1
|
Nurden AT, Nurden P. Glanzmann Thrombasthenia 10 Years Later: Progress Made and Future Directions. Semin Thromb Hemost 2025; 51:196-208. [PMID: 38499192 DOI: 10.1055/s-0044-1782519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glanzmann thrombasthenia (GT) is the most common inherited platelet disorder (IPD) with mucocutaneous bleeding and a failure of platelets to aggregate when stimulated. The molecular cause is insufficient or defective αIIbβ3, an integrin encoded by the ITGA2B and ITGB3 genes. On activation αIIbβ3 undergoes conformational changes and binds fibrinogen (Fg) and other proteins to join platelets in the aggregate. The application of next-generation sequencing (NGS) to patients with IPDs has accelerated genotyping for GT; progress accompanied by improved mutation curation. The evaluation by NGS of variants in other hemostasis and vascular genes is a major step toward understanding why bleeding varies so much between patients. The recently discovered role for glycoprotein VI in thrombus formation, through its binding to fibrin and surface-bound Fg, may offer a mechanosensitive back-up for αIIbβ3, especially at sites of inflammation. The setting up of national networks for IPDs and GT is improving patient care. Hematopoietic stem cell therapy provides a long-term cure for severe cases; however, prophylaxis by monoclonal antibodies designed to accelerate fibrin formation at injured sites in the vasculature is a promising development. Gene therapy using lentil-virus vectors remains a future option with CRISPR/Cas9 technologies offering a promising alternative route.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
2
|
Navarro S, Talucci I, Göb V, Hartmann S, Beck S, Orth V, Stoll G, Maric HM, Stegner D, Nieswandt B. The humanized platelet glycoprotein VI Fab inhibitor EMA601 protects from arterial thrombosis and ischaemic stroke in mice. Eur Heart J 2024; 45:4582-4597. [PMID: 39150906 PMCID: PMC11560278 DOI: 10.1093/eurheartj/ehae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND AND AIMS Glycoprotein VI (GPVI) is a platelet collagen/fibrin(ogen) receptor and an emerging pharmacological target for the treatment of thrombotic and thrombo-inflammatory diseases, notably ischaemic stroke. A first anti-human GPVI (hGPVI) antibody Fab-fragment (ACT017/glenzocimab, KD: 4.1 nM) recently passed a clinical phase 1b/2a study in patients with acute ischaemic stroke and was found to be well tolerated, safe, and potentially beneficial. In this study, a novel humanized anti-GPVI antibody Fab-fragment (EMA601; KD: 0.195 nM) was developed that inhibits hGPVI function with very high potency in vitro and in vivo. METHODS Fab-fragments of the mouse anti-hGPVI IgG Emf6.1 were tested for functional GPVI inhibition in human platelets and in hGPVI expressing (hGP6tg/tg) mouse platelets. The in vivo effect of Emf6.1Fab was assessed in a tail bleeding assay, an arterial thrombosis model and the transient middle cerebral artery occlusion (tMCAO) model of ischaemic stroke. Using complementary-determining region grafting, a humanized version of Emf6.1Fab (EMA601) was generated. Emf6.1Fab/EMA601 interaction with hGPVI was mapped in array format and kinetics and quantified by bio-layer interferometry. RESULTS Emf6.1Fab (KD: 0.427 nM) blocked GPVI function in human and hGP6tg/tg mouse platelets in multiple assays in vitro at concentrations ≥5 µg/mL. Emf6.1Fab (4 mg/kg)-treated hGP6tg/tg mice showed potent hGPVI inhibition ex vivo and were profoundly protected from arterial thrombosis as well as from cerebral infarct growth after tMCAO, whereas tail-bleeding times remained unaffected. Emf6.1Fab binds to a so far undescribed membrane proximal epitope in GPVI. The humanized variant EMA601 displayed further increased affinity for hGPVI (KD: 0.195 nM) and fully inhibited the receptor at 0.5 µg/mL, corresponding to a >50-fold potency compared with ACT017. CONCLUSIONS EMA601 is a conceptually novel and promising anti-platelet agent to efficiently prevent or treat arterial thrombosis and thrombo-inflammatory pathologies in humans at risk.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ivan Talucci
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Vanessa Göb
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Stefanie Hartmann
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | | | - Guido Stoll
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- EMFRET Analytics GmbH, Eibelstadt, Germany
| |
Collapse
|
3
|
Benson TW, Pike MM, Spuzzillo A, Hicks SM, Ali S, Pham M, Mix DS, Brunner SI, Wadding-Lee C, Conrad KA, Russell HM, Jennings C, Coughlin TM, Aggarwal A, Lyden S, Mani K, Björck M, Wanhainen A, Bhandari R, Lipworth-Elliot L, Robinson-Cohen C, Caputo FJ, Shim S, Quesada O, Tourdot B, Edwards TL, Tranter M, Gardiner EE, Mackman N, Cameron SJ, Owens AP. Soluble glycoprotein VI predicts abdominal aortic aneurysm growth rate and is a novel therapeutic target. Blood 2024; 144:1663-1678. [PMID: 38900973 PMCID: PMC11522893 DOI: 10.1182/blood.2023021655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024] Open
Abstract
ABSTRACT A common feature in patients with abdominal aortic aneurysms (AAAs) is the formation of a nonocclusive intraluminal thrombus (ILT) in regions of aortic dilation. Platelets are known to maintain hemostasis and propagate thrombosis through several redundant activation mechanisms, yet the role of platelet activation in the pathogenesis of AAA-associated ILT is still poorly understood. Thus, we sought to investigate how platelet activation affects the pathogenesis of AAA. Using RNA sequencing, we identified that the platelet-associated transcripts are significantly enriched in the ILT compared with the adjacent aneurysm wall and healthy control aortas. We found that the platelet-specific receptor glycoprotein VI (GPVI) is among the top enriched genes in AAA ILT and is increased on the platelet surface of patients with AAAs. Examination of a specific indicator of platelet activity, soluble GPVI (sGPVI), in 2 independent cohorts of patients with AAAs is highly predictive of an AAA diagnosis and associates more strongly with aneurysm growth rate than D-dimer in humans. Finally, intervention with the anti-GPVI antibody (JAQ1) in mice with established aneurysms blunted the progression of AAA in 2 independent mouse models. In conclusion, we show that the levels of sGPVI in humans can predict a diagnosis of AAA and AAA growth rate, which may be critical in the identification of high-risk patients. We also identify GPVI as a novel platelet-specific AAA therapeutic target, with minimal risk of adverse bleeding complications, for which none currently exists.
Collapse
Affiliation(s)
- Tyler W. Benson
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mindy M. Pike
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Anthony Spuzzillo
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Sarah M. Hicks
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sidra Ali
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michael Pham
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Seth I. Brunner
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Caris Wadding-Lee
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Kelsey A. Conrad
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Hannah M. Russell
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Courtney Jennings
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Taylor M. Coughlin
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sean Lyden
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Martin Björck
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Rohan Bhandari
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Loren Lipworth-Elliot
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Francis J. Caputo
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sharon Shim
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Odayme Quesada
- Women’s Heart Center, The Christ Hospital Heart and Vascular Institute, Cincinnati, OH
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH
| | - Benjamin Tourdot
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Todd L. Edwards
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Scott J. Cameron
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Hematology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
4
|
Slater A, Khattak S, Thomas MR. GPVI inhibition: Advancing antithrombotic therapy in cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:465-473. [PMID: 38453424 PMCID: PMC11323372 DOI: 10.1093/ehjcvp/pvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Glycoprotein (GP) VI (GPVI) plays a major role in thrombosis but not haemostasis, making it a promising antithrombotic target. The primary role of GPVI on the surface of platelets is a signalling receptor for collagen, which is one of the most potent thrombotic sub-endothelial components that is exposed by atherosclerotic plaque rupture. Inhibition of GPVI has therefore been investigated as a strategy for treatment and prevention of atherothrombosis, such as during stroke and acute coronary syndromes. A range of specific GPVI inhibitors have been characterized, and two of these inhibitors, glenzocimab and revacept, have completed Phase II clinical trials in ischaemic stroke. In this review, we summarize mechanisms of GPVI activation and the latest progress of clinically tested GPVI inhibitors, including their mechanisms of action. By focusing on what is known about GPVI activation, we also discuss whether alternate strategies could be used to target GPVI.
Collapse
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Sophia Khattak
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| |
Collapse
|
5
|
Xu RG, Tiede C, Calabrese AN, Cheah LT, Adams TL, Gauer JS, Hindle MS, Webb BA, Yates DM, Slater A, Duval C, Naseem KM, Herr AB, Tomlinson DC, Watson SP, Ariëns RAS. Affimer reagents as tool molecules to modulate platelet GPVI-ligand interactions and specifically bind GPVI dimer. Blood Adv 2024; 8:3917-3928. [PMID: 38838227 PMCID: PMC11321386 DOI: 10.1182/bloodadvances.2024012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
ABSTRACT Glycoprotein VI (GPVI) plays a key role in collagen-induced platelet aggregation. Affimers are engineered binding protein alternatives to antibodies. We screened and characterized GPVI-binding Affimers as novel tools to probe GPVI function. Among the positive clones, M17, D22, and D18 bound GPVI with the highest affinities (dissociation constant (KD) in the nanomolar range). These Affimers inhibited GPVI-collagen-related peptide (CRP)-XL/collagen interactions, CRP-XL/collagen-induced platelet aggregation, and D22 also inhibited in vitro thrombus formation on a collagen surface under flow. D18 bound GPVI dimer but not monomer. GPVI binding was increased for D18 but not M17/D22 upon platelet activation by CRP-XL and adenosine 5'-diphosphate. D22 but not M17/D18 displaced nanobody 2 (Nb2) binding to GPVI, indicating similar epitopes for D22 with Nb2 but not for M17/D18. Mapping of binding sites revealed that D22 binds a site that overlaps with Nb2 on the D1 domain, whereas M17 targets a site on the D2 domain, overlapping in part with the glenzocimab binding site, a humanized GPVI antibody fragment antigen-binding fragment. D18 targets a new region on the D2 domain. We found that D18 is a stable noncovalent dimer and forms a stable complex with dimeric GPVI with 1:1 stoichiometry. Taken together, our data demonstrate that Affimers modulate GPVI-ligand interactions and bind different sites on GPVI D1/D2 domains. D18 is dimer-specific and could be used as a tool to detect GPVI dimerization or clustering in platelets. A dimeric epitope regulating ligand binding was identified on the GPVI D2 domain, which could be used for the development of novel bivalent antithrombotic agents selectively targeting GPVI dimer on platelets.
Collapse
Affiliation(s)
- Rui-Gang Xu
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Christian Tiede
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lih T. Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Thomas L. Adams
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Julia S. Gauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Matthew S. Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Beth A. Webb
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Daisie M. Yates
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Cédric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Andrew B. Herr
- Division of Immunobiology and Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Darren C. Tomlinson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. S. Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Omo-Lamai S, Zamora ME, Patel MN, Wu J, Nong J, Wang Z, Peshkova A, Majumder A, Melamed JR, Chase LS, Essien EO, Weissman D, Muzykantov VR, Marcos-Contreras OA, Myerson JW, Brenner JS. Physicochemical Targeting of Lipid Nanoparticles to the Lungs Induces Clotting: Mechanisms and Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312026. [PMID: 38394670 PMCID: PMC11209818 DOI: 10.1002/adma.202312026] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up or down-regulate any protein of interest. LNPs have mostly been targeted to specific cell types or organs by physicochemical targeting in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. Here lung-tropic LNPs are examined, whose organ tropism derives from containing either a cationic or ionizable lipid conferring a positive zeta potential. Surprisingly, these LNPs are found to induce massive thrombosis. Such thrombosis is shown in the lungs and other organs, and it is shown that it is greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles, and even by lung-tropic ionizable lipids that do not have a permanent cationic charge. The mechanism depends on the LNPs binding to and then changing the conformation of fibrinogen, which then activates platelets and thrombin. Based on these mechanisms, multiple solutions are engineered that enable positively charged LNPs to target the lungs while ameliorating thrombosis. The findings illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.
Collapse
Affiliation(s)
- Serena Omo-Lamai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marco E Zamora
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manthan N Patel
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jichuan Wu
- Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhicheng Wang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alina Peshkova
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aparajeeta Majumder
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jilian R Melamed
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liam S Chase
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eno-Obong Essien
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar A Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Lee CSM, Kaur A, Montague SJ, Hicks SM, Andrews RK, Gardiner EE. Tissue inhibitors of metalloproteinases (TIMPs) modulate platelet ADAM10 activity. Platelets 2023; 34:2288213. [PMID: 38031964 DOI: 10.1080/09537104.2023.2288213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Platelet-specific collagen receptor glycoprotein (GP)VI is stable on the surface of circulating platelets but undergoes ectodomain cleavage on activated platelets. Activation-dependent GPVI metalloproteolysis is primarily mediated by A Disintegrin And Metalloproteinase (ADAM) 10. Regulation of platelet ADAMs activity is not well-defined however Tissue Inhibitors of Metalloproteinases (TIMPs) may play a role. As levels of TIMPs on platelets and the control of ADAMs-mediated shedding by TIMPs has not been evaluated, we quantified the levels of TIMPs on the surface of resting and activated platelets from healthy donors by flow cytometry and multiplex ELISA. Variable levels of all TIMPs could be detected on platelets. Plasma contained significant quantities of TIMP1 and TIMP2, but only trace amounts of TIMP3 and TIMP4. Recombinant TIMP3 strongly ablated resting and activated platelet ADAM10 activity, when monitored using a quenched fluorogenic peptide substrate with ADAM10 specificity. Whilst ADAM10-specific inhibitor GI254023X or ethylenediamine tetraacetic acid (EDTA) could modulate ligand-initiated shedding of GPVI, only recombinant TIMP2 achieved a modest (~20%) inhibition. We conclude that some platelet TIMPs are able to modulate platelet ADAM10 activity but none strongly regulate ligand-dependent shedding of GPVI. Our findings provide new insights into the regulation of platelet receptor sheddase activity.
Collapse
Affiliation(s)
- Christine Shu Mei Lee
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Amandeep Kaur
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Samantha J Montague
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah M Hicks
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
8
|
Nurden AT. Molecular basis of clot retraction and its role in wound healing. Thromb Res 2023; 231:159-169. [PMID: 36008192 DOI: 10.1016/j.thromres.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production. Other blood cells incorporate into a fibrin mesh that is consolidated by FXIIIa-mediated crosslinking and platelet contractile activity. The latter results in the asymmetric redistribution of erythrocytes into a tighter central mass providing the clot with stability and resistance to fibrinolysis. Integrin αIIbβ3 on platelets is the key player in these events, bridging fibrin and the platelet cytoskeleton. Glycoprotein VI participates in thrombus formation but not in the retraction. Rheological and environmental factors influence clot construction with retraction driven by the platelet cytoskeleton with actomyosin acting as the motor. Activated platelets provide procoagulant activity stimulating thrombin generation together with the release of a plethora of biologically active proteins and substances from storage pools; many form chemotactic gradients within the fibrin or the underlying matrix. Also released are newly synthesized metabolites and lipid-rich vesicles that circulate within the vasculature and mimic platelet functions. Platelets and their released elements play key roles in wound healing. This includes promoting stem cell and mesenchymal stromal cell recruitment, fibroblast and endothelial cell migration, angiogenesis and matrix formation. These properties have led to the use of autologous clots in therapies designed to accelerate tissue repair while offering the potential for genetic manipulation in both inherited and acquired diseases.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France.
| |
Collapse
|
9
|
Alenazy FO, Harbi MH, Kavanagh DP, Price J, Brady P, Hargreaves O, Harrison P, Slater A, Tiwari A, Nicolson PLR, Connolly DL, Kirchhof P, Kalia N, Jandrot-Perrus M, Mangin PH, Watson SP, Thomas MR. Amplified inhibition of atherosclerotic plaque-induced platelet activation by glenzocimab with dual antiplatelet therapy. J Thromb Haemost 2023; 21:3236-3251. [PMID: 37541591 DOI: 10.1016/j.jtha.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/23/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Aspirin and platelet P2Y12 inhibitors, such as ticagrelor, suboptimally inhibit microvascular thrombosis during ST-elevation myocardial infarction. Glycoprotein (GP) IIb/IIIa inhibitors may further inhibit this but cause excessive bleeding. OBJECTIVES We investigated whether combination of glenzocimab, a GPVI inhibitor, with aspirin and ticagrelor provides additional antithrombotic effects, as GPVI has a critical role in atherothrombosis but minimal involvement in hemostasis. METHODS We investigated the effects of glenzocimab (monoclonal antibody Fab fragment) using blood from healthy donors and patients with acute coronary syndrome treated with aspirin and ticagrelor. Platelets were stimulated with multiple agonists, including atherosclerotic plaque, from patients undergoing carotid endarterectomy. RESULTS Aspirin and ticagrelor partially inhibited atherosclerotic plaque-induced platelet aggregation by 48% compared with control (34 ± 3 vs 65 ± 4 U; P < .001). Plaque-induced platelet aggregation, adhesion, secretion, and activation were critically dependent on GPVI activation. Glenzocimab alone reduced plaque-induced aggregation by 75% compared with control (16 ± 4 vs 65 ± 4 U; P < .001) and by >95% when combined with aspirin and ticagrelor (3 ± 1 vs 65 ± 4 U; P < .001). Glenzocimab reduced platelet aggregation, adhesion, and thrombin generation when added to blood of aspirin- and ticagrelor-treated patients with acute coronary syndrome. Glenzocimab shared several antithrombotic effects with the GPIIb/IIIa inhibitor eptifibatide with less effect on general hemostasis assessed by rotational thromboelastometry. In a murine intravital model of ST-elevation myocardial infarction, genetic depletion of GPVI reduced microvascular thrombosis. CONCLUSION Addition of glenzocimab to aspirin and ticagrelor enhances platelet inhibition via multiple mechanisms of atherothrombosis. Compared with a GPIIb/IIIa inhibitor, glenzocimab shares multiple antithrombotic effects, with less inhibition of mechanisms involved in general hemostasis.
Collapse
Affiliation(s)
- Fawaz O Alenazy
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Maan H Harbi
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Dean P Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Brady
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiology, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Oscar Hargreaves
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alok Tiwari
- Department of Vascular Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Derek L Connolly
- Department of Cardiology, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiology, University Heart and Vascular Center (UKE) Hamburg, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Neena Kalia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Pierre H Mangin
- UMR_S1255, INSERM, Etablissement Francais du Sang-Alsace, Strasbourg, France
| | - Steve P Watson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiology, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, United Kingdom; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
10
|
Mollica MY, Beussman KM, Kandasamy A, Rodríguez LM, Morales FR, Chen J, Manohar K, Del Álamo JC, López JA, Thomas WE, Sniadecki NJ. Distinct platelet F-actin patterns and traction forces on von Willebrand factor versus fibrinogen. Biophys J 2023; 122:3738-3748. [PMID: 37434354 PMCID: PMC10541491 DOI: 10.1016/j.bpj.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. In addition, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis.
Collapse
Affiliation(s)
- Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, Washington; Division of Hematology, School of Medicine, University of Washington, Seattle, Washington; Bloodworks Research Institute, Seattle, Washington; Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland.
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | | | | | - Junmei Chen
- Bloodworks Research Institute, Seattle, Washington
| | - Krithika Manohar
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | - José A López
- Division of Hematology, School of Medicine, University of Washington, Seattle, Washington; Bloodworks Research Institute, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nathan J Sniadecki
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Mechanical Engineering, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington; Resuscitation Engineering Science Unit, University of Washington, Seattle, Washington; Molecular Engineering and Science Institute, University of Washington, Seattle, Washington; Department of Lab Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
11
|
Changizi S, Sameti M, Bazemore GL, Chen H, Bashur CA. Epsin Mimetic UPI Peptide Delivery Strategies to Improve Endothelization of Vascular Grafts. Macromol Biosci 2023; 23:e2300073. [PMID: 37117010 DOI: 10.1002/mabi.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 04/30/2023]
Abstract
Endothelialization of engineered vascular grafts for replacement of small-diameter coronary arteries remains a critical challenge. The ability for an acellular vascular graft to promote endothelial cell (EC) recruitment in the body would be very beneficial. This study investigated epsins as a target since they are involved in internalization of vascular endothelial growth factor receptor 2. Specifically, epsin-mimetic UPI peptides are delivered locally from vascular grafts to block epsin activity and promote endothelialization. The peptide delivery from fibrin coatings allowed for controlled loading and provided a significant improvement in EC attachment, migration, and growth in vitro. The peptides have even more important impacts after grafting into rat abdominal aortae. The peptides prevented graft thrombosis and failure that is observed with a fibrin coating alone. They also modulated the in vivo remodeling. The grafts are able to remodel without the formation of a thick fibrous capsule on the adventitia with the 100 µg mL-1 peptide-loaded condition, and this condition enabled the formation of a functional EC monolayer in the graft lumen after only 1 week. Overall, this study demonstrated that the local delivery of UPI peptides is a promising strategy to improve the performance of vascular grafts.
Collapse
Affiliation(s)
- Shirin Changizi
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mahyar Sameti
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Gabrielle L Bazemore
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chris A Bashur
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| |
Collapse
|
12
|
Rudran T, Antoniak S, Flick MJ, Ginsberg MH, Wolberg AS, Bergmeier W, Lee RH. Protease-activated receptors and glycoprotein VI cooperatively drive the platelet component in thromboelastography. J Thromb Haemost 2023; 21:2236-2247. [PMID: 37068592 PMCID: PMC10824270 DOI: 10.1016/j.jtha.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Thromboelastography (TEG) is used for real-time determination of hemostatic status in patients with acute risk of bleeding. Thrombin is thought to drive clotting in TEG through generation of polymerized fibrin and activation of platelets through protease-activated receptors (PARs). However, the specific role of platelet agonist receptors and signaling in TEG has not been reported. OBJECTIVES Here, we investigated the specific receptors and signaling pathways required for platelet function in TEG using genetic and pharmacologic inhibition of platelet proteins in mouse and human blood samples. METHODS Clotting parameters (R time, α-angle [α], and maximum amplitude [MA]), were determined in recalcified, kaolin-triggered citrated blood samples using a TEG 5000 analyzer. RESULTS We confirmed the requirement of platelets, platelet contraction, and αIIbβ3 integrin function for normal α and MA. Loss of the integrin adaptor Talin1 in megakaryocytes/platelets (Talin1mKO) also reduced α and MA, but only minimal defects were observed in samples from mice lacking Rap1 GTPase signaling. PAR4mKO samples showed impaired α but normal MA. However, impaired TEG traces similar to those in platelet-depleted samples were observed with samples from PAR4mKO mice depleted of glycoprotein VI on platelets or with addition of a Syk inhibitor. We reproduced these results in human blood with combined inhibition of PAR1, PAR4, and Syk. CONCLUSION Our results demonstrate that standard TEG is not sensitive to platelet signaling pathways critical for integrin inside-out activation and platelet hemostatic function. Furthermore, we provide the first evidence that PARs and glycoprotein VI play redundant roles in platelet-mediated clot contraction in TEG.
Collapse
Affiliation(s)
- Tanvi Rudran
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew J Flick
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alisa S Wolberg
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
13
|
Omo-Lamai S, Zamora ME, Patel MN, Wu J, Nong J, Wang Z, Peshkova A, Chase LS, Essien EO, Muzykantov V, Marcos-Contreras O, Myerson JW, Brenner JS. Physicochemical Targeting of Lipid Nanoparticles to the Lungs Induces Clotting: Mechanisms and Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550080. [PMID: 37546837 PMCID: PMC10401951 DOI: 10.1101/2023.07.21.550080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up- or down-regulate any protein of interest. LNPs have been targeted to specific cell types or organs by physicochemical targeting, in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. In a popular approach, physicochemical targeting is accomplished by formulating with charged lipids. Negatively charged lipids localize LNPs to the spleen, and positively charged lipids to the lungs. Here we found that lung-tropic LNPs employing cationic lipids induce massive thrombosis. We demonstrate that thrombosis is induced in the lungs and other organs, and greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles. The mechanism depends on the LNPs binding to fibrinogen and inducing platelet and thrombin activation. Based on these mechanisms, we engineered multiple solutions which enable positively charged LNPs to target the lungs while not inducing thrombosis. Our findings implicate thrombosis as a major barrier that blood erects against LNPs with cationic components and illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.
Collapse
|
14
|
Janus-Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis, thrombosis and beyond. Haematologica 2023; 108:1734-1747. [PMID: 36700400 PMCID: PMC10316258 DOI: 10.3324/haematol.2022.282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors composed of α and β chains, with an N-terminal extracellular domain forming a globular head corresponding to the ligand binding site. Integrins regulate various cellular functions including adhesion, migration, proliferation, spreading and apoptosis. On platelets, integrins play a central role in adhesion and aggregation on subendothelial matrix proteins of the vascular wall, thereby ensuring hemostasis. Platelet integrins belong either to the β1 family (α2β1, α5β1 and α6β1) or to the β3 family (αIIbβ3 and αvβ3). On resting platelets, integrins can engage their ligands when the latter are immobilized but not in their soluble form. The effects of various agonists promote an inside-out signal in platelets, increasing the affinity of integrins for their ligands and conveying a modest signal reinforcing platelet activation, called outside-in signaling. This outside-in signal ensures platelet adhesion, shape change, granule secretion and aggregation. In this review, we examine the role of each platelet integrin in hemostatic plug formation, hemostasis and arterial thrombosis and also beyond these classical functions, notably in tumor metastasis and sepsis.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg.
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg
| |
Collapse
|
15
|
Mangin PH, Gardiner EE, Ariëns RAS, Jandrot-Perrus M. Glycoprotein VI interplay with fibrin(ogen) in thrombosis. J Thromb Haemost 2023; 21:1703-1713. [PMID: 36990158 DOI: 10.1016/j.jtha.2023.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Platelets play a central role in the arrest of bleeding. The ability of platelets to engage with extracellular matrix proteins of the subendothelium has long been recognized as a pivotal platelet attribute, underpinning adequate hemostasis. The propensity of platelets to rapidly bind and functionally respond to collagen was one of the earliest documented events in platelet biology. The receptor primarily responsible for mediating platelet/collagen responses was identified as glycoprotein (GP) VI and successfully cloned in 1999. Since that time, this receptor has held the attention of many research groups, and through these efforts, we now have an excellent understanding of the roles of GPVI as a platelet- and megakaryocyte-specific adheso-signaling receptor in platelet biology. GPVI is considered a viable antithrombotic target, as data obtained from groups across the world is consistent with GPVI being less involved in physiological hemostatic processes but participating in arterial thrombosis. This review will highlight the key aspects of GPVI contributions to platelet biology and concentrate on the interaction with recently identified ligands, with a focus on fibrin and fibrinogen, discussing the role of these interactions in the growth and stability of thrombi. We will also discuss important therapeutic developments that target GPVI to modulate platelet function while minimizing bleeding outcomes.
Collapse
Affiliation(s)
- Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg F-67065 Strasbourg, France.
| | - Elizabeth E Gardiner
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Martine Jandrot-Perrus
- Université de Paris Institut National de la Santé et de la Recherche Médicale, UMR-S1148, Hôpital Bichat, Paris, France
| |
Collapse
|
16
|
Isser S, Maurer A, Reischl G, Schaller M, Gonzalez-Menendez I, Quintanilla-Martinez L, Gawaz M, Pichler BJ, Beziere N. Radiolabeled GPVI-Fc for PET Imaging of Multiple Extracellular Matrix Fibers: A New Look into Pulmonary Fibrosis Progression. J Nucl Med 2023; 64:940-945. [PMID: 36702555 PMCID: PMC10241016 DOI: 10.2967/jnumed.122.264552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Invariably fatal and with a particularly fast progression, pulmonary fibrosis (PF) is currently devoid of curative treatment options. Routine clinical diagnosis relies on breathing tests and visualizing the changes in lung structure by CT, but anatomic information is often not sufficient to identify early signs of progressive PF. For more efficient diagnosis, additional imaging techniques were investigated in combination with CT, such as 18F-FDG PET, although with limited success because of lack of disease specificity. Therefore, novel molecular targets enabling specific diagnosis are investigated, in particular for molecular imaging techniques. Methods: In this study, we used a 64Cu-radiolabeled platelet glycoprotein VI fusion protein (64Cu-GPVI-Fc) targeting extracellular matrix (ECM) fibers as a PET tracer to observe longitudinal ECM remodeling in a bleomycin-induced PF mouse model. Results: 64Cu-GPVI-Fc showed significant uptake in fibrotic lungs, matching histology results. Contrary to 18F-FDG PET measurements, 64Cu-GPVI-Fc uptake was linked entirely to the fibrotic activity of tissue and not was susceptible to inflammation. Conclusion: Our study highlights 64Cu-GPVI-Fc as a specific tracer for ECM remodeling in PF, with clear therapy-monitoring and clinical translation potential.
Collapse
Affiliation(s)
- Simon Isser
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; and
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany;
- Cluster of Excellence EXC 2124, "Controlling Microbes to Fight Infections," Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Billiald P, Slater A, Welin M, Clark JC, Loyau S, Pugnière M, Jiacomini IG, Rose N, Lebozec K, Toledano E, François D, Watson SP, Jandrot-Perrus M. Targeting platelet GPVI with glenzocimab: a novel mechanism for inhibition. Blood Adv 2023; 7:1258-1268. [PMID: 36375047 PMCID: PMC10119634 DOI: 10.1182/bloodadvances.2022007863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Platelet glycoprotein VI (GPVI) is attracting interest as a potential target for the development of new antiplatelet molecules with a low bleeding risk. GPVI binding to vascular collagen initiates thrombus formation and GPVI interactions with fibrin promote the growth and stability of the thrombus. In this study, we show that glenzocimab, a clinical stage humanized antibody fragment (Fab) with a high affinity for GPVI, blocks the binding of both ligands through a combination of steric hindrance and structural change. A cocrystal of glenzocimab with an extracellular domain of monomeric GPVI was obtained and its structure determined to a resolution of 1.9 Å. The data revealed that (1) glenzocimab binds to the D2 domain of GPVI, GPVI dimerization was not observed in the crystal structure because glenzocimab prevented D2 homotypic interactions and the formation of dimers that have a high affinity for collagen and fibrin; and (2) the light variable domain of the GPVI-bound Fab causes steric hindrance that is predicted to prevent the collagen-related peptide (CRP)/collagen fibers from extending out of their binding site and preclude GPVI clustering and downstream signaling. Glenzocimab did not bind to a truncated GPVI missing loop residues 129 to 136, thus validating the epitope identified in the crystal structure. Overall, these findings demonstrate that the binding of glenzocimab to the D2 domain of GPVI induces steric hindrance and structural modifications that drive the inhibition of GPVI interactions with its major ligands.
Collapse
Affiliation(s)
- Philippe Billiald
- Laboratory for Vascular Translational Science, UMR_S1148 INSERM, Université Paris Cité, Hôpital Bichat, Paris, France
- School of Pharmacy, Université Paris-Saclay, Orsay, France
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Welin
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | - Joanne C. Clark
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stéphane Loyau
- Laboratory for Vascular Translational Science, UMR_S1148 INSERM, Université Paris Cité, Hôpital Bichat, Paris, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, Montpellier, France
| | - Isabella G. Jiacomini
- Departamento de Patologia Básica, Laboratório de Imunoquímica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nadia Rose
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | | | | | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Martine Jandrot-Perrus
- Laboratory for Vascular Translational Science, UMR_S1148 INSERM, Université Paris Cité, Hôpital Bichat, Paris, France
| |
Collapse
|
18
|
Beck S, Öftering P, Li R, Hemmen K, Nagy M, Wang Y, Zarpellon A, Schuhmann MK, Stoll G, Ruggeri ZM, Heinze KG, Heemskerk JW, Ruf W, Stegner D, Nieswandt B. Platelet glycoprotein V spatio-temporally controls fibrin formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:368-382. [PMID: 37206993 PMCID: PMC10195106 DOI: 10.1038/s44161-023-00254-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/15/2023] [Indexed: 05/21/2023]
Abstract
The activation of platelets and coagulation at vascular injury sites is crucial for haemostasis but can promote thrombosis and inflammation in vascular pathologies. Here, we delineate an unexpected spatio-temporal control mechanism of thrombin activity that is platelet orchestrated and locally limits excessive fibrin formation after initial haemostatic platelet deposition. During platelet activation, the abundant platelet glycoprotein (GP) V is cleaved by thrombin. We demonstrate with genetic and pharmacological approaches that thrombin-mediated shedding of GPV does not primarily regulate platelet activation in thrombus formation, but rather has a distinct function after platelet deposition and specifically limits thrombin-dependent generation of fibrin, a crucial mediator of vascular thrombo-inflammation. Genetic or pharmacologic defects in haemostatic platelet function are unexpectedly attenuated by specific blockade of GPV shedding, indicating that the spatio-temporal control of thrombin-dependent fibrin generation also represents a potential therapeutic target to improve haemostasis.
Collapse
Affiliation(s)
- Sarah Beck
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Patricia Öftering
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine; Atlanta, USA
| | - Katherina Hemmen
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Magdolna Nagy
- Department of Biochemistry, CARIM, Maastricht University; Maastricht, The Netherlands
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine; Atlanta, USA
| | | | | | - Guido Stoll
- University Hospital Würzburg, Department of Neurology, Würzburg, Germany
| | | | - Katrin G. Heinze
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Johan W.M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University; Maastricht, The Netherlands
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz; Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research; La Jolla, CA, USA
| | - David Stegner
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Bernhard Nieswandt
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| |
Collapse
|
19
|
Jooss NJ, Henskens YMC, Watson SP, Farndale RW, Gawaz MP, Jandrot-Perrus M, Poulter NS, Heemskerk JWM. Pharmacological Inhibition of Glycoprotein VI- and Integrin α2β1-Induced Thrombus Formation Modulated by the Collagen Type. Thromb Haemost 2023; 123:597-612. [PMID: 36807826 DOI: 10.1055/s-0043-1761463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND In secondary cardiovascular disease prevention, treatments blocking platelet-derived secondary mediators pose a risk of bleeding. Pharmacological interference of the interaction of platelets with exposed vascular collagens is an attractive alternative, with clinical trials ongoing. Antagonists of the collagen receptors, glycoprotein VI (GPVI), and integrin α2β1, include recombinant GPVI-Fc dimer construct Revacept, 9O12 mAb based on the GPVI-blocking reagent Glenzocimab, Syk tyrosine-kinase inhibitor PRT-060318, and anti-α2β1 mAb 6F1. No direct comparison has been made of the antithrombic potential of these drugs. METHODS Using a multiparameter whole-blood microfluidic assay, we compared the effects of Revacept, 9O12-Fab, PRT-060318, or 6F1 mAb intervention with vascular collagens and collagen-related substrates with varying dependencies on GPVI and α2β1. To inform on Revacept binding to collagen, we used fluorescent-labelled anti-GPVI nanobody-28. RESULTS AND CONCLUSION In this first comparison of four inhibitors of platelet-collagen interactions with antithrombotic potential, we find that at arterial shear rate: (1) the thrombus-inhibiting effect of Revacept was restricted to highly GPVI-activating surfaces; (2) 9O12-Fab consistently but partly inhibited thrombus size on all surfaces; (3) effects of GPVI-directed interventions were surpassed by Syk inhibition; and (4) α2β1-directed intervention with 6F1 mAb was strongest for collagens where Revacept and 9O12-Fab were limitedly effective. Our data hence reveal a distinct pharmacological profile for GPVI-binding competition (Revacept), GPVI receptor blockage (9O12-Fab), GPVI signaling (PRT-060318), and α2β1 blockage (6F1 mAb) in flow-dependent thrombus formation, depending on the platelet-activating potential of the collagen substrate. This work thus points to additive antithrombotic action mechanisms of the investigated drugs.
Collapse
Affiliation(s)
- Natalie J Jooss
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,CambCol Laboratories, Ely, United Kingdom
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martine Jandrot-Perrus
- UMR_S1148, Laboratory for Vascular Translational Science, INSERM, University Paris Cité, Paris, France
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.,Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
20
|
Abstract
BACKGROUND We investigated the effects and mechanism of swimming on platelet function in mice fed with a high-fat diet. MATERIAL AND METHODS Mice were randomly divided into the control group (NC), high-fat group (HF), and high-fat diet combined with swimming group (FE). The FE group swam for 60 min a day, 5 days a week, for 8 weeks. RESULTS Compared with the NC group, the HF group had significant weight gain, dyslipidemia, abbreviated bleeding time after tail breakage, increased clot retraction, increased platelet aggregation rate, increased spread of platelets on fibrinogen, and increased pAKT level in platelets. Compared with the HF group, the FE group had lower body weight, improved dyslipidemia, prolonged bleeding time, reduced clot retraction, reduced platelet aggregation rate, decreased spread of platelets on fibrinogen, and decreased pAKT level in platelets. CONCLUSIONS By inhibiting the level of pAKT in platelets, swimming improves platelet dysfunction in mice fed with a high-fat diet.
Collapse
Affiliation(s)
- Xinyong Su
- Department of Physical Education, Binzhou Medical University, Yantai, China
| | - Xiao Yu
- Department of Physical Education, Binzhou Medical University, Yantai, China
| | - Ruzhuan Chen
- Department of Physical Education, Harbin University of Science and Technology Rongcheng Campus, Weihai, China
| | - Weihua Bian
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
21
|
Cheung HYF, Moran LA, Sickmann A, Heemskerk JWM, Garcia Á, Watson SP. Inhibition of Src but not Syk causes weak reversal of GPVI-mediated platelet aggregation measured by light transmission aggregometry. Platelets 2022; 33:1293-1300. [PMID: 35535424 DOI: 10.1080/09537104.2022.2069235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Src tyrosine kinases and spleen tyrosine kinase (Syk) have recently been shown to contribute to sustained platelet aggregation on collagen under arterial shear. In the present study, we have investigated whether Src and Syk are required for aggregation under minimal shear following activation of glycoprotein VI (GPVI) and have extended this to C-type lectin-like receptor-2 (CLEC-2) which signals through the same pathway. Aggregation was induced by the GPVI ligand collagen-related peptide (CRP) and the CLEC-2 ligand rhodocytin and monitored by light transmission aggregometry (LTA). Aggregation and tyrosine phosphorylation by both receptors were sustained for up to 50 min. The addition of inhibitors of Src, Syk or Bruton's tyrosine kinase (Btk) at 150 sec, by which time aggregation was maximal, induced rapid loss of tyrosine phosphorylation of their downstream proteins, but only Src kinase inhibition caused a weak (~10%) reversal in light transmission. A similar effect was observed when the inhibitors were combined with apyrase and indomethacin or glycoprotein IIb-IIIa (GPIIb-IIIa) antagonist, eptifibatide. On the other hand, activation of GPIIb-IIIa by GPVI in a diluted platelet suspension, as measured by binding of fluorescein isothiocyanate-labeled antibody specific for the activated GPIIb-IIIa (FITC-PAC1), was reversed on the addition of Src and Syk inhibitors showing that integrin activation is rapidly reversible in the absence of outside-in signals. The results demonstrate that Src but not Syk and Btk contribute to sustained aggregation as monitored by LTA, possibly as a result of inhibition of outside-in signaling from GPIIb-IIIa to the cytoskeleton through a Syk-independent pathway. This is in contrast to the role of Syk in supporting sustained aggregation on collagen under arterial shear.
Collapse
Affiliation(s)
- Hilaire Yam Fung Cheung
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luis A Moran
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Albert Sickmann
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ángel Garcia
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Zhang Y, Trigani KT, Shankar KN, Crossen J, Liu Y, Sinno T, Diamond SL. Anti-GPVI Fab reveals distinct roles for GPVI signaling in the first platelet layer and subsequent layers during microfluidic clotting on collagen with or without tissue factor. Thromb Res 2022; 218:112-129. [PMID: 36037547 DOI: 10.1016/j.thromres.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
The collagen receptor glycoprotein VI (GPVI) drives strong platelet activation, however its role at later stages of clotting remains less clear. Controlled timing of addition of anti-human GPVI Fab (clone E12) with microfluidic venous whole blood flow over collagen (± lipidated tissue factor, TF) produced distinct effects on platelets, fibrin, P-selectin exposure, and phosphatidylserine (PS) exposure. On collagen alone, Fab present initially potently reduced platelet deposition on collagen, while Fab added 90 s after initial platelet deposition, stopped subsequent platelet accumulation (despite the absence of fibrin). With thrombin generation via TF, Fab added at either t = 0 or 90 s had no effect on platelet deposition. However, Fab added initially, but not at 90-s, blocked fibrin formation. Gly-Pro-Arg-Pro ablated fibrin formation without effect on platelet accumulation (regardless of Fab added at t = 0 or 90 s), indicating thrombin signaling can suffice over GPVI signaling. Still, Fab moderately reduced P-selectin exposure with thrombin present and fibrin absent. On collagen/TF, Fab present initially ablated PS exposure, but had no effect when added 30 to 90-s later. The thrombin generated via PS exposure had an important role in driving platelet deposition in the presence of Fab, since inhibition of PS via annexin V binding in the presence of Fab significantly inhibited platelet deposition. We conclude GPVI signaling in the first platelet layer on collagen dictates thrombin and fibrin production, but the role of GPVI at subsequent times after formation of the first monolayer is obscured by thrombin-induced signaling.
Collapse
Affiliation(s)
- Y Zhang
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K T Trigani
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K N Shankar
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Crossen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Y Liu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Artesunate as a glycoprotein VI antagonist for preventing platelet activation and thrombus formation. Biomed Pharmacother 2022; 153:113531. [DOI: 10.1016/j.biopha.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
|
24
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
25
|
Kenny M, Stamboroski S, Taher R, Brüggemann D, Schoen I. Nanofiber Topographies Enhance Platelet-Fibrinogen Scaffold Interactions. Adv Healthc Mater 2022; 11:e2200249. [PMID: 35526111 PMCID: PMC11469041 DOI: 10.1002/adhm.202200249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
The initial contact with blood and its components, including plasma proteins and platelets, directs the body's response to foreign materials. Natural scaffolds of extracellular matrix or fibrin contain fibrils with nanoscale dimensions, but how platelets specifically respond to the topography and architecture of fibrous materials is still incompletely understood. Here, planar and nanofiber scaffolds are fabricated from native fibrinogen to characterize the morphology of adherent platelets and activation markers for phosphatidylserine exposure and α-granule secretion by confocal fluorescence microscopy and scanning electron microscopy. Different fibrinogen topographies equally support the spreading and α-granule secretion of washed platelets. In contrast, preincubation of the scaffolds with plasma diminishes platelet spreading on planar fibrinogen surfaces but not on nanofibers. The data show that the enhanced interactions of platelets with nanofibers result from a higher locally accessible surface area, effectively increasing the ligand density for integrin-mediated responses. Overall, fibrinogen nanofibers direct platelets toward robust adhesion formation and α-granule secretion while minimizing their procoagulant activity. Similar results on fibrinogen-coated polydimethylsiloxane substrates with micrometer-sized 3D features suggest that surface topography could be used more generally to steer blood-materials interactions on different length scales for enhancing the initial wound healing steps.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Stephani Stamboroski
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)Wiener Strasse 12Bremen28359Germany
| | - Reem Taher
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Dorothea Brüggemann
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- MAPEX Center for Materials and ProcessesUniversity of BremenBremen28359Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| |
Collapse
|
26
|
Targeting glycoprotein VI to disrupt platelet-mediated tumor cell extravasation. Pharmacol Res 2022; 182:106301. [PMID: 35710063 DOI: 10.1016/j.phrs.2022.106301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Activated platelets coat circulating tumor cells, protecting them from shear stress in the blood stream and promoting their evasion from immune surveillance. Platelets promote tumor cell dissemination to distant organs by releasing transforming growth factor-β1 (TGF-β1) into the tumor microenvironment, which induces phenotypic changes to the epithelial-mesenchymal transition. This process facilitates tumor cell transendothelial extravasation and formation of early metastatic niches. Development of antiplatelet agents that interrupt the platelet-tumor cell axis but do not interfere with physiological hemostatic mechanisms is critical. The glycoprotein VI (GPVI), a member of the immunoreceptor family that is co-expressed with the fragment crystallizable (Fc) receptor γ-chain, is exclusively expressed in platelets and megakaryocytes, and blocking the receptor or genetic deficiency has minimal impact on bleeding. Tumor cell-expressed galectin-3, which contains a collagen-like peptide domain, binds to platelet GPVI-dimers, and the receptor-ligand activates platelets to form a protective heteroaggregate coat around tumor cells. This review highlights the potential of targeting the GPVI/FcR γ-chain complex to inhibit platelet activation by galectin-3 expressing tumor cells, disrupting the platelet-tumor cell amplification loop while maintaining the function of platelets in hemostasis.
Collapse
|
27
|
Zhi Z, Jooss NJ, Sun Y, Colicchia M, Slater A, Moran LA, Cheung HYF, Di Y, Rayes J, Poulter NS, Watson SP, Iqbal AJ. Galectin-9 activates platelet ITAM receptors glycoprotein VI and C-type lectin-like receptor-2. J Thromb Haemost 2022; 20:936-950. [PMID: 34936188 DOI: 10.1111/jth.15625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets are multifunctional cellular mediators in many physiological and pathophysiological processes such as thrombosis, angiogenesis, and inflammation. Several members of galectins, a family of carbohydrate-binding proteins with a broad range of immunomodulatory actions, have been reported to activate platelets. OBJECTIVE In this study, we investigated the role of galectin-9 (Gal-9) as a novel ligand for platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2). METHODS Platelet spreading, aggregation, and P-selectin expression in response to Gal-9 were measured in washed platelet suspensions via static adhesion assay, light transmission aggregometry, and flow cytometry, respectively. Solid-phase binding assay and protein phosphorylation studies were utilized to validate the interaction between Gal-9 and GPVI, and immunoprecipitation for detecting CLEC-2 phosphorylation. Wild-type (WT), GPVI-knockout (Gp6-/- ), and GPVI and CLEC-2-double knockout (Gp6-/- /Gp1ba-Cre-Clec1bfl/fl ) mice were used. RESULTS We have shown that recombinant Gal-9 stimulates aggregation in human and mouse washed platelets dose-dependently. Platelets from both species adhere and spread on immobilized Gal-9 and express P-selectin. Gal-9 competitively inhibited the binding of human recombinant D1 and D2 domains of GPVI to collagen. Gal-9 stimulated tyrosine phosphorylation of CLEC-2 and proteins known to lie downstream of GPVI and CLEC-2 including spleen tyrosine kinase and linker of activated T cells in human platelets. GPVI-deficient murine platelets exhibited significantly impaired aggregation in response to Gal-9, which was further abrogated in GPVI and CLEC-2-double-deficient platelets. CONCLUSIONS We have identified Gal-9 as a novel platelet agonist that induces activation through interaction with GPVI and CLEC-2.
Collapse
Affiliation(s)
- Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Natalie J Jooss
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Yi Sun
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martina Colicchia
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Luis A Moran
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Hilaire Yam Fung Cheung
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ying Di
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Kempster C, Butler G, Kuznecova E, Taylor KA, Kriek N, Little G, Sowa MA, Sage T, Johnson LJ, Gibbins JM, Pollitt AY. Fully automated platelet differential interference contrast image analysis via deep learning. Sci Rep 2022; 12:4614. [PMID: 35301400 PMCID: PMC8931011 DOI: 10.1038/s41598-022-08613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets mediate arterial thrombosis, a leading cause of myocardial infarction and stroke. During injury, platelets adhere and spread over exposed subendothelial matrix substrates of the damaged blood vessel wall. The mechanisms which govern platelet activation and their interaction with a range of substrates are therefore regularly investigated using platelet spreading assays. These assays often use differential interference contrast (DIC) microscopy to assess platelet morphology and analysis performed using manual annotation. Here, a convolutional neural network (CNN) allowed fully automated analysis of platelet spreading assays captured by DIC microscopy. The CNN was trained using 120 generalised training images. Increasing the number of training images increases the mean average precision of the CNN. The CNN performance was compared to six manual annotators. Significant variation was observed between annotators, highlighting bias when manual analysis is performed. The CNN effectively analysed platelet morphology when platelets spread over a range of substrates (CRP-XL, vWF and fibrinogen), in the presence and absence of inhibitors (dasatinib, ibrutinib and PRT-060318) and agonist (thrombin), with results consistent in quantifying spread platelet area which is comparable to published literature. The application of a CNN enables, for the first time, automated analysis of platelet spreading assays captured by DIC microscopy.
Collapse
Affiliation(s)
- Carly Kempster
- School of Biological Sciences, University of Reading, Reading, UK
| | - George Butler
- School of Biological Sciences, University of Reading, Reading, UK.,The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Elina Kuznecova
- School of Biological Sciences, University of Reading, Reading, UK
| | - Kirk A Taylor
- School of Biological Sciences, University of Reading, Reading, UK
| | - Neline Kriek
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gemma Little
- School of Biological Sciences, University of Reading, Reading, UK
| | - Marcin A Sowa
- School of Biological Sciences, University of Reading, Reading, UK
| | - Tanya Sage
- School of Biological Sciences, University of Reading, Reading, UK
| | - Louise J Johnson
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Alice Y Pollitt
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
29
|
Moroi M, Induruwa I, Farndale RW, Jung SM. Factor XIII is a newly identified binding partner for platelet collagen receptor GPVI-dimer-An interaction that may modulate fibrin crosslinking. Res Pract Thromb Haemost 2022; 6:e12697. [PMID: 35494504 PMCID: PMC9035508 DOI: 10.1002/rth2.12697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background In the fibrin-forming process, thrombin cleaves fibrinogen to fibrin, which form fibrils and then fibers, producing a gel-like clot. Thrombin also activates coagulation factor XIII (FXIII), which crosslinks fibrin γ-chains and α-chains, stabilizing the clot. Many proteins bind to fibrin, including FXIII, an established regulation of clot structure, and platelet glycoprotein VI (GPVI), whose contribution to clot function is largely unknown. FXIII is present in plasma, but the abundant FXIII in platelet cytosol becomes exposed to the surface of strongly activated platelets. Objectives We determined if GPVI interacts with FXIII and how this might modulate clot formation. Methods We measured interactions between recombinant proteins of the GPVI extracellular domain: GPVI-dimer (GPVI-Fc2) or monomer (GPVIex) and FXIII proteins (nonactivated and thrombin-activated FXIII, FXIII subunits A and B) by ELISA. Binding to fibrin clots and fibrin γ-chain crosslinking were analyzed by immunoblotting. Results GPVI-dimer, but not GPVI-monomer, bound to FXIII. GPVI-dimer selectively bound to the FXIII A-subunit, but not to the B-subunit, an interaction that was decreased or abrogated by the GPVI-dimer-specific antibody mFab-F. The GPVI-dimer-FXIII interaction decreased the extent of γ-chain crosslinking, indicating a role in the regulation of clot formation. Conclusions This is the first report of the specific interaction between GPVI-dimer and the A-subunit of FXIII, as determined in an in vitro system with defined components. GPVI-dimer-FXIII binding was inhibitory toward FXIII-catalyzed crosslinking of fibrin γ-chains in fibrin clots. This raises the possibility that GPVI-dimer may negatively modulate fibrin crosslinking induced by FXIII, lessening clot stability.
Collapse
Affiliation(s)
- Masaaki Moroi
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Isuru Induruwa
- Department of Clinical Neurosciences University of Cambridge Cambridge UK
| | | | | |
Collapse
|
30
|
Perrella G, Montague SJ, Brown HC, Garcia Quintanilla L, Slater A, Stegner D, Thomas M, Heemskerk JWM, Watson SP. Role of Tyrosine Kinase Syk in Thrombus Stabilisation at High Shear. Int J Mol Sci 2022; 23:ijms23010493. [PMID: 35008919 PMCID: PMC8745592 DOI: 10.3390/ijms23010493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s-1). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A2 (TxA2), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.
Collapse
Affiliation(s)
- Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Department of Biochemistry, CARIM, Maastricht University, 6200 AC Maastricht, The Netherlands;
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Mark Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Johan W. M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6200 AC Maastricht, The Netherlands;
- Department Synapse Research Institute, 6214 AC Maastricht, The Netherlands
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Nottingham, Nottingham NG7 2RD, UK
- Correspondence: ; Tel.: +44-0121-4146514
| |
Collapse
|
31
|
Barale C, Melchionda E, Morotti A, Russo I. Prothrombotic Phenotype in COVID-19: Focus on Platelets. Int J Mol Sci 2021; 22:ijms222413638. [PMID: 34948438 PMCID: PMC8705811 DOI: 10.3390/ijms222413638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection is associated with a broad spectrum of presentations, but alveolar capillary microthrombi have been described as a common finding in COVID-19 patients, appearing as a consequence of a severe endothelial injury with endothelial cell membrane disruption. These observations clearly point to the identification of a COVID-19-associated coagulopathy, which may contribute to thrombosis, multi-organ damage, and cause of severity and fatality. One significant finding that emerges in prothrombotic abnormalities observed in COVID-19 patients is that the coagulation alterations are mainly mediated by the activation of platelets and intrinsically related to viral-mediated endothelial inflammation. Beyond the well-known role in hemostasis, the ability of platelets to also release various potent cytokines and chemokines has elevated these small cells from simple cell fragments to crucial modulators in the blood, including their inflammatory functions, that have a large influence on the immune response during infectious disease. Indeed, platelets are involved in the pathogenesis of acute lung injury also by promoting NET formation and affecting vascular permeability. Specifically, the deposition by activated platelets of the chemokine platelet factor 4 at sites of inflammation promotes adhesion of neutrophils on endothelial cells and thrombogenesis, and it seems deeply involved in the phenomenon of vaccine-induced thrombocytopenia and thrombosis. Importantly, the hyperactivated platelet phenotype along with evidence of cytokine storm, high levels of P-selectin, D-dimer, and, on the other hand, decreased levels of fibrinogen, von Willebrand factor, and thrombocytopenia may be considered suitable biomarkers that distinguish the late stage of COVID-19 progression in critically ill patients.
Collapse
Affiliation(s)
| | | | | | - Isabella Russo
- Correspondence: ; Tel.: +39-011-6705447; Fax: +39-011-9038639
| |
Collapse
|
32
|
Sellers SL, Gulsin GS, Zaminski D, Bing R, Latib A, Sathananthan J, Pibarot P, Bouchareb R. Platelets: Implications in Aortic Valve Stenosis and Bioprosthetic Valve Dysfunction From Pathophysiology to Clinical Care. JACC Basic Transl Sci 2021; 6:1007-1020. [PMID: 35024507 PMCID: PMC8733745 DOI: 10.1016/j.jacbts.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/31/2022]
Abstract
Aortic stenosis (AS) is the most common heart valve disease requiring surgery in developed countries, with a rising global burden associated with aging populations. The predominant cause of AS is believed to be driven by calcific degeneration of the aortic valve and a growing body of evidence suggests that platelets play a major role in this disease pathophysiology. Furthermore, platelets are a player in bioprosthetic valve dysfunction caused by their role in leaflet thrombosis and thickening. This review presents the molecular function of platelets in the context of recent and rapidly evolving understanding the role of platelets in AS, both of the native aortic valve and bioprosthetic valves, where there remain concerns about the effects of subclinical leaflet thrombosis on long-term prosthesis durability. This review also presents the role of antiplatelet and anticoagulation therapies on modulating the impact of platelets on native and bioprosthetic aortic valves, highlighting the need for further studies to determine whether these therapies are protective and may increase the life span of surgical and transcatheter aortic valve implants. By linking molecular mechanisms through which platelets drive disease of native and bioprosthetic aortic valves with studies evaluating the clinical impact of antiplatelet and antithrombotic therapies, we aim to bridge the gaps between our basic science understanding of platelet biology and their role in patients with AS and ensuing preventive and therapeutic implications.
Collapse
Key Words
- AS, aortic stenosis
- AV, aortic valve
- AVR, aortic valve replacements
- COX, cyclooxygenase
- ECM, extracellular matrix protein
- HALT, hypoattenuating leaflet thickening
- HMW, high molecular weight
- MK, megakaryocyte
- SAVR, surgical aortic valve replacement
- TAVR
- TAVR, transcatheter aortic valve replacements
- TGF, transforming growth factor
- VEC, vascular endothelial cell
- VHD, valvular heart disease
- VIC, valve interstitial cell
- WSS, wall shear stress
- aortic stenosis
- calcified aortic valves
- platelets
- thrombosis
- vWF, Von Willebrand factor
Collapse
Affiliation(s)
- Stephanie L. Sellers
- Department of Radiology, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation and Cardiovascular Translational Laboratory, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gaurav S. Gulsin
- Department of Radiology, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation and Cardiovascular Translational Laboratory, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Devyn Zaminski
- Cardiovascular Research Institute, Department of Medicine, and Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Azeem Latib
- Department of Cardiology, Montefiore Medical Center, Bronx, New York, USA
| | - Janarthanan Sathananthan
- Centre for Heart Lung Innovation and Cardiovascular Translational Laboratory, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philippe Pibarot
- Institut de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Québec, Canada
| | - Rihab Bouchareb
- Cardiovascular Research Institute, Department of Medicine, and Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
33
|
Montague SJ, Patel P, Martin EM, Slater A, Quintanilla LG, Perrella G, Kardeby C, Nagy M, Mezzano D, Mendes PM, Watson SP. Platelet activation by charged ligands and nanoparticles: platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021; 32:1018-1030. [PMID: 34266346 DOI: 10.1080/09537104.2021.1945571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pushpa Patel
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Diego Mezzano
- Laboratorio de Trombosis y Hemostasia, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paula M Mendes
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| |
Collapse
|
34
|
Abstract
Significance: Since protein disulfide isomerase (PDI) was first described in 1963, researchers have shown conclusively that PDI and sibling proteins are quintessential for thrombus formation. PDI, endoplasmic reticulum protein (ERp)5, ERp57, and ERp72 are released from platelets and vascular cells and interact with integrin αIIbβ3 on the outer surface of platelets. Recent Advances: At the cell surface they influence protein folding and function, propagating thrombosis and maintaining hemostasis. TMX1, which is a transmembrane thiol isomerase, is the first family member shown to negatively regulate platelets. Targets of thiol isomerases have been identified, including integrin α2β1, Von Willebrand Factor, GpIbα, nicotinamide adenine dinucleotide phosphate oxidase (Nox)-1, Nox-2, and tissue factor, all of which are pro-thrombotic, and several of which are on the cell surface. In spite of this, PDI can paradoxically catalyze the delivery of nitric oxide to platelets, which decrease thrombus formation. Critical Issues: Although the overall effect of PDI is to positively regulate platelet activation, it is still unclear how thiol isomerases function in pro-thrombotic states, such as obesity, diabetes, and cancer. In parallel, there has been a surge in the development of novel thiol isomerase inhibitors, which display selectivity, potency and modulate thrombosis and hemostasis. The availability of selective thiol isomerase inhibitors has culminated in clinical trials, with promising outcomes for the prevention of cancer-associated thrombosis. Future Directions: Altogether, thiol isomerases are perceived as an orchestrating force that regulates thrombus development. In the current review, we will explore the history of PDI in cardiovascular biology, detail known mechanisms of action, and summarize known thiol isomerase inhibitors.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
35
|
Multiparameter Evaluation of the Platelet-Inhibitory Effects of Tyrosine Kinase Inhibitors Used for Cancer Treatment. Int J Mol Sci 2021; 22:ijms222011199. [PMID: 34681859 PMCID: PMC8540269 DOI: 10.3390/ijms222011199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Current antiplatelet drugs for the treatment of arterial thrombosis often coincide with increased bleeding risk. Several tyrosine kinase inhibitors (TKIs) for cancer treatment inhibit platelet function, with minor reported bleeding symptoms. The aim of this study was to compare the antiplatelet properties of eight TKIs to explore their possible repurposing as antiplatelet drugs. Samples of whole blood, platelet-rich plasma (PRP), or isolated platelets from healthy donors were treated with TKI or the vehicle. Measurements of platelet aggregation, activation, intracellular calcium mobilization, and whole-blood thrombus formation under flow were performed. Dasatinib and sunitinib dose-dependently reduced collagen-induced aggregation in PRP and washed platelets; pazopanib, cabozantinib, and vatalanib inhibited this response in washed platelets only; and fostamatinib, axitinib, and lapatinib showed no/limited effects. Fostamatinib reduced thrombus formation by approximately 50% on collagen and other substrates. Pazopanib, sunitinib, dasatinib, axitinib, and vatalanib mildly reduced thrombus formation on collagen by 10–50%. Intracellular calcium responses in isolated platelets were inhibited by dasatinib (>90%), fostamatinib (57%), sunitinib (77%), and pazopanib (82%). Upon glycoprotein-VI receptor stimulation, fostamatinib, cabozantinib, and vatalanib decreased highly activated platelet populations by approximately 15%, while increasing resting populations by 39%. In conclusion, the TKIs with the highest affinities for platelet-expressed molecular targets most strongly inhibited platelet functions. Dasatinib, fostamatinib, sunitinib, and pazopanib interfered in early collagen receptor-induced molecular-signaling compared with cabozantinib and vatalanib. Fostamatinib, sunitinib, pazopanib, and vatalanib may be promising for future evaluation as antiplatelet drugs.
Collapse
|
36
|
Marsden AJ, Riley DRJ, Barry A, Khalil JS, Guinn BA, Kemp NT, Rivero F, Beltran-Alvarez P. Inhibition of Arginine Methylation Impairs Platelet Function. ACS Pharmacol Transl Sci 2021; 4:1567-1577. [PMID: 34661075 DOI: 10.1021/acsptsci.1c00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to arginine residues in proteins. PRMT inhibitors are novel, promising drugs against cancer that are currently in clinical trials, which include oral administration of the drugs. However, off-target activities of systemically available PRMT inhibitors have not yet been investigated. In this work, we study the relevance of arginine methylation in platelets and investigate the effect of PRMT inhibitors on platelet function and on the expression of relevant platelet receptors. We show that (1) key platelet proteins are modified by arginine methylation; (2) incubation of human platelets with PRMT inhibitors for 4 h results in impaired capacity of platelets to aggregate in response to thrombin and collagen, with IC50 values in the μM range; and (3) treatment with PRMT inhibitors leads to decreased membrane expression and reduced activation of the critical platelet integrin αIIbβ3. Our contribution opens new avenues for research on arginine methylation in platelets, including the repurposing of arginine methylation inhibitors as novel antiplatelet drugs. We also recommend that current and future clinical trials with PRMT inhibitors consider any adverse effects associated with platelet inhibition of these emerging anticancer drugs.
Collapse
Affiliation(s)
| | - David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Neil T Kemp
- Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | | |
Collapse
|
37
|
Shih TL, Lin KH, Chen RJ, Chen TY, Kao WT, Liu JW, Wang HH, Peng HY, Sun YY, Lu WJ. A novel naphthalimide derivative reduces platelet activation and thrombus formation via suppressing GPVI. J Cell Mol Med 2021; 25:9434-9446. [PMID: 34448532 PMCID: PMC8500964 DOI: 10.1111/jcmm.16886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Naphthalimide derivatives have multiple biological activities, including antitumour and anti‐inflammatory activities. We previously synthesized several naphthalimide derivatives; of them, compound 5 was found to exert the strongest inhibitory effect on human DNA topoisomerase II activity. However, the effects of naphthalimide derivatives on platelet activation have not yet been investigated. Therefore, the mechanism underlying the antiplatelet activity of compound 5 was determined in this study. The data revealed that compound 5 (5–10 μM) inhibited collagen‐ and convulxin‐ but not thrombin‐ or U46619‐mediated platelet aggregation, suggesting that compound 5 is more sensitive to the inhibition of glycoprotein VI (GPVI) signalling. Indeed, compound 5 could inhibit the phosphorylation of signalling molecules downstream of GPVI, followed by the inhibition of calcium mobilization, granule release and GPIIb/IIIa activation. Moreover, compound 5 prevented pulmonary embolism and prolonged the occlusion time, but tended to prolong the bleeding time, indicating that it can prevent thrombus formation but may increase bleeding risk. This study is the first to demonstrate that the naphthalimide derivative compound 5 exerts antiplatelet and antithrombotic effects. Future studies should modify compound 5 to synthesize more potent and efficient antiplatelet agents while minimizing bleeding risk, which may offer a therapeutic potential for cardiovascular diseases.
Collapse
Affiliation(s)
- Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Hung Lin
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ray-Jade Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Kao
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Jen-Wei Liu
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wan-Jung Lu
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Pallini C, Pike JA, O'Shea C, Andrews RK, Gardiner EE, Watson SP, Poulter NS. Immobilized collagen prevents shedding and induces sustained GPVI clustering and signaling in platelets. Platelets 2021; 32:59-73. [PMID: 33455536 DOI: 10.1080/09537104.2020.1849607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Collagen, the most thrombogenic constituent of blood vessel walls, activates platelets through glycoprotein VI (GPVI). In suspension, following platelet activation by collagen, GPVI is cleaved by A Disintegrin And Metalloproteinase (ADAM)10 and ADAM17. In this study, we use single-molecule localization microscopy and a 2-level DBSCAN-based clustering tool to show that GPVI remains clustered along immobilized collagen fibers for at least 3 hours in the absence of significant shedding. Tyrosine phosphorylation of spleen tyrosine kinase (Syk) and Linker of Activated T cells (LAT), and elevation of intracellular Ca2+, are sustained over this period. Syk, but not Src kinase-dependent signaling is required to maintain clustering of the collagen integrin α2β1, whilst neither is required for GPVI. We propose that clustering of GPVI on immobilized collagen protects GPVI from shedding in order to maintain sustained Src and Syk-kinases dependent signaling, activation of integrin α2β1, and continued adhesion.
Collapse
Affiliation(s)
- Chiara Pallini
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Robert K Andrews
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University , Canberra, Australia
| | - Elizabeth E Gardiner
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University , Canberra, Australia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| |
Collapse
|
39
|
Clark JC, Damaskinaki FN, Cheung YFH, Slater A, Watson SP. Structure-function relationship of the platelet glycoprotein VI (GPVI) receptor: does it matter if it is a dimer or monomer? Platelets 2021; 32:724-732. [PMID: 33634725 DOI: 10.1080/09537104.2021.1887469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022]
Abstract
GPVI is a critical signaling receptor responsible for collagen-induced platelet activation and a promising anti-thrombotic target in conditions such as coronary artery thrombosis, ischemic stroke, and atherothrombosis. This is due to the ability to block GPVI while having minimal effects on hemostasis, making it a more attractive target over current dual-antiplatelet therapy (DAPT) with acetyl salicylic acid and P2Y12 inhibitors where bleeding can be a problem. Our current understanding of how the structure of GPVI relates to function is inadequate and recent studies contradict each other. In this article, we summarize the structure-function relationships underlying the activation of GPVI by its major ligands, including collagen, fibrin(ogen), snake venom toxins and charged exogenous ligands such as diesel exhaust particles. We argue that contrary to popular belief dimerization of GPVI is not required for binding to collagen but serves to facilitate binding through increased avidity, and that GPVI is expressed as a mixture of monomers and dimers on resting platelets, with binding of multivalent ligands inducing higher order clustering.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Yam Fung Hilaire Cheung
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Bioanalytics, Leibniz-Institut Für Analytische Wissenschaften - ISAS -e.v, Dortmund, Germany
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
40
|
Moroi M, Induruwa I, Farndale RW, Jung SM. Dimers of the platelet collagen receptor glycoprotein VI bind specifically to fibrin fibers during clot formation, but not to intact fibrinogen. J Thromb Haemost 2021; 19:2056-2067. [PMID: 34032355 DOI: 10.1111/jth.15399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The platelet collagen receptor glycoprotein VI (GPVI) has an independent role as a receptor for fibrin produced via the coagulation cascade. However, various reports of GPVI binding to immobilized fibrin(ogen) are not consistent. As a collagen receptor, GPVI-dimer is the functional form, but whether GPVI dimers or monomers bind to fibrin remains controversial. To resolve this, we analyzed GPVI binding to nascent fibrin clots, which more closely approximate physiological conditions. METHODS AND RESULTS ELISA using biotinyl-fibrinogen immobilized on streptavidin-coated wells indicated that GPVI dimers do not bind intact fibrinogen. Clots were formed by adding thrombin to a mixture of near-plasma level of fibrinogen and recombinant GPVI ectodomain: GPVI dimer (GPVI-Fc2 or Revacept) or monomer (GPVI-His: single chain of Revacept GPVI domain, with His tag). Clot-bound proteins were analyzed by SDS-PAGE/immunoblotting. GPVI-dimer bound to noncrosslinked fibrin clots with classical one-site binding kinetics, with µM-level KD , and to crosslinked clots with higher affinity. Anti-GPVI-dimer (mFab-F) inhibited the binding. However, GPVI-His binding to either type of clot was nonsaturable and nearly linear, indicating very low affinity or nonspecific binding. In clots formed in the presence of platelets, clot-bound platelet-derived proteins were integrin αIIbβ3, present at high levels, and GPVI. CONCLUSIONS We conclude that dimeric GPVI is the receptor for fibrin, exhibiting a similar KD to those obtained for its binding to fibrinogen D-fragment and D-dimer, suggesting that fibrin(ogen)'s GPVI-binding site becomes exposed after fibrin formation or cleavage to fragment D. Analysis of platelets bound to fibrin clots indicates that platelet GPVI binds to fibrin fibers comprising the clot.
Collapse
Affiliation(s)
- Masaaki Moroi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Isuru Induruwa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie M Jung
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Ahmed MU, Receveur N, Janus‐Bell E, Mouriaux C, Gachet C, Jandrot‐Perrus M, Hechler B, Gardiner EE, Mangin PH. Respective roles of Glycoprotein VI and FcγRIIA in the regulation of αIIbβ3-mediated platelet activation to fibrinogen, thrombus buildup, and stability. Res Pract Thromb Haemost 2021; 5:e12551. [PMID: 34263103 PMCID: PMC8268658 DOI: 10.1002/rth2.12551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The interplay between platelets and fibrinogen is the cornerstone of thrombus formation. Integrin αIIbβ3 is the main platelet adhesion receptor for fibrinogen and mediates an outside-in signal upon ligand binding that reinforces platelet activation. In addition, FcγRIIA and glycoprotein VI (GPVI) contribute to platelet activation on fibrinogen, thereby participating in thrombus growth and stability. To date, the relative importance of these two immunoreceptor tyrosine-based activation motif-bearing receptors in these processes remains unknown. OBJECTIVE The aim of this study was to evaluate the relative contributions of FcγRIIA and GPVI to platelet activation on fibrinogen and subsequent thrombus growth and stability. METHODS We evaluated human and mouse platelet adhesion to fibrinogen in static assays and a flow-based approach to evaluate the contribution of FcγRIIA and GPVI to thrombus growth and stability. RESULTS We first confirmed that integrin αIIbβ3 is the key receptor supporting platelet adhesion and spreading on fibrinogen. Using human platelets treated with pharmacological blocking agents and transgenic mouse platelets expressing human receptors, data indicate that GPVI, but not FcγRIIA, plays a prominent role in platelet activation on fibrinogen. Moreover, using a flow-based assay, we observed that blockade of GPVI with 1G5, but not FcγRIIA with IV.3, prevents thrombus growth. Finally, we observed that 1G5, but not IV.3, promotes the disaggregation of thrombi formed on collagen in vitro. CONCLUSION This study provides evidence that GPVI, but not FcγRIIA, induces platelet activation and spreading on fibrinogen, and promotes thrombus buildup and stability.
Collapse
Affiliation(s)
| | - Nicolas Receveur
- Université de StrasbourgINSERMEFS Grand‐EstBPPS UMR‐S1255FMTSStrasbourgFrance
| | - Emily Janus‐Bell
- Université de StrasbourgINSERMEFS Grand‐EstBPPS UMR‐S1255FMTSStrasbourgFrance
| | - Clarisse Mouriaux
- Université de StrasbourgINSERMEFS Grand‐EstBPPS UMR‐S1255FMTSStrasbourgFrance
| | - Christian Gachet
- Université de StrasbourgINSERMEFS Grand‐EstBPPS UMR‐S1255FMTSStrasbourgFrance
| | | | - Béatrice Hechler
- Université de StrasbourgINSERMEFS Grand‐EstBPPS UMR‐S1255FMTSStrasbourgFrance
| | - Elizabeth E. Gardiner
- Department of Cancer Biology and TherapeuticsThe John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
| | - Pierre H. Mangin
- Université de StrasbourgINSERMEFS Grand‐EstBPPS UMR‐S1255FMTSStrasbourgFrance
| |
Collapse
|
42
|
Neeves KB. A tail of two ITAMs: GPVI/FcRγ and FcγRIIa's role in platelet activation and thrombus stability. Res Pract Thromb Haemost 2021; 5:e12564. [PMID: 34263108 PMCID: PMC8265783 DOI: 10.1002/rth2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Keith B. Neeves
- Department of BioengineeringDepartment of PediatricsSection of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis CenterUniversity of Colorado DenverAnschutz Medical CampusAuroraCOUSA
| |
Collapse
|
43
|
MacKeigan DT, Ni T, Shen C, Stratton TW, Ma W, Zhu G, Bhoria P, Ni H. Updated Understanding of Platelets in Thrombosis and Hemostasis: The Roles of Integrin PSI Domains and their Potential as Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2021; 20:260-273. [PMID: 33001021 DOI: 10.2174/1871529x20666201001144541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022]
Abstract
Platelets are small blood cells known primarily for their ability to adhere and aggregate at injured vessels to arrest bleeding. However, when triggered under pathological conditions, the same adaptive mechanism of platelet adhesion and aggregation may cause thrombosis, a primary cause of heart attack and stroke. Over recent decades, research has made considerable progress in uncovering the intricate and dynamic interactions that regulate these processes. Integrins are heterodimeric cell surface receptors expressed on all metazoan cells that facilitate cell adhesion, movement, and signaling, to drive biological and pathological processes such as thrombosis and hemostasis. Recently, our group discovered that the plexin-semaphorin-integrin (PSI) domains of the integrin β subunits exert endogenous thiol isomerase activity derived from their two highly conserved CXXC active site motifs. Given the importance of redox reactions in integrin activation and its location in the knee region, this PSI domain activity may be critically involved in facilitating the interconversions between integrin conformations. Our monoclonal antibodies against the β3 PSI domain inhibited its thiol isomerase activity and proportionally attenuated fibrinogen binding and platelet aggregation. Notably, these antibodies inhibited thrombosis without significantly impairing hemostasis or causing platelet clearance. In this review, we will update mechanisms of thrombosis and hemostasis, including platelet versatilities and immune-mediated thrombocytopenia, discuss critical contributions of the newly discovered PSI domain thiol isomerase activity, and its potential as a novel target for anti-thrombotic therapies and beyond.
Collapse
Affiliation(s)
- Daniel T MacKeigan
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Tyler W Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| |
Collapse
|
44
|
Flow studies on human GPVI-deficient blood under coagulating and noncoagulating conditions. Blood Adv 2021; 4:2953-2961. [PMID: 32603422 DOI: 10.1182/bloodadvances.2020001761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of glycoprotein VI (GPVI) in platelets was investigated in 3 families bearing an insertion within the GP6 gene that introduces a premature stop codon prior to the transmembrane domain, leading to expression of a truncated protein in the cytoplasm devoid of the transmembrane region. Western blotting and flow cytometry of GP6hom (homozygous) platelets confirmed loss of the full protein. The level of the Fc receptor γ-chain, which associates with GPVI in the membrane, was partially reduced, but expression of other receptors and signaling proteins was not altered. Spreading of platelets on collagen and von Willebrand factor (which supports partial spreading) was abolished in GP6hom platelets, and spreading on uncoated glass was reduced. Anticoagulated whole blood flowed over immobilized collagen or a mixture of von Willebrand factor, laminin, and rhodocytin (noncollagen surface) generated stable platelet aggregates that express phosphatidylserine (PS). Both responses were blocked on the 2 surfaces in GP6hom individuals, but adhesion was not altered. Thrombin generation was partially reduced in GP6hom blood. The frequency of the GP6het (heterozygous) variant in a representative sample of the Chilean population (1212 donors) is 2.9%, indicating that there are ∼4000 GP6hom individuals in Chile. These results demonstrate that GPVI supports aggregation and PS exposure under flow on collagen and noncollagen surfaces, but not adhesion. The retention of adhesion may contribute to the mild bleeding diathesis of GP6hom patients and account for why so few of the estimated 4000 GP6hom individuals in Chile have been identified.
Collapse
|
45
|
Montenont E, Bhatlekar S, Jacob S, Kosaka Y, Manne BK, Lee O, Parra-Izquierdo I, Tugolukova E, Tolley ND, Rondina MT, Bray PF, Rowley JW. CRISPR-edited megakaryocytes for rapid screening of platelet gene functions. Blood Adv 2021; 5:2362-2374. [PMID: 33944898 PMCID: PMC8114553 DOI: 10.1182/bloodadvances.2020004112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/07/2023] Open
Abstract
Human anucleate platelets cannot be directly modified using traditional genetic approaches. Instead, studies of platelet gene function depend on alternative models. Megakaryocytes (the nucleated precursor to platelets) are the nearest cell to platelets in origin, structure, and function. However, achieving consistent genetic modifications in primary megakaryocytes has been challenging, and the functional effects of induced gene deletions on human megakaryocytes for even well-characterized platelet genes (eg, ITGA2B) are unknown. Here we present a rapid and systematic approach to screen genes for platelet functions in CD34+ cell-derived megakaryocytes called CRIMSON (CRISPR-edited megakaryocytes for rapid screening of platelet gene functions). By using CRISPR/Cas9, we achieved efficient nonviral gene editing of a panel of platelet genes in megakaryocytes without compromising megakaryopoiesis. Gene editing induced loss of protein in up to 95% of cells for platelet function genes GP6, RASGRP2, and ITGA2B; for the immune receptor component B2M; and for COMMD7, which was previously associated with cardiovascular disease and platelet function. Gene deletions affected several select responses to platelet agonists in megakaryocytes in a manner largely consistent with those expected for platelets. Deletion of B2M did not significantly affect platelet-like responses, whereas deletion of ITGA2B abolished agonist-induced integrin activation and spreading on fibrinogen without affecting the translocation of P-selectin. Deletion of GP6 abrogated responses to collagen receptor agonists but not thrombin. Deletion of RASGRP2 impaired functional responses to adenosine 5'-diphosphate (ADP), thrombin, and collagen receptor agonists. Deletion of COMMD7 significantly impaired multiple responses to platelet agonists. Together, our data recommend CRIMSON for rapid evaluation of platelet gene phenotype associations.
Collapse
Affiliation(s)
- Emilie Montenont
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Seema Bhatlekar
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Shancy Jacob
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Yasuhiro Kosaka
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Bhanu K Manne
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Olivia Lee
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | | | - Emilia Tugolukova
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Neal D Tolley
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
- George E. Wahlen Department of Veterans Affairs Medical Center
- Department of Internal Medicine and Geriatric Research and Education Clinical Center, and
- Department of Pathology, The University of Utah, Salt Lake City, UT
| | - Paul F Bray
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
| | - Jesse W Rowley
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
| |
Collapse
|
46
|
Clark JC, Neagoe RAI, Zuidscherwoude M, Kavanagh DM, Slater A, Martin EM, Soave M, Stegner D, Nieswandt B, Poulter NS, Hummert J, Herten DP, Tomlinson MG, Hill SJ, Watson SP. Evidence that GPVI is Expressed as a Mixture of Monomers and Dimers, and that the D2 Domain is not Essential for GPVI Activation. Thromb Haemost 2021; 121:1435-1447. [PMID: 33638140 DOI: 10.1055/a-1401-5014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Collagen has been proposed to bind to a unique epitope in dimeric glycoprotein VI (GPVI) and the number of GPVI dimers has been reported to increase upon platelet activation. However, in contrast, the crystal structure of GPVI in complex with collagen-related peptide (CRP) showed binding distinct from the site of dimerization. Further fibrinogen has been reported to bind to monomeric but not dimeric GPVI. In the present study, we have used the advanced fluorescence microscopy techniques of single-molecule microscopy, fluorescence correlation spectroscopy (FCS) and bioluminescence resonance energy transfer (BRET), and mutagenesis studies in a transfected cell line model to show that GPVI is expressed as a mixture of monomers and dimers and that dimerization through the D2 domain is not critical for activation. As many of these techniques cannot be applied to platelets to resolve this issue, due to the high density of GPVI and its anucleate nature, we used Förster resonance energy transfer (FRET) to show that endogenous GPVI is at least partially expressed as a dimer on resting and activated platelet membranes. We propose that GPVI may be expressed as a monomer on the cell surface and it forms dimers in the membrane through diffusion, giving rise to a mixture of monomers and dimers. We speculate that the formation of dimers facilitates ligand binding through avidity.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Raluca A I Neagoe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Wurzburg, Wurzburg, Germany
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Deirdre M Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mark Soave
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Wurzburg, Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Wurzburg, Wurzburg, Germany
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Johan Hummert
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Dirk-Peter Herten
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Michael G Tomlinson
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
47
|
Branfield S, Washington AV. The enigmatic nature of the triggering receptor expressed in myeloid cells -1 (TLT- 1). Platelets 2021; 32:753-760. [PMID: 33560928 DOI: 10.1080/09537104.2021.1881948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptors are important pharmacological targets on cells. The Triggering Receptor Expressed on Myeloid Cells (TREM) - Like Transcript - 1 is an abundant, yet little understood, platelet receptor. It is a single Ig domain containing receptor isolated in the α-granules of resting platelets and brought to the platelet surface upon activation. On platelets, the integrin αIIbβ3 is the major receptor having roughly 80,000 copies. αIIbβ3 is a heterodimeric multidomain structure that mediates platelet aggregation through its interaction with the plasma protein fibrinogen. Anti-platelet drugs have successfully targeted αIIbβ3 to control thrombosis. Like αIIbβ3, TLT-1 also binds fibrinogen, making its role in platelet function somewhat obscure. In this review, we highlight the known structural features of TLT-1 and present the challenges of understanding TLT-1 function. In our analysis of the dynamics of the platelet surface after activation we propose a model in which TLT-1 supports αIIbβ3 function as a mechanoreceptor that may direct platelets toward immune function.
Collapse
Affiliation(s)
- Siobhan Branfield
- , Department of Biology, University of Puerto Rico- Rio Piedras- Molecular Science Research Center, San Juan, Puerto Rico
| | - A Valance Washington
- , Department of Biology, University of Puerto Rico- Rio Piedras- Molecular Science Research Center, San Juan, Puerto Rico
| |
Collapse
|
48
|
Xu RG, Gauer JS, Baker SR, Slater A, Martin EM, McPherson HR, Duval C, Manfield IW, Bonna AM, Watson SP, Ariëns RAS. GPVI (Glycoprotein VI) Interaction With Fibrinogen Is Mediated by Avidity and the Fibrinogen αC-Region. Arterioscler Thromb Vasc Biol 2021; 41:1092-1104. [PMID: 33472402 PMCID: PMC7901536 DOI: 10.1161/atvbaha.120.315030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: GPVI (glycoprotein VI) is a key molecular player in collagen-induced platelet signaling and aggregation. Recent evidence indicates that it also plays important role in platelet aggregation and thrombus growth through interaction with fibrin(ogen). However, there are discrepancies in the literature regarding whether the monomeric or dimeric form of GPVI binds to fibrinogen at high affinity. The mechanisms of interaction are also not clear, including which region of fibrinogen is responsible for GPVI binding. We aimed to gain further understanding of the mechanisms of interaction at molecular level and to identify the regions on fibrinogen important for GPVI binding. Approach and Results: Using multiple surface- and solution-based protein-protein interaction methods, we observe that dimeric GPVI binds to fibrinogen with much higher affinity and has a slower dissociation rate constant than the monomer due to avidity effects. Moreover, our data show that the highest affinity interaction of GPVI is with the αC-region of fibrinogen. We further show that GPVI interacts with immobilized fibrinogen and fibrin variants at a similar level, including a nonpolymerizing fibrin variant, suggesting that GPVI binding is independent of fibrin polymerization. Conclusions: Based on the above findings, we conclude that the higher affinity of dimeric GPVI over the monomer for fibrinogen interaction is achieved by avidity. The αC-region of fibrinogen appears essential for GPVI binding. We propose that fibrin polymerization into fibers during coagulation will cluster GPVI through its αC-region, leading to downstream signaling, further activation of platelets, and potentially stimulating clot growth.
Collapse
Affiliation(s)
- Rui-Gang Xu
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Julia S Gauer
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Stephen R Baker
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.).,Department of Physics, Wake Forest University, Winston Salem, NC (S.R.B.)
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Helen R McPherson
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Cédric Duval
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Iain W Manfield
- School of Molecular and Cellular Biology, Faculty of Biological Sciences (I.W.M.), University of Leeds, United Kingdom
| | - Arkadiusz M Bonna
- Department of Biochemistry, University of Cambridge, United Kingdom (A.M.B.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| |
Collapse
|
49
|
Sylakowski K, Wells A. ECM-regulation of autophagy: The yin and the yang of autophagy during wound healing. Matrix Biol 2021; 100-101:197-206. [PMID: 33421547 DOI: 10.1016/j.matbio.2020.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Wound healing is a complex sequence of tissue protection, replacement, and reorganization leading to regenerated tissue. Disruption of any of these steps results in the process being incomplete as an ulcer or over-exuberant as a hypertrophic scar. Over the past decade, it has become evident that the extracellular matrix and associated components orchestrate this process. However, the cellular events that are induced by the extracellular matrix to accomplish wound healing remain to be defined. Herein we propose that matrix-regulated cellular macro-autophagy is key to both the tissue replacement and resolution stages of healing by directing cellular function or apoptosis. Further, disruptions in matrix turnover alter autophagic function leading to chronic wounds or scarring. While the literature that directly investigates autophagy during wound healing is sparse, the emerging picture supports our proposing a model of the centrality of the matrix-autophagy modulation as central to physiologic and pathologic healing.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States; VA Pittsburgh Healthcare Systems, Pittsburgh, PA 15213, United States
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States; VA Pittsburgh Healthcare Systems, Pittsburgh, PA 15213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
50
|
Borst O, Gawaz M. Glycoprotein VI - novel target in antiplatelet medication. Pharmacol Ther 2021; 217:107630. [DOI: 10.1016/j.pharmthera.2020.107630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
|