEN/AKT1 variation frequency makes it harder to investigate the clinical associations of the variants. On the other hand, characterization of the PTEN/AKT signaling members is important for improving case-specific therapeutic strategies.
Collapse
Affiliation(s)
- Fulya Küçükcankurt
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey,Altınbaş University Faculty of Medicine, İstanbul, Turkey,F.K. and Y.E. contributed equally to this work
| | - Yücel Erbilgin
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey,F.K. and Y.E. contributed equally to this work
| | - Sinem Fırtına
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey,İstinye University Faculty of Art and Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Özden Hatırnaz Ng
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey,Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Medical Biology, İstanbul, Turkey
| | - Zeynep Karakaş
- İstanbul University Faculty of Medicine, Department of Pediatrics Hematology, İstanbul, Turkey
| | - Tiraje Celkan
- İstanbul University-Cerrahpaşa Cerrahpaşa Faculty of Medicine, Department of Pediatric Hematology, İstanbul, Turkey
| | - Ayşegül Ünüvar
- İstanbul University Faculty of Medicine, Department of Pediatrics Hematology, İstanbul, Turkey
| | - Uğur Özbek
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey,Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Medical Genetics, İstanbul, Turkey
| | - Müge Sayitoğlu
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| |
Collapse
|
23
|
Khoshamooz H, Kaviani S, Atashi A, Mirpour Hassankiadeh SH. Combination Effect of Notch1 and PI3K/AKT/mTOR Signaling Pathways Inhibitors on T-ALL Cell Lines. Int J Hematol Oncol Stem Cell Res 2020; 14:99-109. [PMID: 32461793 PMCID: PMC7231796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Background: Acute T lymphoblastic Leukemia (T-ALL) is a highly aggressive hematologic malignancy. Chemotherapy resistance is one of the most important challenges in T-ALL treatment. Alterations in cellular signaling pathways such as Notch1 and PI3K/AKT/mTOR play a role in cell proliferation, survival, and resistance to chemotherapy. Combination of Notch1 and PI3K/AKT/mTOR inhibitors is an interesting and rational strategy in treatment of T-ALL. Interaction of AZD5363 as an inhibitor of PI3k/AKT/mTOR and Compound E as an inhibitor of Notch1 signaling pathway was investigated in a T-ALL pre-clinical model. Materials and Methods: T-ALL cell lines included Jurkat, Molt-4, and HPB- ALL cells were treated with AZD5363 and Compound E alone and in combination. Cell viability was determined by MTT assay. Flow cytometry was used to measure apoptosis. Interaction between AZD5363 and Compound E was assessed by Chou-Talalay method. Results: Combination treatment with AZD5363 and Compound E decreased cell viability with synergistic effect in all cell lines at 72 hours. Drug combination increased apoptosis even in Jurkat and HPB-ALL cells resistant to Compound E and AZD5363, respectively. Conclusion: Combination of AZD5363 with Compound E in T-ALL cell lines exhibited a synergistic effect. Cytotoxicity of drug combination increased in all T-ALL cell lines compared to each as a single drug. Simultaneous inhibition of Notch1 and PI3K/AKT signaling pathways as a possible treatment of T-ALL, provides a basis for future investigations.
Collapse
Affiliation(s)
- Halimeh Khoshamooz
- Department of Hematology and Blood Banking, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
24
|
Eroglu B, Pang J, Jin X, Xi C, Moskophidis D, Mivechi NF. HSF1-Mediated Control of Cellular Energy Metabolism and mTORC1 Activation Drive Acute T-Cell Lymphoblastic Leukemia Progression. Mol Cancer Res 2020; 18:463-476. [PMID: 31744878 PMCID: PMC7056558 DOI: 10.1158/1541-7786.mcr-19-0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023]
Abstract
Deregulated oncogenic signaling linked to PI3K/AKT and mTORC1 pathway activation is a hallmark of human T-cell acute leukemia (T-ALL) pathogenesis and contributes to leukemic cell resistance and adverse prognosis. Notably, although the multiagent chemotherapy of leukemia leads to a high rate of complete remission, options for salvage therapy for relapsed/refractory disease are limited due to the serious side effects of augmenting cytotoxic chemotherapy. We report that ablation of HSF1, a key transcriptional regulator of the chaperone response and cellular bioenergetics, from mouse T-ALL tumors driven by PTEN loss or human T-ALL cell lines, has significant therapeutic effects in reducing tumor burden and sensitizing malignant cell death. From a mechanistic perspective, the enhanced sensitivity of T-ALLs to HSF1 depletion resides in the reduced MAPK-ERK signaling and metabolic and ATP-producing capacity of malignant cells lacking HSF1 activity. Impaired mitochondrial ATP production and decreased intracellular amino acid content in HSF1-deficient T-ALL cells trigger an energy-saving adaptive response featured by attenuation of the mTORC1 activity, which is coregulated by ATP, and its downstream target proteins (p70S6K and 4E-BP). This leads to protein translation attenuation that diminishes oncogenic signals and malignant cell growth. Collectively, these metabolic alterations in the absence of HSF1 activity reveal cancer cell liabilities and have a profound negative impact on T-ALL progression. IMPLICATIONS: Targeting HSF1 and HSF1-dependent cancer-specific anabolic and protein homeostasis programs has a significant therapeutic potential for T-ALL and may prevent progression of relapsed/refractory disease.
Collapse
Affiliation(s)
- Binnur Eroglu
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Junfeng Pang
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Caixia Xi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia.
- Department of Medicine, Augusta University, Augusta, Georgia
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia.
- Department of Medicine, Augusta University, Augusta, Georgia
- Department of Radiation Oncology, Augusta University, Augusta, Georgia
| |
Collapse
|
25
|
Cuomo F, Altucci L, Cobellis G. Autophagy Function and Dysfunction: Potential Drugs as Anti-Cancer Therapy. Cancers (Basel) 2019; 11:cancers11101465. [PMID: 31569540 PMCID: PMC6826381 DOI: 10.3390/cancers11101465] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a highly conserved catabolic and energy-generating process that facilitates the degradation of damaged organelles or intracellular components, providing cells with components for the synthesis of new ones. Autophagy acts as a quality control system, and has a pro-survival role. The imbalance of this process is associated with apoptosis, which is a “positive” and desired biological choice in some circumstances. Autophagy dysfunction is associated with several diseases, including neurodegenerative disorders, cardiomyopathy, diabetes, liver disease, autoimmune diseases, and cancer. Here, we provide an overview of the regulatory mechanisms underlying autophagy, with a particular focus on cancer and the autophagy-targeting drugs currently approved for use in the treatment of solid and non-solid malignancies.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| |
Collapse
|
26
|
Yi L, Zhou X, Li T, Liu P, Hai L, Tong L, Ma H, Tao Z, Xie Y, Zhang C, Yu S, Yang X. Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:339. [PMID: 31382985 PMCID: PMC6683584 DOI: 10.1186/s13046-019-1319-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glioma initiating cells (GICs), also known as glioma stem cells (GSCs), play an important role in the progression and recurrence of glioblastoma multiforme (GBM) due to their potential for self-renewal, multiple differentiation and tumor initiation. In the recent years, Notch1 has been found to be overexpressed in GICs. However, the regulatory mechanism of Notch1 in the self-renewal and invasion ability of GICs remains unclear. This study aims to explore the effect of Notch pathway on self-renewal and invasion of GICs and the underlying mechanisms. METHODS Bioinformatic analysis and immunohistochemistry (IHC) were performed to evaluate the expression of Notch1 and Hes1 in GBM samples. Immunofluorescent (IF) staining was performed to observe the distribution of Notch1 and CXCR4 in GBM and GICs. Both pharmacological intervention and RNA interference were employed to investigate the role of Notch1 in GICs self-renewal, invasion and tumor growth in vitro or in vivo. The crosstalk effect of Notch1 and CXCL12/CXCR4 system on GIC self-renewal and invasion was explored by sphere formation assay, limiting dilution assay and Transwell assay. Western blots were used to verify the activation of Notch1/CXCR4/AKT pathway in self-renewal, invasion and tumor growth of GICs. Luciferase reporter assay was used to testify the potential binding site of Notch1 signaling and CXCR4. The orthotopic GICs implantations were established to analyze the role and the mechanism of Notch1 in glioma progression in vivo. RESULTS Notch1 signaling activity was elevated in GBM tissues. Notch1 and CXCR4 were both upregulated in GICs, compared to Notch1 positive glioma cells comprised a large proportion in the CD133+ glioma cell spheres, CXCR4 positive glioma cells which usually expressed Notch1 both and dispersed in the periphery of the sphere, only represent a small subset of CD133+ glioma cell spheres. Furthermore, downregulation of the Notch1 pathway by shRNA and MK0752 significantly inhibited the PI3K/AKT/mTOR signaling pathway via the decreased expression of CXCR4 in GICs, and weakened the self-renewal, invasion and tumor growth ability of GICs. CONCLUSIONS These findings suggest that the cross-talk between Notch1 signaling and CXCL12/CXCR4 system could contribute to the self-renewal and invasion of GICs, and this discovery could help drive the design of more effective therapies in Notch1-targeted treatment of GBMs.
Collapse
Affiliation(s)
- Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xingchen Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Long Hai
- Department of Radiation Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Henan, 450000, China
| | - Luqing Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Haiwen Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zhennan Tao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yang Xie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Chen Zhang
- Neuro-Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| |
Collapse
|
27
|
Yu G, Wang C, Song X, Liu S, Zhang Y, Fan L, Yang Y, Huang Y, Song J. Formaldehyde induces the apoptosis of BMCs of BALB/c mice via the PTEN/PI3K/Akt signal transduction pathway. Mol Med Rep 2019; 20:341-349. [PMID: 31115571 PMCID: PMC6580029 DOI: 10.3892/mmr.2019.10227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/25/2019] [Indexed: 02/03/2023] Open
Abstract
The International Agency for Research on Cancer has classified formaldehyde (FA) as a leukemogen to humans in 2012; however, the underlying mechanism remains unclear. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor‑suppressor gene and can negatively regulate the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) signal transduction pathway, which is associated with cell proliferation, apoptosis and carcinogenesis. To determine the association between FA and the PTEN/PI3K/Akt signal transduction pathway, flow cytometry, reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical analysis were conducted. Bone marrow cells were obtained from BALB/c mice, divided into the control (untreated cells) and FA groups, which were treated with various doses of FA (50, 100 and 200 µmol/l). Following treatment with FA for 24 h, cell viability, the cell cycle, apoptosis, and the expression of PTEN, PI3K and Akt, as well as the protein expression of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X (Bax), and Caspases‑3 and ‑9 were examined. Furthermore, 10 µmol/PI3K inhibitor (LY294002) was applied to inhibit the PTEN/PI3K/Akt signal transduction pathway and 100 µmol/l FA was selected for treatment; alteration in the cell cycle were analyzed. The results demonstrated that FA could suppress cell viability, and downregulate PTEN and Bcl‑2; the expression of PI3K, Akt, Bax, and Caspases‑3 and ‑9 were upregulated. Additionally, FA was reported to induce cell cycle arrest at the G0/G1 phase and apoptosis. Following the application of LY294002 to inhibit the PTEN/PI3K/Akt signal transduction pathway, the numbers of cells arrested in the G0/G1 phase were significantly increased in the PI3K inhibitor group compared with the control (P<0.01); however, no significant change in the number of G0/G1 cells compared with FA group was observed (P>0.05). The results of the present study suggested that the PTEN/PI3K/Akt signal transduction pathway served an important role in the process of FA‑induced apoptosis, which may be associated with regulating the cell cycle; thus, cell proliferation may be affected.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunhua Wang
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangfu Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shimeng Liu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yixin Zhang
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lida Fan
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yixue Yang
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yulu Huang
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiayi Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
28
|
Murga-Zamalloa C, Inamdar KV, Wilcox RA. The role of aurora A and polo-like kinases in high-risk lymphomas. Blood Adv 2019; 3:1778-1787. [PMID: 31186254 PMCID: PMC6560346 DOI: 10.1182/bloodadvances.2019000232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
High-risk lymphomas (HRLs) are associated with dismal outcomes and remain a therapeutic challenge. Recurrent genetic and molecular alterations, including c-myc expression and aurora A kinase (AAK) and polo-like kinase-1 (PLK1) activation, promote cell proliferation and contribute to the highly aggressive natural history associated with these lymphoproliferative disorders. In addition to its canonical targets regulating mitosis, the AAK/PLK1 axis directly regulates noncanonical targets, including c-myc. Recent studies demonstrate that HRLs, including T-cell lymphomas and many highly aggressive B-cell lymphomas, are dependent upon the AAK/PLK1 axis. Therefore, the AAK/PLK1 axis has emerged as an attractive therapeutic target in these lymphomas. In addition to reviewing these recent findings, we summarize the rationale for targeting AAK/PLK1 in high-risk and c-myc-driven lymphoproliferative disorders.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| | | | - Ryan A Wilcox
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| |
Collapse
|
29
|
Sánchez-Martínez D, Baroni ML, Gutierrez-Agüera F, Roca-Ho H, Blanch-Lombarte O, González-García S, Torrebadell M, Junca J, Ramírez-Orellana M, Velasco-Hernández T, Bueno C, Fuster JL, Prado JG, Calvo J, Uzan B, Cools J, Camos M, Pflumio F, Toribio ML, Menéndez P. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood 2019; 133:2291-2304. [PMID: 30796021 PMCID: PMC6554538 DOI: 10.1182/blood-2018-10-882944] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient-derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.
Collapse
Affiliation(s)
- Diego Sánchez-Martínez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Matteo L Baroni
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Oscar Blanch-Lombarte
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Montserrat Torrebadell
- Haematology Laboratory, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Junca
- Institut Catala d'Oncologia-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Manuel Ramírez-Orellana
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Talía Velasco-Hernández
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Luís Fuster
- Sección de Oncohematología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Calvo
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | - Benjamin Uzan
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | - Jan Cools
- KU Center for Human Genetics and VIB Center for Cancer Biology, Leuven, Belgium
| | - Mireia Camos
- Haematology Laboratory, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Françoise Pflumio
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | | | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica en Red-Oncología, Instituto de Salud Carlos III, Barcelona, Spain; and
- Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
30
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
31
|
The Antioxidant from Ethanolic Extract of Rosa cymosa Fruits Activates Phosphatase and Tensin Homolog In Vitro and In Vivo: A New Insight on Its Antileukemic Effect. Int J Mol Sci 2019; 20:ijms20081935. [PMID: 31010164 PMCID: PMC6514837 DOI: 10.3390/ijms20081935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Rosa cymosa Tratt is a Chinese herbal remedy that is used in the treatment of diarrhea, burns, rheumatoid arthritis, and hemorrhage. Despite its use in Asian folk medicine, there are limited reports on the biological activity of R. cymosa fruits. This study focused on the investigation of the antitumor effect of the antioxidative ethanolic extract of R. cymosa fruits (RCE) along with its underlying mechanism of action. RCE showed a potent cytotoxic effect against Sup-T1 and Molt-4 lymphoblastic leukemia cells. In the xenograft animal model, the tumor size was significantly reduced to about 59.42% in the RCE-treated group in comparison with the control group. The use of RCE (37.5, 75, or 150 μg/mL) triggered apoptosis by 26.52–83.49%, disrupted mitochondrial membrane potential (MMP) by 10.44–58.60%, and promoted calcium release by 1.29-, 1.44-, and 1.71-fold compared with the control group. The extract induced redox oxygen species (ROS) generation through the elimination of Nrf2/Keap1/P62-mediated oxidative stress response. The loss of phosphatase and tensin homolog (PTEN) activation by RCE impaired PI3K/Akt/Foxo and Jak/Stat activation pathways, which contributed to tumorigenesis. These multiple targets of R. cymosa against hematologic cancer cells suggested its potential application as an antileukemic dietary supplement.
Collapse
|
32
|
Liu L, Zhang L, Zhao S, Zhao XY, Min PX, Ma YD, Wang YY, Chen Y, Tang SJ, Zhang YJ, Du J, Gu L. Non-canonical Notch Signaling Regulates Actin Remodeling in Cell Migration by Activating PI3K/AKT/Cdc42 Pathway. Front Pharmacol 2019; 10:370. [PMID: 31057403 PMCID: PMC6477508 DOI: 10.3389/fphar.2019.00370] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor cell migration is a critical step in cancer metastasis. Over-activated Notch pathway can promote the migration of cancer cells, especially in the breast cancer. However, the underlying mechanism of non-canonical Notch signaling in modulating the migration has not yet been clearly characterized. Here we demonstrated that DAPT, a gamma secretase inhibitor, inhibited protrusion formation and cell motility, and then reduced the migration of triple-negative breast cancer cells, through increasing the activity of Cdc42 by non-canonical Notch pathway. Phosphorylation of AKT on S473 was surprisingly increased when Notch signaling was inhibited by DAPT. Inhibition of PI3K and AKT by LY294002 and MK2206, respectively, or knockdown of AKT expression by siRNA blocked DAPT-induced activation of Cdc42. Moreover, immunofluorescence staining further showed that DAPT treatment reduced the formation of lamellipodia and induced actin cytoskeleton remodeling. Taken together, these results indicated that DAPT inhibited Notch signaling and consequently activated PI3K/AKT/Cdc42 signaling by non-canonical pathway, facilitated the formation of filopodia and inhibited the assembly of lamellipodia, and finally resulted in the decrease of migration activity of breast cancer cells.
Collapse
Affiliation(s)
- Lei Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xu-Yang Zhao
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Peng-Xiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ya-Dong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yue-Yuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Si-Jie Tang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu-Jie Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Gowrikumar S, Ahmad R, Uppada SB, Washington MK, Shi C, Singh AB, Dhawan P. Upregulated claudin-1 expression promotes colitis-associated cancer by promoting β-catenin phosphorylation and activation in Notch/p-AKT-dependent manner. Oncogene 2019; 38:5321-5337. [PMID: 30971761 PMCID: PMC6597297 DOI: 10.1038/s41388-019-0795-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
Abstract
In IBD patients, integration between a hyper-activated immune system and epithelial cell plasticity underlies colon cancer development. However, molecular regulation of such a circuity remains undefined. Claudin-1(Cld-1), a tight-junction integral protein deregulation alters colonic epithelial cell (CEC) differentiation, and promotes colitis severity while impairing colitis-associated injury/repair. Tumorigenesis is a product of an unregulated wound healing process and therefore we postulated that upregulated Cld-1 levels render IBD patients susceptible to the colitis-associated cancer (CAC). Villin Cld-1 mice is used to carryout overexpressed studies in mice. The role of deregulated Cld-1 expression in CAC and underlying mechanism using a well-constructed study scheme and mouse models of DSS colitis/recovery and CAC. Using an inclusive investigative scheme, we here report that upregulated Cld-1 expression promotes susceptibility to the CAC and its malignancy. Increased mucosal inflammation, defective epithelial homeostasis accompanied the increased CAC in Villin-Cld1-Tg mice. We further found significantly increased levels of pro-tumorigenic M2 macrophages and β-CateninSer552 (β-CatSer552) expression in the CAC in Cld-1Tg versus WT mice. Mechanistic studies identified the role of PI3K/Akt signaling in Cld-1 dependent activation of the β-CatSer552, which, in turn, was dependent on pro-inflammatory signals. Our studies identify a critical role of Cld-1 in promoting susceptibility to CAC. Importantly, these effects of deregulated Cld-1 were not associated with altered tight junction integrity, but on its non-canonical role in regulating Notch/PI3K/Wnt/ β-CatSer552 signaling. Overall, outcome from our current studies identifies Cld-1 as potential prognostic biomarker for IBD severity and CAC, and a novel therapeutic target.
Collapse
Affiliation(s)
- Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Mary K Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.,Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA. .,Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
34
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
35
|
Jia Y, Qi Y, Wang Y, Ma X, Xu Y, Wang J, Zhang X, Gao M, Cong B, Han S. Overexpression of CD59 inhibits apoptosis of T-acute lymphoblastic leukemia via AKT/Notch1 signaling pathway. Cancer Cell Int 2019; 19:9. [PMID: 30636930 PMCID: PMC6325688 DOI: 10.1186/s12935-018-0714-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND T-acute lymphoblastic leukemia (T-ALL) was a hematological malignancy characterized by the accumulation of immature T cells in bone marrow and peripheral blood. In this study, we tried to explore the physiological role of CD59 in T-ALL. METHODS In this study, we collected the bone marrow samples from 17 T-ALL patients and 38 healthy participants to find differences in CD59 expression patterns. Then, CD59 was over-expressed in T-ALL cell line Jurkat, and its biological functions were detected. In addition, in order to understand the active site of CD59, the Trp40 was mutated. Further, we constructed a mouse model by transplanting Jurkat cells into the nude mice to verify the function of CD59 in vitro. At last, mechanism studies were performed by western blot. RESULTS We found that the proportion of T lymphocytes expressing CD59 in bone marrow of T-ALL patients was significantly higher than that of healthy individuals. Then, we found that the overexpression of CD59 in Jurkat cells was beneficial to the cell survival by inhibiting apoptosis and promoting IL-2 secretion. In this process, Trp40 of CD59 was a key functional site. Further, the high expression of CD59 inhibited apoptosis of bone marrow and peripheral blood cells, and promoted IL-2 secretion in mouse model. At last, mechanism studies showed that the activation of AKT, STAT5 and Notch1 signaling pathways in Jurkat cells, may be involved in the regulation of apoptosis by CD59; and mutation in the Trp40 affect the interaction of CD59 with these signaling pathways. CONCLUSIONS In conclusion, CD59 inhibited apoptosis of T-ALL by regulating AKT/Notch1 signaling pathway, providing a new perspective for the treatment of T-ALL.
Collapse
Affiliation(s)
- Yanfei Jia
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Yan Qi
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong People’s Republic of China
| | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Xiaoli Ma
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Yihui Xu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Jun Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Xiaoqian Zhang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Meihua Gao
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong People’s Republic of China
| | - Beibei Cong
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Shuyi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| |
Collapse
|
36
|
Bassan R, Bourquin JP, DeAngelo DJ, Chiaretti S. New Approaches to the Management of Adult Acute Lymphoblastic Leukemia. J Clin Oncol 2018; 36:JCO2017773648. [PMID: 30240326 DOI: 10.1200/jco.2017.77.3648] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traditional treatment regimens for adult acute lymphoblastic leukemia, including allogeneic hematopoietic cell transplantation, result in an overall survival of approximately 40%, a figure hardly comparable with the extraordinary 80% to 90% cure rate currently reported in children. When translated to the adult setting, modern pediatric-type regimens improve the survival to approximately 60% in young adults. The addition of tyrosine kinase inhibitors for patients with Philadelphia chromosome-positive disease and the measurement of minimal residual disease to guide risk stratification and postremission approaches has led to additional improvements in outcomes. Relapsed disease and treatment toxicity-sparing no patient but representing a major concern especially in the elderly-are the most critical current issues awaiting further therapeutic advancement. Recently, there has been considerable progress in understanding the disease biology, specifically the Philadelphia-like signature, as well as other high-risk subgroups. In addition, there are several new agents that will undoubtedly contribute to additional improvement in the current outcomes. The most promising agents are monoclonal antibodies, immunomodulators, and chimeric antigen receptor T cells, and, to a lesser extent, several new drugs targeting key molecular pathways involved in leukemic cell growth and proliferation. This review examines the evidence supporting the increasing role of the new therapeutic tools and treatment options in different disease subgroups, including frontline and relapsed or refractory disease. It is now possible to define the best individual approach on the basis of the emerging concepts of precision medicine.
Collapse
Affiliation(s)
- Renato Bassan
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Jean-Pierre Bourquin
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Daniel J DeAngelo
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Sabina Chiaretti
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
37
|
Zhang X, Yang Y, Feng Z. Suppression of microRNA-495 alleviates high-glucose-induced retinal ganglion cell apoptosis by regulating Notch/PTEN/Akt signaling. Biomed Pharmacother 2018; 106:923-929. [PMID: 30119264 DOI: 10.1016/j.biopha.2018.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
High glucose (HG)-induced apoptosis of retinal ganglion cells (RGCs) contributes to the pathogenesis of diabetic retinopathy, which is one of the most common and severe complications of diabetes mellitus. Accumulating evidence has documented that microRNAs (miRNAs) play an important role in the pathogenesis of diabetic retinopathy. However, the role of miRNAs in regulating HG-induced apoptosis of RGCs remains largely unknown. Various studies have suggested that miR-495 is an important regulator of cell apoptosis and survival. In this study, we aimed to investigate whether miR-495 is involved in regulating HG-induced apoptosis of RGCs and reveal its possible relevance in diabetic retinopathy. We found that miR-495 was significantly upregulated in HG-treated RGCs. Downregulation of miR-495 protected RGCs against HG-induced apoptosis, whereas overexpression of miR-495 had the opposite effect. Notably, Notch1 was identified as a target gene of miR-495, as miR-495 negatively regulated Notch1 expression and the Notch signaling pathway. Moreover, downregulation of miR-495 inhibited PTEN expression while promoting Akt activation. However, knockdown of Notch1 significantly abolished the protective effect of miR-495 inhibition against HG-induced apoptosis. Overall, our study suggests that downregulation of miR-495 alleviates HG-induced apoptosis of RGCs by targeting Notch1 to regulate PTEN/Akt signaling, which provides novel insights into understanding the pathogenesis of HG-induced apoptosis of RGCs.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Ophthalmology Department, The Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, 710004, PR China.
| | - Yuhong Yang
- Ophthalmology Department, Shaanxi Second Provincial People's Hospital, Xi'an, 710005, PR China
| | - Zhaohui Feng
- Ophthalmology Department, The Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, 710004, PR China
| |
Collapse
|
38
|
Šalovská B, Janečková H, Fabrik I, Karlíková R, Čecháková L, Ondrej M, Link M, Friedecký D, Tichý A. Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells. PLoS One 2018; 13:e0199349. [PMID: 30001349 PMCID: PMC6042708 DOI: 10.1371/journal.pone.0199349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Current anti-cancer strategy takes advantage of tumour specific abnormalities in DNA damage response to radio- or chemo-therapy. Inhibition of the ATR/Chk1 pathway has been shown to be synthetically lethal in cells with high levels of oncogene-induced replication stress and in p53- or ATM- deficient cells. In the presented study, we aimed to elucidate molecular mechanisms underlying radiosensitization of T-lymphocyte leukemic MOLT-4 cells by VE-821, a higly potent and specific inhibitor of ATR. We combined multiple approaches: cell biology techniques to reveal the inhibitor-induced phenotypes, and quantitative proteomics, phosphoproteomics, and metabolomics to comprehensively describe drug-induced changes in irradiated cells. VE-821 radiosensitized MOLT-4 cells, and furthermore 10 μM VE-821 significantly affected proliferation of sham-irradiated MOLT-4 cells. We detected 623 differentially regulated phosphorylation sites. We revealed changes not only in DDR-related pathways and kinases, but also in pathways and kinases involved in maintaining cellular metabolism. Notably, we found downregulation of mTOR, the main regulator of cellular metabolism, which was most likely caused by an off-target effect of the inhibitor, and we propose that mTOR inhibition could be one of the factors contributing to the phenotype observed after treating MOLT-4 cells with 10 μM VE-821. In the metabolomic analysis, 206 intermediary metabolites were detected. The data indicated that VE-821 potentiated metabolic disruption induced by irradiation and affected the response to irradiation-induced oxidative stress. Upon irradiation, recovery of damaged deoxynucleotides might be affected by VE-821, hampering DNA repair by their deficiency. Taken together, this is the first study describing a complex scenario of cellular events that might be ATR-dependent or triggered by ATR inhibition in irradiated MOLT-4 cells. Data are available via ProteomeXchange with identifier PXD008925.
Collapse
Affiliation(s)
- Barbora Šalovská
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Janečková
- Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - Ivo Fabrik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital, Hradec Králové, Czech Republic
| | - Radana Karlíková
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lucie Čecháková
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
| | - Martin Ondrej
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital, Hradec Králové, Czech Republic
- * E-mail:
| |
Collapse
|
39
|
Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. Int J Mol Sci 2018; 19:ijms19071878. [PMID: 29949919 PMCID: PMC6073309 DOI: 10.3390/ijms19071878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.
Collapse
|
40
|
Paganin M, Grillo MF, Silvestri D, Scapinello G, Buldini B, Cazzaniga G, Biondi A, Valsecchi MG, Conter V, te Kronnie G, Basso G. The presence of mutated and deleted PTEN is associated with an increased risk of relapse in childhood T cell acute lymphoblastic leukaemia treated with AIEOP-BFM ALL protocols. Br J Haematol 2018; 182:705-711. [DOI: 10.1111/bjh.15449] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Maddalena Paganin
- Oncoematologia Pediatrica; Azienda Ospedaliera di Padova; Padova Italy
| | - Maria Francesca Grillo
- Department of Women's and Children's Health; Paediatric Hematology and Oncology; University of Padova; Padova Italy
| | - Daniela Silvestri
- Centre of Biostatistics for Clinical Epidemiology; School of Medicine and Surgery; University of Milano-Bicocca; Monza Italy
- Clinica Pediatrica; Fondazione MBBM; University of Milano-Bicocca; Monza Italy
| | - Greta Scapinello
- Department of Women's and Children's Health; Paediatric Hematology and Oncology; University of Padova; Padova Italy
| | - Barbara Buldini
- Department of Women's and Children's Health; Paediatric Hematology and Oncology; University of Padova; Padova Italy
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti; Department of Paediatrics; University of Milano Bicocca; Fondazione MBBM; Monza Italy
| | - Andrea Biondi
- Clinica Pediatrica; Fondazione MBBM; University of Milano-Bicocca; Monza Italy
| | - Maria Grazia Valsecchi
- Centre of Biostatistics for Clinical Epidemiology; School of Medicine and Surgery; University of Milano-Bicocca; Monza Italy
| | - Valentino Conter
- Clinica Pediatrica; Fondazione MBBM; University of Milano-Bicocca; Monza Italy
| | - Geertruij te Kronnie
- Department of Women's and Children's Health; Paediatric Hematology and Oncology; University of Padova; Padova Italy
| | - Giuseppe Basso
- Department of Women's and Children's Health; Paediatric Hematology and Oncology; University of Padova; Padova Italy
| |
Collapse
|
41
|
DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:619. [PMID: 29795311 PMCID: PMC5966399 DOI: 10.1038/s41419-018-0662-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
Cancer cells frequently adapt fundamentally altered metabolism to support tumorigenicity and malignancy. Epigenetic and metabolic networks are closely interactive, in which DNA methyltransferases (DNMTs) play important roles. Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (EBV-LMP1) is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis because it can trigger multiple cell signaling pathways that promote cell transformation, proliferation, immune escape, invasiveness, epigenetic modification, and metabolic reprogramming. Our current findings reveal for the first time that LMP1 not only upregulates DNMT1 expression and activity, but also promotes its mitochondrial translocation. This induces epigenetic silencing of pten and activation of AKT signaling as well as hypermethylation of the mtDNA D-loop region and downregulation of oxidative phosphorylation (OXPHOS) complexes, consequently, leading to metabolic reprogramming in NPC. Furthermore, we demonstrate that grifolin, a natural farnesyl phenolic compound originated from higher fungi, is able to attenuate glycolytic flux and recover mitochondrial OXPHOS function by inhibiting DNMT1 expression and activity as well as its mitochondrial retention in NPC cells. Therefore, our work establishes a mechanistic connection between epigenetics and metabolism in EBV-positive NPC and provides further evidence for pathological classification based on CpG island methylator phenotype (CIMP) in EBV-associated malignancies. In addition, grifolin might be a promising lead compound in the intervention of high-CIMP tumor types. The availability of this natural product could hamper tumor cell metabolic reprogramming by targeting DNMT1.
Collapse
|
42
|
Effects of CB2 and TRPV1 receptors' stimulation in pediatric acute T-lymphoblastic leukemia. Oncotarget 2018; 9:21244-21258. [PMID: 29765535 PMCID: PMC5940388 DOI: 10.18632/oncotarget.25052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/21/2018] [Indexed: 01/17/2023] Open
Abstract
T-Acute Lymphoblastic Leukemia (T-ALL) is less frequent than B-ALL, but it has poorer outcome. For this reason new therapeutic approaches are needed to treat this malignancy. The Endocannabinoid/Endovanilloid (EC/EV) system has been proposed as possible target to treat several malignancies, including lymphoblastic diseases. The EC/EV system is composed of two G-Protein Coupled Receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel, their endogenous and exogenous ligands and enzymes. CB1 is expressed mainly in central nervous system while CB2 predominantly on immune and peripheral cells, therefore we chose to selectively stimulate CB2 and TRPV1. We treated T-ALL lymphoblasts derived from 4 patients and Jurkat cells with a selective agonist at CB2 receptor: JWH-133 [100 nM] and an agonist at TRPV1 calcium channel: RTX [5 uM] at 6, 12 and 24 hours. We analyzed the effect on apoptosis and Cell Cycle Progression by a cytofluorimetric assays and evaluated the expression level of several target genes (Caspase 3, Bax, Bcl-2, AKT, ERK, PTEN, Notch-1, CDK2, p53) involved in cell survival and apoptosis, by Real-Time PCR and Western Blotting. We observed a pro-apoptotic, anti-proliferative effect of these compounds in both primary lymphoblasts obtained from patients with T-ALL and in Jurkat cell line. Our results show that both CB2 stimulation and TRPV1 activation, can increase the apoptosis in vitro, interfere with cell cycle progression and reduce cell proliferation, indicating that a new therapeutic approach to T-cell ALL might be possible by modulating CB2 and TRPV1 receptors.
Collapse
|
43
|
Tan Q, Brunetti L, Rousseaux MWC, Lu HC, Wan YW, Revelli JP, Liu Z, Goodell MA, Zoghbi HY. Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc Natl Acad Sci U S A 2018; 115:E1511-E1519. [PMID: 29382756 PMCID: PMC5816173 DOI: 10.1073/pnas.1716452115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Capicua (CIC) regulates a transcriptional network downstream of the RAS/MAPK signaling cascade. In Drosophila, CIC is important for many developmental processes, including embryonic patterning and specification of wing veins. In humans, CIC has been implicated in neurological diseases, including spinocerebellar ataxia type 1 (SCA1) and a neurodevelopmental syndrome. Additionally, we and others have reported mutations in CIC in several cancers. However, whether CIC is a tumor suppressor remains to be formally tested. In this study, we found that deletion of Cic in adult mice causes T cell acute lymphoblastic leukemia/lymphoma (T-ALL). Using hematopoietic-specific deletion and bone marrow transplantation studies, we show that loss of Cic from hematopoietic cells is sufficient to drive T-ALL. Cic-null tumors show up-regulation of the KRAS pathway as well as activation of the NOTCH1 and MYC transcriptional programs. In sum, we demonstrate that loss of CIC causes T-ALL, establishing it as a tumor suppressor for lymphoid malignancies. Moreover, we show that mouse models lacking CIC in the hematopoietic system are robust models for studying the role of RAS signaling as well as NOTCH1 and MYC transcriptional programs in T-ALL.
Collapse
Affiliation(s)
- Qiumin Tan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Centro di Ricerca Emato-Oncologica, University of Perugia, 06156 Perugia, Italy
| | - Maxime W C Rousseaux
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Hsiang-Chih Lu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Jean-Pierre Revelli
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Margaret A Goodell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
44
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
45
|
Zeng YH, Zhou LY, Chen QZ, Li Y, Shao Y, Ren WY, Liao YP, Wang H, Zhu JH, Huang M, He F, Wang J, Wu K, He BC. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncol Rep 2017; 38:456-464. [DOI: 10.3892/or.2017.5662] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
|
46
|
miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. ASIAN PAC J TROP MED 2017; 10:87-91. [DOI: 10.1016/j.apjtm.2016.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/17/2016] [Accepted: 09/16/2016] [Indexed: 11/21/2022] Open
|